Non-Thermal Plasma Sources Based on Cometary and Point-to-Ring Discharges
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAČR GF21-39019L
Czech Science Foundation
n.SOLID21.CZ.02.1.01/0.0/0.0/16_019/0000760
European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports
COOPERATIO Institutional grant
Charles University
PubMed
35011483
PubMed Central
PMC8746665
DOI
10.3390/molecules27010238
PII: molecules27010238
Knihovny.cz E-zdroje
- Klíčová slova
- Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus, Trichophyton interdigitale, corona discharge, microbicidal effect,
- Publikační typ
- časopisecké články MeSH
A non-thermal plasma (NTP) is a promising tool against the development of bacterial, viral, and fungal diseases. The recently revealed development of microbial resistance to traditional drugs has increased interest in the use of NTPs. We have studied and compared the physical and microbicidal properties of two types of NTP sources based on a cometary discharge in the point-to-point electrode configuration and a corona discharge in the point-to-ring electrode configuration. The electrical and emission properties of both discharges are reported. The microbicidal effect of NTP sources was tested on three strains of the bacterium Staphylococcus aureus (including the methicillin-resistant strain), the bacterium Pseudomonas aeruginosa, the yeast Candida albicans, and the micromycete Trichophyton interdigitale. In general, the cometary discharge is a less stable source of NTP and mostly forms smaller but more rapidly emerging inhibition zones on agar plates. Due to the point-to-ring electrode configuration, the second type of discharge has higher stability and provides larger affected but often not completely inhibited zones. However, after 60 min of exposure, the NTP sources based on the cometary and point-to-ring discharges showed a similar microbicidal effect for bacteria and an individual effect for microscopic fungi.
Zobrazit více v PubMed
Eichenberger E.M., Thaden J.T. Epidemiology and mechanisms of resistance of extensively drug resistant Gram-negative bacteria. Antibiotics. 2019;8:37. doi: 10.3390/antibiotics8020037. PubMed DOI PMC
Livermore D.M. Antibiotic resistance in staphylococci. Int. J. Antimicrob. Agents. 2000;16:3–10. doi: 10.1016/S0924-8579(00)00299-5. PubMed DOI
Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18:268–281. doi: 10.1111/j.1469-0691.2011.03570.x. PubMed DOI
Mah T.F.C., O’Toole G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–39. doi: 10.1016/S0966-842X(00)01913-2. PubMed DOI
Sodhi N. New mechanism of resistance in a last-resort antibiotic. Austr. Veter. J. 2016;94:8–9. PubMed
Spampinato C., Leonardi D. Candida infections, causes, targets, and resistance mechanisms: Traditional and alternative antifungal agents. Biomed Res. Int. 2013;2013:204237. doi: 10.1155/2013/204237. PubMed DOI PMC
Liao X., Li J., Suo Y., Ahn J., Liu D., Chen S., Hu Y.Q., Ye X.Q., Ding T. Effect of preliminary stresses on the resistance of Escherichia coli and Staphylococcus aureus toward non-thermal plasma (NTP) challenge. Food Res. Int. 2018;105:178–183. doi: 10.1016/j.foodres.2017.11.010. PubMed DOI
Scholtz V., Vaňková E., Kašparová P., Premanath R., Karunasagar I., Julák J. Non-thermal Plasma Treatment of ESKAPE Pathogens: A Review. Front. Microbiol. 2021;12:737635. doi: 10.3389/fmicb.2021.737635. PubMed DOI PMC
Bruggeman P., Iza F., Brandenburg R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci. Technol. 2017;26:123002. doi: 10.1088/1361-6595/aa97af. DOI
Ehlbeck J., Schnabel U., Polak M., Winter J., von Woedtke T., Brandenburg R., von dem Hagen T., Weltmann K.D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D: Appl. Phys. 2010;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI
Nehra V., Kumar A., Dwivedi H.K. Atmospheric non-thermal plasma sources. Int. J. Eng. 2008;2:53–68.
Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric pressure plasmas: A review. Spectrochim. Acta B. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI
Yousfi M., Merbahi N., Sarrette J.P., Eichwald O., Ricard A., Gardou J.P., Ducasse O., Benhenni M. Biomedical Engineering Book 4. INTECH Open Access Publisher; London, UK: 2011.
Fridman A., Chirokov A., Gutsol A. Non-thermal atmospheric pressure discharges. J. Phys. D: Appl. Phys. 2005;38:1–24. doi: 10.1088/0022-3727/38/2/R01. DOI
Khun J., Scholtz V., Hozak P., Fitl P., Julak J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI
Laroussi M., Akan T. Arc-free atmospheric pressure cold plasma jets: A review. Plasma Process. Polym. 2007;4:777–788. doi: 10.1002/ppap.200700066. DOI
Winter J., Brandenburg R., Weltmann K.D. Atmospheric pressure plasma jets: An overview of devices and new directions. Plasma Sources Sci. Technol. 2015;24:064001. doi: 10.1088/0963-0252/24/6/064001. DOI
Brandenburg R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017;26:053001. doi: 10.1088/1361-6595/aa6426. DOI
Fridman A., Nester S., Kennedy L.A., Saveliev A., Mutaf-Yardimci O. Gliding arc gas discharge. Prog. Energ. Combust. 1999;25:211–231. doi: 10.1016/S0360-1285(98)00021-5. DOI
Lebedev Y.A. Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma. Plasma Sources Sci. Technol. 2015;24:053001. doi: 10.1088/0963-0252/24/5/053001. DOI
Scholtz V., Julák J. The cometary discharge, a possible new type of DC electric discharge in air at atmospheric pressure, and its bactericidal properties. J. Phys. Conf. Ser. 2010;223:012005. doi: 10.1088/1742-6596/223/1/012005. DOI
Scholtz V., Julák J. Plasma jetlike point-to-point electrical discharge in air and its bactericidal properties. IEEE Trans. Plasma Sci. 2010;38:1978–1980. doi: 10.1109/TPS.2010.2051461. DOI
Julák J., Scholtz V., Kvasničková E., Kříha V., Jíra J. Bactericidal properties of cometary discharge with inserted grid. In: Mikikian M., Rabat H., Robert E., Pouvesle J.-M., editors. Book of Abstracts, Proceedings of the 4th International Conference on Plasma Medicine, Orleans, France, 17–21 June 2012. International Society for Plasma Medicine; Orléans, France: 2012.
Julák J., Scholtz V. Decontamination of human skin by low-temperature plasma produced by cometary discharge. Clin. Plasma Med. 2013;1:31–34. doi: 10.1016/j.cpme.2013.09.002. DOI
Paldrychova M., Vankova E., Scholtz V., Julak J., Sembolova E., Mat’atkova O., Masak J. Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: Difference between non-hospital and clinical isolates. Aip Adv. 2019;9:055117. doi: 10.1063/1.5090451. DOI
Scholtz V., Julák J., Kříha V. The microbicidal effect of low-temperature plasma generated by corona discharge: Comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Process. Polym. 2010;7:237–243. doi: 10.1002/ppap.200900072. DOI
Scholtz V., Kvasnickova E., Julak J. Microbial Inactivation by Electric Discharge with Metallic Grid. Acta Phys. Pol. A. 2013;124:62–65. doi: 10.12693/APhysPolA.124.62. DOI
Švarcová M.J.J., Hubka V., Soušková H., Scholtz V. Treatment of a superficial mycosis by low-temperature plasma: A case report. Prague Med. Rep. 2014;115:73–78. doi: 10.14712/23362936.2014.8. PubMed DOI
Vankova E., Valkova M., Kasparova P., Masak J., Scholtz V., Khun J., Julak J. Prevention of biofilm re-development on Ti-6Al-4V alloy by cometary discharge with a metallic grid. Contrib. Plasm. Phys. 2019;59:166–172. doi: 10.1002/ctpp.201800044. DOI
Lokajová E., Julák J., Khun J., Soušková H., Dobiáš R., Lux J., Scholtz V. Inactivation of Dermatophytes Causing Onychomycosis Using Non-Thermal Plasma as a Prerequisite for Therapy. J. Fungi. 2021;7:715. doi: 10.3390/jof7090715. PubMed DOI PMC
Lux J., Dobias R., Kuklova I., Litvik R., Scholtz V., Souskova H., Khun J., Mrazek J., Kantorova M., Jaworska P., et al. Inactivation of Dermatophytes Causing Onychomycosis and Its Therapy Using Non-Thermal Plasma. J. Fungi. 2020;6:214. doi: 10.3390/jof6040214. PubMed DOI PMC
Laher R.R., Gilmore F.R. Improved fits for the vibrational and rotational constants of many states of nitrogen and oxygen. J. Phys. Chem. Ref. Data. 1991;20:685–712. doi: 10.1063/1.555892. DOI
Ventura L.R., Fellows C.E. The N2 second positive (C3Πu → B3Πg) system reviewed: Improved data and analysis. J. Quant. Spectrosc. Radiat. Transf. 2019;239:106645. doi: 10.1016/j.jqsrt.2019.106645. DOI
Bashir M., Rees J.M., Bashir S., Zimmerman W.B. Characterization of atmospheric pressure microplasma produced from argon and a mixture of argon–ethylenediamine. Phys. Lett. A. 2014;378:2395–2405. doi: 10.1016/j.physleta.2014.05.049. DOI
Zhang Q.Y., Shi D.Q., Xu W., Miao C.Y., Ma C.Y., Ren C.S., Zhang C., Yi Z. Determination of vibrational and rotational temperatures in highly constricted nitrogen plasmas by fitting the second positive system of N2 molecules. Aip Adv. 2015;5:057158. doi: 10.1063/1.4921916. DOI
Gilmore F.R., Laher R.R., Espy P.J. Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems. J. Phys. Chem. Ref. Data. 1992;21:1005–1107. doi: 10.1063/1.555910. DOI
Deng X.L., Nikiforov A.Y., Vanraes P., Leys C. Direct current plasma jet at atmospheric pressure operating in nitrogen and air. J. Appl. Phys. 2013;113:023305. doi: 10.1063/1.4774328. DOI
Akishev Y., Grushin M., Karalnik V., Petryakov A., Trushkin N. Non-equilibrium constricted dc glow discharge in N2 flow at atmospheric pressure: Stable and unstable regimes. J. Quant. Spectrosc. Radiat. Transf. 2010;43:075202.
Callebaut T., Kochetov I., Akishev Y., Napartovich A., Leys C. Numerical simulation and experimental study of the corona and glow regime of a negative pin-to-plate discharge in flowing ambient air. Plasma Sources Sci. Technol. 2004;13:245–250. doi: 10.1088/0963-0252/13/2/008. DOI
Kossyi I.A., Kostinsky A.Y., Matveyev A.A., Silakov V.P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci. Technol. 1992;1:207–220. doi: 10.1088/0963-0252/1/3/011. DOI
Cernogora G., Hochard L., Touzeau M., Ferreira C.M. Population of N2 (A 3Σu+) metastable states in a pure nitrogen glow discharge. J. Phys. B At. Mol. Opt. 1981;14:2977–2987. doi: 10.1088/0022-3700/14/16/025. DOI
Itikawa Y. Cross sections for electron collisions with nitrogen molecules. J. Phys. Chem. Ref. Data. 2006;35:31–53. doi: 10.1063/1.1937426. DOI
Lu X., Naidis G.V., Laroussi M., Reuter S., Graves D.B., Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 2016;630:1–84. doi: 10.1016/j.physrep.2016.03.003. DOI
Guerra V., Sa P.A., Loureiro J. Role played by the N2 (A3Σu+) metastable in stationary N2 and N2-O2 discharges. J. Phys. D Appl. Phys. 2001;34:1745–1755. doi: 10.1088/0022-3727/34/12/301. DOI
Van Gaens W., Iseni S., Schmidt-Bleker A., Weltmann K.D., Reuter S., Bogaerts A. Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure. New J. Phys. 2015;17:033003. doi: 10.1088/1367-2630/17/3/033003. DOI
Ono R. Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma. J. Phys. D Appl. Phys. 2016;49:083001. doi: 10.1088/0022-3727/49/8/083001. DOI
Liu F., Wang W., Zheng W., Wang Y. Investigation of spatially resolved spectra of OH and N2+ in N2 and H2O mixture wire-plate positive pulsed streamer discharge. Spectrochim. Acta A. 2008;69:776–781. doi: 10.1016/j.saa.2007.04.033. PubMed DOI
Alkawareek M.Y., Gorman S.P., Graham W.G., Gilmore B. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int. J. Antimicrob. Agents. 2014;43:154–160. doi: 10.1016/j.ijantimicag.2013.08.022. PubMed DOI
Daeschlein G., Napp M., von Podewils S., Lutze S., Emmert S., Lange A., Klare I., Haase H., Gumbel D., von Woedtke T., et al. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD) Plasma Process. Polym. 2014;11:175–183. doi: 10.1002/ppap.201300070. DOI
Flynn P.B., Higginbotham S., Nid’a H.A., Gorman S.P., Graham W.G., Gilmore B.F. Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int. J. Antimicrob. Agents. 2015;46:101–107. doi: 10.1016/j.ijantimicag.2015.02.026. PubMed DOI
Lunov O., Zablotskii V., Churpita O., Jäger A., Polívka L., Syková E., Terebova N., Kulikov A., Kubinova S., Dejneka A. Towards the understanding of non-thermal air plasma action: Effects on bacteria and fibroblasts. Rsc Adv. 2016;6:25286–25292. doi: 10.1039/C6RA02368A. DOI
Heller L.C., Edelblute C.M., Mattson A.M., Hao X., Kolb J.F. Inactivation of bacterial opportunistic skin pathogens by nonthermal DC-operated afterglow atmospheric plasma. Lett. Appl. Microbiol. 2012;54:126–132. doi: 10.1111/j.1472-765X.2011.03186.x. PubMed DOI
Choi E.J., Yang H.S., Park H.W., Chun H.H. Inactivation of Escherichia coli O157: H7 and Staphylococcus aureus in red pepper powder using a combination of radio frequency thermal and indirect dielectric barrier discharge plasma non-thermal treatments. Lwt-Food Sci. Technol. 2018;93:477–484. doi: 10.1016/j.lwt.2018.03.081. DOI
Yong H.I., Lee S.H., Kim S.Y. Park, S.; Park, J.; Choe, W.; Jo, C. Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innov. Food Sci. Emerg. 2019;53:78–84. doi: 10.1016/j.ifset.2017.09.005. DOI
Julák J., Janoušková O., Scholtz V., Holada K. Inactivation of prions using electrical DC discharges at atmospheric pressure and ambient temperature. Plasma Process. Polym. 2011;8:316–323. doi: 10.1002/ppap.201000100. DOI
Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI
Kelly S., Turner M.M. Atomic oxygen patterning from a biomedical needle-plasma source. J. Appl. Phys. 2013;114:123301. doi: 10.1063/1.4821241. DOI
Sysolyatina E., Mukhachev A., Yurova M., Grushin M., Karalnik V., Petryakov A., Trushkin N., Ermolaeva S., Akishev Y. Role of the charged particles in bacteria inactivation by plasma of a positive and negative corona in ambient air. Plasma Process. Polym. 2014;11:315–334. doi: 10.1002/ppap.201300041. DOI
Liu D.X., Liu Z.C., Chen C., Yang A.J., Li D., Rong M.Z., Chen H.L., Kong M.G. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737. PubMed DOI PMC
Schneider S., Lackmann J.W., Ellerweg D., Denis B., Narberhaus F., Bandow J.E., Benedikt J. The role of VUV radiation in the inactivation of bacteria with an atmospheric pressure plasma jet. Plasma Process. Polym. 2012;9:561–568. doi: 10.1002/ppap.201100102. DOI
Pavlovich M.J., Sakiyama Y., Clark D.S., Graves D.B. Antimicrobial Synergy Between Ambient-G as Plasma and UVA Treatment of Aqueous Solution. Plasma Process. Polym. 2013;10:1051–1060. doi: 10.1002/ppap.201300065. DOI
Oehmigen K., Hähnel M., Brandenburg R., Wilke C., Weltmann K.D., Von Woedtke T. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 2010;7:250–257. doi: 10.1002/ppap.200900077. DOI
Machala Z., Chládeková L., Pelach M. Plasma agents in bio-decontamination by dc discharges in atmospheric air. J. Phys. D Appl. Phys. 2010;43:222001. doi: 10.1088/0022-3727/43/22/222001. DOI
Dobrynin D., Friedman G., Fridman A., Starikovskiy A. Inactivation of bacteria using dc corona discharge: Role of ions and humidity. New J. Phys. 2011;13:103033. doi: 10.1088/1367-2630/13/10/103033. PubMed DOI PMC
Stoffels E., Sakiyama Y., Graves D.B. Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Trans. Plasma Sci. 2008;36:1441–1457. doi: 10.1109/TPS.2008.2001084. DOI
Dobrynin D., Fridman G., Friedman G., Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 2009;11:115020. doi: 10.1088/1367-2630/11/11/115020. DOI
Laroussi M., Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 2004;233:81–86. doi: 10.1016/j.ijms.2003.11.016. DOI
Stoffels E. Gas plasmas in biology and medicine. J. Phys. D Appl. Phys. 2006;39:1. doi: 10.1088/0022-3727/39/16/E01. DOI