Cyclomodulins and Hemolysis in E. coli as Potential Low-Cost Non-Invasive Biomarkers for Colorectal Cancer Screening

. 2021 Oct 31 ; 11 (11) : . [epub] 20211031

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34833041

Grantová podpora
IGA_LF_2021_022 the Faculty of Medicine & Dentistry, Palacký University Olomouc
DRO 61989592 the Ministry of Education, Youth and Sports, Czech Republic
DROFNOl 00098892, NV19-03-00069 the Ministry of Health, Czech Republic

The frequent occurrence of E. coli positive for cyclomodulins such as colibactin (CLB), the cytotoxic necrotizing factor (CNF), and the cytolethal distending factor (CDT) in colorectal cancer (CRC) patients published so far provides the opportunity to use them as CRC screening markers. We examined the practicability and performance of a low-cost detection approach that relied on culture followed by simplified DNA extraction and PCR in E. coli isolates recovered from 130 CRC patients and 111 controls. Our results showed a statistically significant association between CRC and the presence of colibactin genes clbB and clbN, the cnf gene, and newly, the hemolytic phenotype of E. coli isolates. We also observed a significant increase in the mean number of morphologically distinct E. coli isolates per patient in the CRC cohort compared to controls, indicating that the cyclomodulin-producing E. coli strains may represent potentially preventable harmful newcomers in CRC patients. A colibactin gene assay showed the highest detection rate (45.4%), and males would benefit from the screening more than females. However, because of the high number of false positives, practical use of this marker must be explored. In our opinion, it may serve as an auxiliary marker to increase the specificity and/or sensitivity of the well-established fecal immunochemical test (FIT) in CRC screening.

Zobrazit více v PubMed

Schwabe R.F., Jobin C. The microbiome and cancer. Nat. Rev. Cancer. 2013;13:800–812. doi: 10.1038/nrc3610. PubMed DOI PMC

Warren R.L., Freeman D.J., Pleasance S., Watson P., Moore R.A., Cochrane K., Allen-Vercoe E., Holt R.A. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome. 2013;1:16. doi: 10.1186/2049-2618-1-16. PubMed DOI PMC

Compare D., Nardone G. The bacteria-hypothesis of colorectal cancer: Pathogenetic and therapeutic implications. Transl. Gastrointest. Cancer. 2014;3:44–53. doi: 10.3978/j.issn.2224-4778.2013.05.37. DOI

Bonnet M., Buc E., Sauvanet P., Darcha C., Dubois D., Pereira B., Déchelotte P., Bonnet R., Pezet D., Darfeuille-Michaud A. Colonization of the human gut by E. coli and colorectal cancer risk. Clin. Cancer Res. 2014;20:859–867. doi: 10.1158/1078-0432.CCR-13-1343. PubMed DOI

Viljoen K.S., Dakshinamurthy A., Goldberg P., Blackburn J.M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between Fusobacterium spp., Enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS ONE. 2015;10:e0119462. doi: 10.1371/journal.pone.0119462. PubMed DOI PMC

Zamani S., Taslimi R., Sarabi A., Jasemi S., Sechi L.A., Feizabadi M.M. Enterotoxigenic Bacteroides fragilis: A possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Front. Cell. Infect. Microbiol. 2020;9:449. doi: 10.3389/fcimb.2019.00449. PubMed DOI PMC

Ahn J., Sinha R., Pei Z., Dominianni C., Wu J., Shi J., Goedert J.J., Hayes R.B., Yang L. Human gut microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 2013;105:1907–1911. doi: 10.1093/jnci/djt300. PubMed DOI PMC

Eklöf V., Löfgren-Burström A., Zingmark C., Edin S., Larsson P., Karling P., Alexeyev O., Rutegård J., Wikberg M.L., Palmqvist R. Cancer-associated fecal microbial markers in colorectal cancer detection. Int. J. Cancer. 2017;141:2528–2536. doi: 10.1002/ijc.31011. PubMed DOI PMC

Flemer B., Warren R.D., Barrett M.P., Cisek K., Das A., Jeffery I.B., Hurley E., O’Riordain M., Shanahan F., O’Toole P.W. The oral microbiota in colorectal cancer is distinctive and predictive. Gut. 2018;67:1454–1463. doi: 10.1136/gutjnl-2017-314814. PubMed DOI PMC

Wirbel J., Pyl P.T., Kartal E., Zych K., Kashani A., Milanese A., Fleck J.S., Voigt A.Y., Palleja A., Ponnudurai R., et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 2019;25:679–689. doi: 10.1038/s41591-019-0406-6. PubMed DOI PMC

Thomas A.M., Manghi P., Asnicar F., Pasolli E., Armanini F., Zolfo M., Beghini F., Manara S., Karcher N., Pozzi C., et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 2019;25:667–678. doi: 10.1038/s41591-019-0405-7. PubMed DOI PMC

Malagón M., Ramió-Pujol S., Serrano M., Amoedo J., Oliver L., Bahí A., Miquel-Cusachs J.O., Ramirez M., Queralt-Moles X., Gilabert P., et al. New fecal bacterial signature for colorectal cancer screening reduces the fecal immunochemical test false-positive rate in a screening population. PLoS ONE. 2020;15:e0243158. doi: 10.1371/journal.pone.0243158. PubMed DOI PMC

Wu Y., Jiao N., Zhu R., Zhang Y., Wu D., Wang A.J., Fang S., Tao L., Li Y., Cheng S., et al. Identification of microbial markers across populations in early detection of colorectal cancer. Nat. Commun. 2021;12:3063. doi: 10.1038/s41467-021-23265-y. PubMed DOI PMC

Liang J.Q., Li T., Nakatsu G., Chen Y.-X., Yau T.O., Chu E., Wong S., Szeto C.H., Ng S.C., Chan F.K.L., et al. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut. 2020;69:1248–1257. doi: 10.1136/gutjnl-2019-318532. PubMed DOI PMC

Ferrari A., Neefs I., Hoeck S., Peeters M., Van Hal G. Towards novel non-invasive colorectal cancer screening methods: A comprehensive review. Cancers. 2021;13:1820. doi: 10.3390/cancers13081820. PubMed DOI PMC

Lax A.J., Thomas W. How bacteria could cause cancer: One step at a time. Trends Microbiol. 2002;10:293–299. doi: 10.1016/S0966-842X(02)02360-0. PubMed DOI

Nougayrede J.-P. Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells. Science. 2006;313:848–851. doi: 10.1126/science.1127059. PubMed DOI

Cuevas-Ramos G., Petit C.R., Marcq I., Boury M., Oswald E., Nougayrède J.P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl. Acad. Sci. USA. 2010;107:11537–11542. doi: 10.1073/pnas.1001261107. PubMed DOI PMC

Putze J., Hennequin C., Nougayrède J.-P., Zhang W., Homburg S., Karch H., Bringer M.-A., Fayolle C., Carniel E., Rabsch W., et al. Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect. Immun. 2009;77:4696–4703. doi: 10.1128/IAI.00522-09. PubMed DOI PMC

Bossuet-Greif N., Dubois D., Petit C., Tronnet S., Martin P., Bonnet R., Oswald E., Nougayrède J.P. Escherichia coli ClbS is a colibactin resistance protein. Mol. Microbiol. 2016;99:897–908. doi: 10.1111/mmi.13272. PubMed DOI

Wami H., Wallenstein A., Sauer D., Stoll M., von Bünau R., Oswald E., Müller R., Dobrindt U. Diversity and prevalence of colibactin- and yersiniabactin encoding mobile genetic elements in enterobacterial populations: Insights into evolution and co-existence of two bacterial secondary metabolite determinants. bioRxiv. 2021;49 doi: 10.1101/2021.01.22.427840. PubMed DOI PMC

Xue M., Kim C.S., Healy A.R., Wernke K.M., Wang Z., Frischling M.C., Shine E.E., Wang W., Herzon S.B., Crawford J.M. Structure elucidation of colibactin and its DNA cross-links. Science. 2019;365:6457. doi: 10.1126/science.aax2685. PubMed DOI PMC

Li Z.-R., Li J., Cai W., Lai J.Y.H., McKinnie S.M.K., Zhang W.-P., Moore B.S., Zhang W., Qian P.-Y. Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. Nat. Chem. 2019;11:880–889. doi: 10.1038/s41557-019-0317-7. PubMed DOI PMC

Wilson M.R., Jiang Y., Villalta P.W., Stornetta A., Boudreau P.D., Carrá A., Brennan C.A., Chun E., Ngo L., Samson L.D., et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science. 2019;363:eaar7785. doi: 10.1126/science.aar7785. PubMed DOI PMC

Xue M., Wernke K.M., Herzon S.B. Depurination of colibactin-derived interstrand cross-links. Biochemistry. 2020;59:892–900. doi: 10.1021/acs.biochem.9b01070. PubMed DOI PMC

Dalmasso G., Cougnoux A., Delmas J., Darfeuille-Michaud A., Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 2014;5:675–680. doi: 10.4161/19490976.2014.969989. PubMed DOI PMC

Kusibab P.J.D., Berger H., Battistini F., Bouwman B.A.M., Iftekhar A., Katainen R., Crosetto N., Orozco M., Aaltonen L.A. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med. 2020;26:1063–1069. doi: 10.1038/s41591-020-0908-2. PubMed DOI

Pleguezuelos-Manzano C., Puschhof J., Rosendahl Huber A., van Hoeck A., Wood H.M., Nomburg J., Gurjao C., Manders F., Dalmasso G., Stege P.B., et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 2020;580:269–273. doi: 10.1038/s41586-020-2080-8. PubMed DOI PMC

Muzny D.M., Bainbridge M.N., Chang K., Dinh H.H., Drummond J.A., Fowler G., Kovar C.L., Lewis L.R., Morgan M.B., Newsham I.F., et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. doi: 10.1038/nature11252. PubMed DOI PMC

Iftekhar A., Berger H., Bouznad N., Heuberger J., Boccellato F., Dobrindt U., Hermeking H., Sigal M., Meyer T.F. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat. Commun. 2021;12:1003. doi: 10.1038/s41467-021-21162-y. PubMed DOI PMC

Aghabozorgi A.S., Ebrahimi R., Bahiraee A., Tehrani S.S., Nabizadeh F., Setayesh L., Jafarzadeh-Esfehani R., Ferns G.A., Avan A., Rashidi Z. The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sci. 2020;256:118006. doi: 10.1016/j.lfs.2020.118006. PubMed DOI

Iyadorai T., Mariappan V., Vellasamy K.M., Wanyiri J.W., Roslani A.C., Lee G.K., Sears C., Vadivelu J. Prevalence and association of pks+ Escherichia coli with colorectal cancer in patients at the University Malaya Medical Centre, Malaysia. PLoS ONE. 2020;15:e0228217. doi: 10.1371/journal.pone.0228217. PubMed DOI PMC

Oswald E., De Rycke J., Lintermans P., Van Muylem K., Mainil J., Daube G., Pohl P. Virulence factors associated with cytotoxic necrotizing factor type two in bovine diarrheic and septicemic strains of Escherichia coli. J. Clin. Microbiol. 1991;29:2522–2527. doi: 10.1128/jcm.29.11.2522-2527.1991. PubMed DOI PMC

Bouzari S., Oloomi M., Oswald E. Detection of the cytolethal distending toxin locus cdtB among diarrheagenic Escherichia coli isolates from humans in Iran. Res. Microbiol. 2005;156:137–144. doi: 10.1016/j.resmic.2004.09.011. PubMed DOI

Hilali F., Ruimy R., Saulnier P., Barnabé C., Lebouguénec C., Tibayrenc M., Andremont A. Prevalence of virulence genes and clonality in Escherichia coli strains that cause bacteremia in cancer patients. Infect. Immun. 2000;68:3983–3989. doi: 10.1128/IAI.68.7.3983-3989.2000. PubMed DOI PMC

Bisicchia R., Ciammarughi R., Caprioli A., Falbo V., Ruggeri F.M. Toxin production and haemagglutination in strains of Escherichia coli from diarrhoea in Brescia, Italy. J. Hyg. 1985;95:353–361. doi: 10.1017/S002217240006277X. PubMed DOI PMC

Alonso P., Blanco J., Blanco M., Gonzalez E.A. Frequent production of toxins by Escherichia coli strains isolated from human urinary tract infections: Relation with haemagglutination. FEMS Microbiol. Lett. 1987;48:391–396. doi: 10.1111/j.1574-6968.1987.tb02630.x. DOI

Falzano L., Fiorentini P., Boquet P., Donelli G. Interaction of Escherichia coli cytotoxic necrotizing factor type 1 (cnf1) with cultured cells. J. Chem. Inf. Model. 1993;53:1689–1699. doi: 10.1017/CBO9781107415324.004. PubMed DOI

Caprioli A., Falbo V., Roda L.G., Ruggeri F.M., Zona C. Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect. Immun. 1983;39:1300–1306. doi: 10.1128/iai.39.3.1300-1306.1983. PubMed DOI PMC

De Rycke J., Phan-Thanh L., Bernard S. Immunochemical identification and biological characterization of cytotoxic necrotizing factor from Escherichia coli. J. Clin. Microbiol. 1989;27:983–988. doi: 10.1128/jcm.27.5.983-988.1989. PubMed DOI PMC

Fiorentini C., Fabbri A., Flatau G., Donelli G., Matarrese P., Lemichez E., Falzano L., Boquet P. Escherichia coli cytotoxic necrotizing factor 1 (CNF1), a toxin that activates the Rho GTPase. J. Biol. Chem. 1997;272:19532–19537. doi: 10.1074/jbc.272.31.19532. PubMed DOI

Zhang Z., Aung K.M., Uhlin B.E., Wai S.N. Reversible senescence of human colon cancer cells after blockage of mitosis/cytokinesis caused by the CNF1 cyclomodulin from Escherichia coli. Sci. Rep. 2018;8:17780. doi: 10.1038/s41598-018-36036-5. PubMed DOI PMC

Mehdipour S., Doosti A., Ghasemi Dehkordi P. Detection of cytolethal distending toxin (cdt) and cytotoxic necrotizing factor (cnf) genes among Escherichia coli isolates from Iranian sheep carcasses. Comp. Clin. Path. 2012;21:1683–1688. doi: 10.1007/s00580-011-1349-6. DOI

Pickett C.L., Lee R.B., Eyigor A., Elitzur B., Fox E.M., Strockbine N.A. Patterns of Variations in Escherichia coli Strains that Produce Cytolethal Distending Toxin. Infect. Immun. 2004;72:684–690. doi: 10.1128/IAI.72.2.684-690.2004. PubMed DOI PMC

Kurnick S.A., Mannion A.J., Feng Y., Madden C.M., Chamberlain P., Fox J.G. Genotoxic Escherichia coli Strains Encoding Colibactin, Cytolethal Distending Toxin, and Cytotoxic Necrotizing Factor in Laboratory Rats. Comp. Med. 2019;69:103–113. doi: 10.30802/AALAS-CM-18-000099. PubMed DOI PMC

Elwell C.A., Dreyfus L.A. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol. Microbiol. 2000;37:952–963. doi: 10.1046/j.1365-2958.2000.02070.x. PubMed DOI

Fedor Y., Vignard J., Nicolau-Travers M.L., Boutet-Robinet E., Watrin C., Salles B., Mirey G. From single-strand breaks to double-strand breaks during S-phase: A new mode of action of the Escherichia coli Cytolethal Distending Toxin. Cell. Microbiol. 2013;15:1–15. doi: 10.1111/cmi.12028. PubMed DOI

Whitehouse C.A., Balbo P.B., Pesci E.C., Cottle D.L., Mirabito P.M., Pickett C.L. Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect. Immun. 1998;66:1934–1940. doi: 10.1128/IAI.66.5.1934-1940.1998. PubMed DOI PMC

Pérès S.Y., Marchès O., Daigle F., Nougayrède J.P., Hérault F., Tasca C., De Rycke J., Oswald E. A new cytolethal distending toxin (CDT) from Escherichia coli producing CNF2 blocks HeLa cell division in G2/M phase. Mol. Microbiol. 1997;24:1095–1107. doi: 10.1046/j.1365-2958.1997.4181785.x. PubMed DOI

Jinadasa R.N., Bloom S.E., Weiss R.S., Duhamel G.E. Cytolethal distending toxin: A conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology. 2011;157:1851–1875. doi: 10.1099/mic.0.049536-0. PubMed DOI PMC

Fahrer J., Huelsenbeck J., Jaurich H., Dörsam B., Frisan T., Eich M., Roos W.P., Kaina B., Fritz G. Cytolethal distending toxin (CDT) is a radiomimetic agent and induces persistent levels of DNA double-strand breaks in human fibroblasts. DNA Repair. 2014;18:31–43. doi: 10.1016/j.dnarep.2014.03.002. PubMed DOI

Shiloh Y. ATM and ATR: Networking cellular responses to DNA damage. Curr. Opin. Genet. Dev. 2001;11:71–77. doi: 10.1016/S0959-437X(00)00159-3. PubMed DOI

Li L.Q., Sharipo A., Chaves-Olarte E., Masucci M.G., Levitsky V., Thelestam M., Frisan T. The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cell. Microbiol. 2002;4:87–99. doi: 10.1046/j.1462-5822.2002.00174.x. PubMed DOI

He Z., Gharaibeh R.Z., Newsome R.C., Pope J.L., Dougherty M.W., Tomkovich S., Pons B., Mirey G., Vignard J., Hendrixson D.R., et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut. 2019;68:289–300. doi: 10.1136/gutjnl-2018-317200. PubMed DOI PMC

Guidi R., Guerra L., Levi L., Stenerlöw B., Fox J.G., Josenhans C., Masucci M.G., Frisan T. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cell Microbiol. 2013;15:98–113. doi: 10.1111/cmi.12034. PubMed DOI PMC

Graillot V., Dormoy I., Dupuy J., Shay J.W., Huc L., Mirey G., Vignard J. Genotoxicity of Cytolethal Distending Toxin (CDT) on isogenic human colorectal cell lines: Potential promoting effects for colorectal carcinogenesis. Front. Cell. Infect. Microbiol. 2016;6:34. doi: 10.3389/fcimb.2016.00034. PubMed DOI PMC

Johnson J.R., Johnston B., Kuskowski M.A., Nougayrede J.P., Oswald E. Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J. Clin. Microbiol. 2008;46:3906–3911. doi: 10.1128/JCM.00949-08. PubMed DOI PMC

Pass M.A., Odedra R., Batt R.M. Multiplex PCRs for identification of Escherichia coli virulence genes. J. Clin. Microbiol. 2000;38:2001–2004. doi: 10.1128/JCM.38.5.2001-2004.2000. PubMed DOI PMC

Tóth I., Hérault F., Beutin L., Oswald E. Production of cytolethal distending toxins by pathogenic Escherichia coli strains isolated from human and animal sources: Establishment of the existence of a new cdt variant (type IV) J. Clin. Microbiol. 2003;41:4285–4291. doi: 10.1128/JCM.41.9.4285-4291.2003. PubMed DOI PMC

Morgan R.N., Saleh S.E., Farrag H.A., Aboulwafa M.M. Prevalence and pathologic effects of colibactin and cytotoxic necrotizing factor-1 (Cnf 1) in Escherichia coli: Experimental and bioinformatics analyses. Gut Pathog. 2019;11:22. doi: 10.1186/s13099-019-0304-y. PubMed DOI PMC

Ballén V., Gabasa Y., Ratia C., Ortega R., Tejero M., Soto S. Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Front. Cell. Infect. Microbiol. 2021;11:738223. doi: 10.3389/fcimb.2021.738223. PubMed DOI PMC

Clermont O., Bonacorsi S., Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000;66:4555–4558. doi: 10.1128/AEM.66.10.4555-4558.2000. PubMed DOI PMC

Buc E., Dubois D., Sauvanet P., Raisch J., Delmas J., Darfeuille-Michaud A., Pezet D., Bonnet R. High Prevalence of Mucosa-Associated, E. coli Producing Cyclomodulin and Genotoxin in Colon Cancer. PLoS ONE. 2013;8:e56964. doi: 10.1371/journal.pone.0056964. PubMed DOI PMC

Lidin-Janson G., Kaijser B., Lincoln K., Olling S., Wedel H. The homogeneity of the faecal coliform flora of normal school-girls, characterized by serological and biochemical properties. Med. Microbiol. Immunol. 1978;164:247–253. doi: 10.1007/BF02125493. PubMed DOI

Raisch J., Buc E., Bonnet M., Sauvanet P., Vazeille E., de Vallée A., Déchelotte P., Darcha C., Pezet D., Bonnet R., et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J. Gastroenterol. 2014;20:6560–6572. doi: 10.3748/wjg.v20.i21.6560. PubMed DOI PMC

Yoshikawa Y., Tsunematsu Y., Matsuzaki N., Hirayama Y., Higashiguchi F., Sato M., Iwashita Y., Miyoshi N., Mutoh M., Ishikawa H., et al. Characterization of colibactin-producing Escherichia coli isolated from japanese patients with colorectal cancer. Jpn. J. Infect. Dis. 2020;73:437–442. doi: 10.7883/yoken.JJID.2020.066. PubMed DOI

Iida Y., Kawai K., Tsuno N.H., Ishihara S., Yamaguchi H., Sunami E., Kitayama J., Watanabe T. Proximal shift of colorectal cancer along with aging. Clin. Colorectal Cancer. 2014;13:213–218. doi: 10.1016/j.clcc.2014.06.005. PubMed DOI

Watanabe D., Murakami H., Ohno H., Tanisawa K., Konishi K., Tsunematsu Y., Sato M., Miyoshi N., Wakabayashi K., Watanabe K., et al. Association between dietary intake and the prevalence of tumourigenic bacteria in the gut microbiota of middle-aged Japanese adults. Sci. Rep. 2020;10:15221. doi: 10.1038/s41598-020-72245-7. PubMed DOI PMC

Wassenaar T.M. E.coli and colorectal cancer: A complex relationship that deserves a critical mindset. Crit. Rev. Microbiol. 2018;44:619–632. doi: 10.1080/1040841X.2018.1481013. PubMed DOI

Fabian N.J., Mannion A.J., Feng Y., Madden C.M., Fox J.G. Intestinal colonization of genotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor in small mammal pets. Vet. Microbiol. 2020;240:108506. doi: 10.1016/j.vetmic.2019.108506. PubMed DOI PMC

Suchanek S., Majek O., Vojtechova G., Minarikova P., Rotnaglova B., Seifert B., Minarik M., Kozeny P., Dusek L., Zavoral M. Colorectal cancer prevention in the Czech Republic: Time trends in performance indicators and current situation after 10 years of screening. Eur. J. Cancer Prev. 2014;23:18–26. doi: 10.1097/CEJ.0b013e328364f203. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace