Diurnal variation in cholesterol 7α-hydroxylase activity is determined by the -203A>C polymorphism of the CYP7A1 gene
Jazyk angličtina Země Chorvatsko Médium print
Typ dokumentu časopisecké články
PubMed
27106353
PubMed Central
PMC4856193
DOI
10.3325/cmj.2016.57.111
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů MeSH
- cholestenony krev MeSH
- cholesterol-7-alfa-hydroxylasa genetika metabolismus MeSH
- cholesterol krev MeSH
- cirkadiánní rytmus fyziologie MeSH
- dospělí MeSH
- lidé MeSH
- plocha pod křivkou MeSH
- polymorfismus genetický * MeSH
- promotorové oblasti (genetika) MeSH
- upregulace MeSH
- žlučové kyseliny a soli biosyntéza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 7 alpha-hydroxy-4-cholesten-3-one MeSH Prohlížeč
- cholestenony MeSH
- cholesterol-7-alfa-hydroxylasa MeSH
- cholesterol MeSH
- CYP7A1 protein, human MeSH Prohlížeč
- žlučové kyseliny a soli MeSH
AIM: To determine whether the promoter polymorphism -203A>C of cholesterol-7α-hydroxylase encoding gene (CYP7A1) affects diurnal variation in CYP7A1 enzyme activity. METHODS: The study included 16 healthy male volunteers - 8 homozygous for -203A and 8 homozygous for the -203C allele of CYP7A1. Three 15-hour examinations (from 7am to 10pm) were carried out for each of the participants: after one-day treatment with cholestyramine; after one-day treatment with chenodeoxycholic acid (CDCA); and a control examination without any treatment. The plasma concentration of 7α-hydroxy-4-cholesten-3-one (C4), a marker of CYP7A1 activity, was determined in all the experiments at 90-min intervals. RESULTS: CYP7A1 activity was up-regulated after treatment with cholestyramine and suppressed after treatment with CDCA. There were no differences between -203A and -203C allele carriers in the response of enzyme activity to both drugs. In the control experiment, -203A allele carriers displayed diurnal variation in enzyme activity, whereas CYP7A1 activity did not change in -203C allele carriers. These results were confirmed by modeling the dynamics of C4 using polynomial regression. CONCLUSION: The promoter polymorphism of the CYP7A1 gene has a pronounced impact on diurnal variation in CYP7A1 activity.
Zobrazit více v PubMed
Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009;50:1955–66. doi: 10.1194/jlr.R900010-JLR200. PubMed DOI PMC
Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3:1191–212. PubMed PMC
Ferrell JM, Chiang JY. Circadian rhythms in liver metabolism and disease. Acta Pharm Sin B. 2015;5:113–22. doi: 10.1016/j.apsb.2015.01.003. PubMed DOI PMC
Galman C, Angelin B, Rudling M. Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gastroenterology. 2005;129:1445–53. doi: 10.1053/j.gastro.2005.09.009. PubMed DOI
Axelson M, Bjorkhem I, Reihner E, Einarsson K. The plasma level of 7 alpha-hydroxy-4-cholesten-3-one reflects the activity of hepatic cholesterol 7 alpha-hydroxylase in man. FEBS Lett. 1991;284:216–8. doi: 10.1016/0014-5793(91)80688-Y. PubMed DOI
Sauter G, Berr F, Beuers U, Fischer S, Paumgartner G. Serum concentrations of 7alpha-hydroxy-4-cholesten-3-one reflect bile acid synthesis in humans. Hepatology. 1996;24:123–6. PubMed
Kovar J, Lenicek M, Zimolova M, Vitek L, Jirsa M, Pitha J. Regulation of diurnal variation of cholesterol 7alpha-hydroxylase (CYP7A1) activity in healthy subjects. Physiol Res. 2010;59:233–8. PubMed
Wang J, Freeman DJ, Grundy SM, Levine DM, Guerra R, Cohen JC. Linkage between cholesterol 7alpha-hydroxylase and high plasma low-density lipoprotein cholesterol concentrations. J Clin Invest. 1998;101:1283–91. doi: 10.1172/JCI1343. PubMed DOI PMC
Couture P, Otvos JD, Cupples LA, Wilson PW, Schaefer EJ, Ordovas JM. Association of the A-204C polymorphism in the cholesterol 7alpha-hydroxylase gene with variations in plasma low density lipoprotein cholesterol levels in the Framingham Offspring Study. J Lipid Res. 1999;40:1883–9. PubMed
Hubacek JA, Pitha J, Skodova Z, Poledne R, Lanska V, Waterworth DM, et al. Polymorphisms in CYP-7A1, not APOE, influence the change in plasma lipids in response to population dietary change in an 8 year follow-up; results from the Czech MONICA study. Clin Biochem. 2003;36:263–7. doi: 10.1016/S0009-9120(03)00025-0. PubMed DOI
Hofman MK, Weggemans RM, Zock PL, Schouten EG, Katan MB, Princen HM. CYP7A1 A-278C polymorphism affects the response of plasma lipids after dietary cholesterol or cafestol interventions in humans. J Nutr. 2004;134:2200–4. PubMed
Kovar J, Suchanek P, Hubacek JA, Poledne R. The A-204C polymorphism in the cholesterol 7alpha-hydroxylase (CYP7A1) gene determines the cholesterolemia responsiveness to a high-fat diet. Physiol Res. 2004;53:565–8. PubMed
Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. Interactions between common genetic polymorphisms in ABCG5/G8 and CYP7A1 on LDL cholesterol-lowering response to atorvastatin. Atherosclerosis. 2004;175:287–93. doi: 10.1016/j.atherosclerosis.2004.03.015. PubMed DOI
Lenicek M, Komarek V, Zimolova M, Kovar J, Jirsa M, Lukas M, et al. CYP7A1 promoter polymorphism -203A>C affects bile salt synthesis rate in patients after ileal resection. J Lipid Res. 2008;49:2664–7. doi: 10.1194/jlr.M800364-JLR200. PubMed DOI
Lenicek M, Juklova M, Zelenka J, Kovar J, Lukas M, Bortlik M, et al. Improved HPLC Analysis of Serum 7{alpha}-Hydroxycholest-4-en-3-one, a Marker of Bile Acid Malabsorption. Clin Chem. 2008;54:1087–8. doi: 10.1373/clinchem.2007.100107. PubMed DOI
Lundasen T, Galman C. Angelin, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med. 2006;260:530–6. doi: 10.1111/j.1365-2796.2006.01731.x. PubMed DOI
De Castro-Oros I, Pampin S, Cofan M, Mozas P, Pinto X, Salas-Salvado J, et al. Promoter variant -204A > C of the cholesterol 7alpha-hydroxylase gene: association with response to plant sterols in humans and increased transcriptional activity in transfected HepG2 cells. Clin Nutr. 2011;30:239–46. doi: 10.1016/j.clnu.2010.07.020. PubMed DOI
Ferrell JM, Chiang JY. Short-term circadian disruption impairs bile acid and lipid homeostasis in mice. Cell Mol Gastroenterol Hepatol. 2015;1:664–77. doi: 10.1016/j.jcmgh.2015.08.003. PubMed DOI PMC
Kim DH, Rhee JC, Yeo S, Shen R, Lee SK, Lee JW, et al. Crucial roles of mixed-lineage leukemia 3 and 4 as epigenetic switches of the hepatic circadian clock controlling bile acid homeostasis in mice. Hepatology. 2015;61:1012–23. doi: 10.1002/hep.27578. PubMed DOI PMC
Noshiro M, Kawamoto T, Furukawa M, Fujimoto K, Yoshida Y, Sasabe E, et al. Rhythmic expression of DEC1 and DEC2 in peripheral tissues: DEC2 is a potent suppressor for hepatic cytochrome P450s opposing DBP. Genes Cells. 2004;9:317–29. doi: 10.1111/j.1356-9597.2004.00722.x. PubMed DOI
Duez H, van der Veen JN, Duhem C, Pourcet B, Touvier T, Fontaine C, et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology. 2008;135:689–98. doi: 10.1053/j.gastro.2008.05.035. PubMed DOI
Ma K, Xiao R, Tseng HT, Shan L, Fu L, Moore DD. Circadian dysregulation disrupts bile acid homeostasis. PLoS ONE. 2009;4:e6843. doi: 10.1371/journal.pone.0006843. PubMed DOI PMC
Nakamoto K, Wang S, Jenison RD, Guo GL, Klaassen CD, Wan YJ, et al. Linkage disequilibrium blocks, haplotype structure, and htSNPs of human CYP7A1 gene. BMC Genet. 2006;7:29. doi: 10.1186/1471-2156-7-29. PubMed DOI PMC