Cyclomodulins and Hemolysis in E. coli as Potential Low-Cost Non-Invasive Biomarkers for Colorectal Cancer Screening
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_LF_2021_022
the Faculty of Medicine & Dentistry, Palacký University Olomouc
DRO 61989592
the Ministry of Education, Youth and Sports, Czech Republic
DROFNOl 00098892, NV19-03-00069
the Ministry of Health, Czech Republic
PubMed
34833041
PubMed Central
PMC8621933
DOI
10.3390/life11111165
PII: life11111165
Knihovny.cz E-zdroje
- Klíčová slova
- colibactin, colorectal cancer, cytotoxic necrotizing factor, genotoxin, screening,
- Publikační typ
- časopisecké články MeSH
The frequent occurrence of E. coli positive for cyclomodulins such as colibactin (CLB), the cytotoxic necrotizing factor (CNF), and the cytolethal distending factor (CDT) in colorectal cancer (CRC) patients published so far provides the opportunity to use them as CRC screening markers. We examined the practicability and performance of a low-cost detection approach that relied on culture followed by simplified DNA extraction and PCR in E. coli isolates recovered from 130 CRC patients and 111 controls. Our results showed a statistically significant association between CRC and the presence of colibactin genes clbB and clbN, the cnf gene, and newly, the hemolytic phenotype of E. coli isolates. We also observed a significant increase in the mean number of morphologically distinct E. coli isolates per patient in the CRC cohort compared to controls, indicating that the cyclomodulin-producing E. coli strains may represent potentially preventable harmful newcomers in CRC patients. A colibactin gene assay showed the highest detection rate (45.4%), and males would benefit from the screening more than females. However, because of the high number of false positives, practical use of this marker must be explored. In our opinion, it may serve as an auxiliary marker to increase the specificity and/or sensitivity of the well-established fecal immunochemical test (FIT) in CRC screening.
Zobrazit více v PubMed
Schwabe R.F., Jobin C. The microbiome and cancer. Nat. Rev. Cancer. 2013;13:800–812. doi: 10.1038/nrc3610. PubMed DOI PMC
Warren R.L., Freeman D.J., Pleasance S., Watson P., Moore R.A., Cochrane K., Allen-Vercoe E., Holt R.A. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome. 2013;1:16. doi: 10.1186/2049-2618-1-16. PubMed DOI PMC
Compare D., Nardone G. The bacteria-hypothesis of colorectal cancer: Pathogenetic and therapeutic implications. Transl. Gastrointest. Cancer. 2014;3:44–53. doi: 10.3978/j.issn.2224-4778.2013.05.37. DOI
Bonnet M., Buc E., Sauvanet P., Darcha C., Dubois D., Pereira B., Déchelotte P., Bonnet R., Pezet D., Darfeuille-Michaud A. Colonization of the human gut by E. coli and colorectal cancer risk. Clin. Cancer Res. 2014;20:859–867. doi: 10.1158/1078-0432.CCR-13-1343. PubMed DOI
Viljoen K.S., Dakshinamurthy A., Goldberg P., Blackburn J.M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between Fusobacterium spp., Enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS ONE. 2015;10:e0119462. doi: 10.1371/journal.pone.0119462. PubMed DOI PMC
Zamani S., Taslimi R., Sarabi A., Jasemi S., Sechi L.A., Feizabadi M.M. Enterotoxigenic Bacteroides fragilis: A possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Front. Cell. Infect. Microbiol. 2020;9:449. doi: 10.3389/fcimb.2019.00449. PubMed DOI PMC
Ahn J., Sinha R., Pei Z., Dominianni C., Wu J., Shi J., Goedert J.J., Hayes R.B., Yang L. Human gut microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 2013;105:1907–1911. doi: 10.1093/jnci/djt300. PubMed DOI PMC
Eklöf V., Löfgren-Burström A., Zingmark C., Edin S., Larsson P., Karling P., Alexeyev O., Rutegård J., Wikberg M.L., Palmqvist R. Cancer-associated fecal microbial markers in colorectal cancer detection. Int. J. Cancer. 2017;141:2528–2536. doi: 10.1002/ijc.31011. PubMed DOI PMC
Flemer B., Warren R.D., Barrett M.P., Cisek K., Das A., Jeffery I.B., Hurley E., O’Riordain M., Shanahan F., O’Toole P.W. The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 2018;67:1454–1463. doi: 10.1136/gutjnl-2017-314814. PubMed DOI PMC
Wirbel J., Pyl P.T., Kartal E., Zych K., Kashani A., Milanese A., Fleck J.S., Voigt A.Y., Palleja A., Ponnudurai R., et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 2019;25:679–689. doi: 10.1038/s41591-019-0406-6. PubMed DOI PMC
Thomas A.M., Manghi P., Asnicar F., Pasolli E., Armanini F., Zolfo M., Beghini F., Manara S., Karcher N., Pozzi C., et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 2019;25:667–678. doi: 10.1038/s41591-019-0405-7. PubMed DOI PMC
Malagón M., Ramió-Pujol S., Serrano M., Amoedo J., Oliver L., Bahí A., Miquel-Cusachs J.O., Ramirez M., Queralt-Moles X., Gilabert P., et al. New fecal bacterial signature for colorectal cancer screening reduces the fecal immunochemical test false-positive rate in a screening population. PLoS ONE. 2020;15:e0243158. doi: 10.1371/journal.pone.0243158. PubMed DOI PMC
Wu Y., Jiao N., Zhu R., Zhang Y., Wu D., Wang A.J., Fang S., Tao L., Li Y., Cheng S., et al. Identification of microbial markers across populations in early detection of colorectal cancer. Nat. Commun. 2021;12:3063. doi: 10.1038/s41467-021-23265-y. PubMed DOI PMC
Liang J.Q., Li T., Nakatsu G., Chen Y.-X., Yau T.O., Chu E., Wong S., Szeto C.H., Ng S.C., Chan F.K.L., et al. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut. 2020;69:1248–1257. doi: 10.1136/gutjnl-2019-318532. PubMed DOI PMC
Ferrari A., Neefs I., Hoeck S., Peeters M., Van Hal G. Towards novel non-invasive colorectal cancer screening methods: A comprehensive review. Cancers. 2021;13:1820. doi: 10.3390/cancers13081820. PubMed DOI PMC
Lax A.J., Thomas W. How bacteria could cause cancer: One step at a time. Trends Microbiol. 2002;10:293–299. doi: 10.1016/S0966-842X(02)02360-0. PubMed DOI
Nougayrede J.-P. Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells. Science. 2006;313:848–851. doi: 10.1126/science.1127059. PubMed DOI
Cuevas-Ramos G., Petit C.R., Marcq I., Boury M., Oswald E., Nougayrède J.P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl. Acad. Sci. USA. 2010;107:11537–11542. doi: 10.1073/pnas.1001261107. PubMed DOI PMC
Putze J., Hennequin C., Nougayrède J.-P., Zhang W., Homburg S., Karch H., Bringer M.-A., Fayolle C., Carniel E., Rabsch W., et al. Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect. Immun. 2009;77:4696–4703. doi: 10.1128/IAI.00522-09. PubMed DOI PMC
Bossuet-Greif N., Dubois D., Petit C., Tronnet S., Martin P., Bonnet R., Oswald E., Nougayrède J.P. Escherichia coli ClbS is a colibactin resistance protein. Mol. Microbiol. 2016;99:897–908. doi: 10.1111/mmi.13272. PubMed DOI
Wami H., Wallenstein A., Sauer D., Stoll M., von Bünau R., Oswald E., Müller R., Dobrindt U. Diversity and prevalence of colibactin- and yersiniabactin encoding mobile genetic elements in enterobacterial populations: Insights into evolution and co-existence of two bacterial secondary metabolite determinants. bioRxiv. 2021;49 doi: 10.1101/2021.01.22.427840. PubMed DOI PMC
Xue M., Kim C.S., Healy A.R., Wernke K.M., Wang Z., Frischling M.C., Shine E.E., Wang W., Herzon S.B., Crawford J.M. Structure elucidation of colibactin and its DNA cross-links. Science. 2019;365:6457. doi: 10.1126/science.aax2685. PubMed DOI PMC
Li Z.-R., Li J., Cai W., Lai J.Y.H., McKinnie S.M.K., Zhang W.-P., Moore B.S., Zhang W., Qian P.-Y. Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. Nat. Chem. 2019;11:880–889. doi: 10.1038/s41557-019-0317-7. PubMed DOI PMC
Wilson M.R., Jiang Y., Villalta P.W., Stornetta A., Boudreau P.D., Carrá A., Brennan C.A., Chun E., Ngo L., Samson L.D., et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science. 2019;363:eaar7785. doi: 10.1126/science.aar7785. PubMed DOI PMC
Xue M., Wernke K.M., Herzon S.B. Depurination of colibactin-derived interstrand cross-links. Biochemistry. 2020;59:892–900. doi: 10.1021/acs.biochem.9b01070. PubMed DOI PMC
Dalmasso G., Cougnoux A., Delmas J., Darfeuille-Michaud A., Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 2014;5:675–680. doi: 10.4161/19490976.2014.969989. PubMed DOI PMC
Kusibab P.J.D., Berger H., Battistini F., Bouwman B.A.M., Iftekhar A., Katainen R., Crosetto N., Orozco M., Aaltonen L.A. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med. 2020;26:1063–1069. doi: 10.1038/s41591-020-0908-2. PubMed DOI
Pleguezuelos-Manzano C., Puschhof J., Rosendahl Huber A., van Hoeck A., Wood H.M., Nomburg J., Gurjao C., Manders F., Dalmasso G., Stege P.B., et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 2020;580:269–273. doi: 10.1038/s41586-020-2080-8. PubMed DOI PMC
Muzny D.M., Bainbridge M.N., Chang K., Dinh H.H., Drummond J.A., Fowler G., Kovar C.L., Lewis L.R., Morgan M.B., Newsham I.F., et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. doi: 10.1038/nature11252. PubMed DOI PMC
Iftekhar A., Berger H., Bouznad N., Heuberger J., Boccellato F., Dobrindt U., Hermeking H., Sigal M., Meyer T.F. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat. Commun. 2021;12:1003. doi: 10.1038/s41467-021-21162-y. PubMed DOI PMC
Aghabozorgi A.S., Ebrahimi R., Bahiraee A., Tehrani S.S., Nabizadeh F., Setayesh L., Jafarzadeh-Esfehani R., Ferns G.A., Avan A., Rashidi Z. The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sci. 2020;256:118006. doi: 10.1016/j.lfs.2020.118006. PubMed DOI
Iyadorai T., Mariappan V., Vellasamy K.M., Wanyiri J.W., Roslani A.C., Lee G.K., Sears C., Vadivelu J. Prevalence and association of pks+ Escherichia coli with colorectal cancer in patients at the University Malaya Medical Centre, Malaysia. PLoS ONE. 2020;15:e0228217. doi: 10.1371/journal.pone.0228217. PubMed DOI PMC
Oswald E., De Rycke J., Lintermans P., Van Muylem K., Mainil J., Daube G., Pohl P. Virulence factors associated with cytotoxic necrotizing factor type two in bovine diarrheic and septicemic strains of Escherichia coli. J. Clin. Microbiol. 1991;29:2522–2527. doi: 10.1128/jcm.29.11.2522-2527.1991. PubMed DOI PMC
Bouzari S., Oloomi M., Oswald E. Detection of the cytolethal distending toxin locus cdtB among diarrheagenic Escherichia coli isolates from humans in Iran. Res. Microbiol. 2005;156:137–144. doi: 10.1016/j.resmic.2004.09.011. PubMed DOI
Hilali F., Ruimy R., Saulnier P., Barnabé C., Lebouguénec C., Tibayrenc M., Andremont A. Prevalence of virulence genes and clonality in Escherichia coli strains that cause bacteremia in cancer patients. Infect. Immun. 2000;68:3983–3989. doi: 10.1128/IAI.68.7.3983-3989.2000. PubMed DOI PMC
Bisicchia R., Ciammarughi R., Caprioli A., Falbo V., Ruggeri F.M. Toxin production and haemagglutination in strains of Escherichia coli from diarrhoea in Brescia, Italy. J. Hyg. 1985;95:353–361. doi: 10.1017/S002217240006277X. PubMed DOI PMC
Alonso P., Blanco J., Blanco M., Gonzalez E.A. Frequent production of toxins by Escherichia coli strains isolated from human urinary tract infections: Relation with haemagglutination. FEMS Microbiol. Lett. 1987;48:391–396. doi: 10.1111/j.1574-6968.1987.tb02630.x. DOI
Falzano L., Fiorentini P., Boquet P., Donelli G. Interaction of Escherichia coli cytotoxic necrotizing factor type 1 (cnf1) with cultured cells. J. Chem. Inf. Model. 1993;53:1689–1699. doi: 10.1017/CBO9781107415324.004. PubMed DOI
Caprioli A., Falbo V., Roda L.G., Ruggeri F.M., Zona C. Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect. Immun. 1983;39:1300–1306. doi: 10.1128/iai.39.3.1300-1306.1983. PubMed DOI PMC
De Rycke J., Phan-Thanh L., Bernard S. Immunochemical identification and biological characterization of cytotoxic necrotizing factor from Escherichia coli. J. Clin. Microbiol. 1989;27:983–988. doi: 10.1128/jcm.27.5.983-988.1989. PubMed DOI PMC
Fiorentini C., Fabbri A., Flatau G., Donelli G., Matarrese P., Lemichez E., Falzano L., Boquet P. Escherichia coli cytotoxic necrotizing factor 1 (CNF1), a toxin that activates the Rho GTPase. J. Biol. Chem. 1997;272:19532–19537. doi: 10.1074/jbc.272.31.19532. PubMed DOI
Zhang Z., Aung K.M., Uhlin B.E., Wai S.N. Reversible senescence of human colon cancer cells after blockage of mitosis/cytokinesis caused by the CNF1 cyclomodulin from Escherichia coli. Sci. Rep. 2018;8:17780. doi: 10.1038/s41598-018-36036-5. PubMed DOI PMC
Mehdipour S., Doosti A., Ghasemi Dehkordi P. Detection of cytolethal distending toxin (cdt) and cytotoxic necrotizing factor (cnf) genes among Escherichia coli isolates from Iranian sheep carcasses. Comp. Clin. Path. 2012;21:1683–1688. doi: 10.1007/s00580-011-1349-6. DOI
Pickett C.L., Lee R.B., Eyigor A., Elitzur B., Fox E.M., Strockbine N.A. Patterns of Variations in Escherichia coli Strains that Produce Cytolethal Distending Toxin. Infect. Immun. 2004;72:684–690. doi: 10.1128/IAI.72.2.684-690.2004. PubMed DOI PMC
Kurnick S.A., Mannion A.J., Feng Y., Madden C.M., Chamberlain P., Fox J.G. Genotoxic Escherichia coli Strains Encoding Colibactin, Cytolethal Distending Toxin, and Cytotoxic Necrotizing Factor in Laboratory Rats. Comp. Med. 2019;69:103–113. doi: 10.30802/AALAS-CM-18-000099. PubMed DOI PMC
Elwell C.A., Dreyfus L.A. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol. Microbiol. 2000;37:952–963. doi: 10.1046/j.1365-2958.2000.02070.x. PubMed DOI
Fedor Y., Vignard J., Nicolau-Travers M.L., Boutet-Robinet E., Watrin C., Salles B., Mirey G. From single-strand breaks to double-strand breaks during S-phase: A new mode of action of the Escherichia coli Cytolethal Distending Toxin. Cell. Microbiol. 2013;15:1–15. doi: 10.1111/cmi.12028. PubMed DOI
Whitehouse C.A., Balbo P.B., Pesci E.C., Cottle D.L., Mirabito P.M., Pickett C.L. Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect. Immun. 1998;66:1934–1940. doi: 10.1128/IAI.66.5.1934-1940.1998. PubMed DOI PMC
Pérès S.Y., Marchès O., Daigle F., Nougayrède J.P., Hérault F., Tasca C., De Rycke J., Oswald E. A new cytolethal distending toxin (CDT) from Escherichia coli producing CNF2 blocks HeLa cell division in G2/M phase. Mol. Microbiol. 1997;24:1095–1107. doi: 10.1046/j.1365-2958.1997.4181785.x. PubMed DOI
Jinadasa R.N., Bloom S.E., Weiss R.S., Duhamel G.E. Cytolethal distending toxin: A conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology. 2011;157:1851–1875. doi: 10.1099/mic.0.049536-0. PubMed DOI PMC
Fahrer J., Huelsenbeck J., Jaurich H., Dörsam B., Frisan T., Eich M., Roos W.P., Kaina B., Fritz G. Cytolethal distending toxin (CDT) is a radiomimetic agent and induces persistent levels of DNA double-strand breaks in human fibroblasts. DNA Repair. 2014;18:31–43. doi: 10.1016/j.dnarep.2014.03.002. PubMed DOI
Shiloh Y. ATM and ATR: Networking cellular responses to DNA damage. Curr. Opin. Genet. Dev. 2001;11:71–77. doi: 10.1016/S0959-437X(00)00159-3. PubMed DOI
Li L.Q., Sharipo A., Chaves-Olarte E., Masucci M.G., Levitsky V., Thelestam M., Frisan T. The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cell. Microbiol. 2002;4:87–99. doi: 10.1046/j.1462-5822.2002.00174.x. PubMed DOI
He Z., Gharaibeh R.Z., Newsome R.C., Pope J.L., Dougherty M.W., Tomkovich S., Pons B., Mirey G., Vignard J., Hendrixson D.R., et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut. 2019;68:289–300. doi: 10.1136/gutjnl-2018-317200. PubMed DOI PMC
Guidi R., Guerra L., Levi L., Stenerlöw B., Fox J.G., Josenhans C., Masucci M.G., Frisan T. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cell Microbiol. 2013;15:98–113. doi: 10.1111/cmi.12034. PubMed DOI PMC
Graillot V., Dormoy I., Dupuy J., Shay J.W., Huc L., Mirey G., Vignard J. Genotoxicity of Cytolethal Distending Toxin (CDT) on isogenic human colorectal cell lines: Potential promoting effects for colorectal carcinogenesis. Front. Cell. Infect. Microbiol. 2016;6:34. doi: 10.3389/fcimb.2016.00034. PubMed DOI PMC
Johnson J.R., Johnston B., Kuskowski M.A., Nougayrede J.P., Oswald E. Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J. Clin. Microbiol. 2008;46:3906–3911. doi: 10.1128/JCM.00949-08. PubMed DOI PMC
Pass M.A., Odedra R., Batt R.M. Multiplex PCRs for identification of Escherichia coli virulence genes. J. Clin. Microbiol. 2000;38:2001–2004. doi: 10.1128/JCM.38.5.2001-2004.2000. PubMed DOI PMC
Tóth I., Hérault F., Beutin L., Oswald E. Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: Establishment of the existence of a new cdt variant (type IV) J. Clin. Microbiol. 2003;41:4285–4291. doi: 10.1128/JCM.41.9.4285-4291.2003. PubMed DOI PMC
Morgan R.N., Saleh S.E., Farrag H.A., Aboulwafa M.M. Prevalence and pathologic effects of colibactin and cytotoxic necrotizing factor-1 (Cnf 1) in Escherichia coli: Experimental and bioinformatics analyses. Gut Pathog. 2019;11:22. doi: 10.1186/s13099-019-0304-y. PubMed DOI PMC
Ballén V., Gabasa Y., Ratia C., Ortega R., Tejero M., Soto S. Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Front. Cell. Infect. Microbiol. 2021;11:738223. doi: 10.3389/fcimb.2021.738223. PubMed DOI PMC
Clermont O., Bonacorsi S., Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000;66:4555–4558. doi: 10.1128/AEM.66.10.4555-4558.2000. PubMed DOI PMC
Buc E., Dubois D., Sauvanet P., Raisch J., Delmas J., Darfeuille-Michaud A., Pezet D., Bonnet R. High Prevalence of Mucosa-Associated, E. coli Producing Cyclomodulin and Genotoxin in Colon Cancer. PLoS ONE. 2013;8:e56964. doi: 10.1371/journal.pone.0056964. PubMed DOI PMC
Lidin-Janson G., Kaijser B., Lincoln K., Olling S., Wedel H. The homogeneity of the faecal coliform flora of normal school-girls, characterized by serological and biochemical properties. Med. Microbiol. Immunol. 1978;164:247–253. doi: 10.1007/BF02125493. PubMed DOI
Raisch J., Buc E., Bonnet M., Sauvanet P., Vazeille E., de Vallée A., Déchelotte P., Darcha C., Pezet D., Bonnet R., et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J. Gastroenterol. 2014;20:6560–6572. doi: 10.3748/wjg.v20.i21.6560. PubMed DOI PMC
Yoshikawa Y., Tsunematsu Y., Matsuzaki N., Hirayama Y., Higashiguchi F., Sato M., Iwashita Y., Miyoshi N., Mutoh M., Ishikawa H., et al. Characterization of colibactin-producing Escherichia coli isolated from japanese patients with colorectal cancer. Jpn. J. Infect. Dis. 2020;73:437–442. doi: 10.7883/yoken.JJID.2020.066. PubMed DOI
Iida Y., Kawai K., Tsuno N.H., Ishihara S., Yamaguchi H., Sunami E., Kitayama J., Watanabe T. Proximal shift of colorectal cancer along with aging. Clin. Colorectal Cancer. 2014;13:213–218. doi: 10.1016/j.clcc.2014.06.005. PubMed DOI
Watanabe D., Murakami H., Ohno H., Tanisawa K., Konishi K., Tsunematsu Y., Sato M., Miyoshi N., Wakabayashi K., Watanabe K., et al. Association between dietary intake and the prevalence of tumourigenic bacteria in the gut microbiota of middle-aged Japanese adults. Sci. Rep. 2020;10:15221. doi: 10.1038/s41598-020-72245-7. PubMed DOI PMC
Wassenaar T.M. E.coli and colorectal cancer: A complex relationship that deserves a critical mindset. Crit. Rev. Microbiol. 2018;44:619–632. doi: 10.1080/1040841X.2018.1481013. PubMed DOI
Fabian N.J., Mannion A.J., Feng Y., Madden C.M., Fox J.G. Intestinal colonization of genotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor in small mammal pets. Vet. Microbiol. 2020;240:108506. doi: 10.1016/j.vetmic.2019.108506. PubMed DOI PMC
Suchanek S., Majek O., Vojtechova G., Minarikova P., Rotnaglova B., Seifert B., Minarik M., Kozeny P., Dusek L., Zavoral M. Colorectal cancer prevention in the Czech Republic: Time trends in performance indicators and current situation after 10 years of screening. Eur. J. Cancer Prev. 2014;23:18–26. doi: 10.1097/CEJ.0b013e328364f203. PubMed DOI