Portable and affordable cold air plasma source with optimized bactericidal effect
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-39019L
Grantová Agentura České Republiky
PubMed
38987305
PubMed Central
PMC11237098
DOI
10.1038/s41598-024-66017-w
PII: 10.1038/s41598-024-66017-w
Knihovny.cz E-zdroje
- Klíčová slova
- Bactericidal effect, Cold air plasma, Corona discharge, Ion wind, Reactive oxygen and nitrogen species,
- MeSH
- antibakteriální látky farmakologie MeSH
- Candida albicans účinky léků MeSH
- Escherichia coli účinky léků MeSH
- plazmové plyny * farmakologie MeSH
- Staphylococcus aureus účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- plazmové plyny * MeSH
The paper reports a low-cost handheld source of a cold air plasma intended for biomedical applications that can be made by anyone (detailed technical information and a step-by-step guide for creating the NTP source are provided). The plasma source employs a 1.4 W corona discharge in the needle-to-cone electrode configuration and is an extremely simple device, consisting basically of two electrodes and a cheap power supply. To achieve the best bactericidal effect, the plasma source has been optimized on Escherichia coli. The bactericidal ability of the plasma source was further tested on a wide range of microorganisms: Staphylococcus aureus as a representative of gram-positive bacteria, Pseudomonas aeruginosa as gram-negative bacteria, Candida albicans as yeasts, Trichophyton interdigitale as microfungi, and Deinococcus radiodurans as a representative of extremophilic bacteria resistant to many DNA-damaging agents, including ultraviolet and ionizing radiation. The testing showed that the plasma source inactivates all the microorganisms tested in several minutes (up to 105-107 CFU depending on a microorganism), proving its effectiveness against a wide spectrum of pathogens, in particular microfungi, yeasts, gram-positive and gram-negative bacteria. Studies of long-lived reactive species such as ozone, nitrogen oxides, hydrogen peroxide, nitrite, and nitrate revealed a strong correlation between ozone and the bactericidal effect, indicating that the bactericidal effect should generally be attributed to reactive oxygen species. This is the first comprehensive study of the bactericidal effect of a corona discharge in air and the formation of long-lived reactive species by the discharge, depending on both the interelectrode distance and the discharge current.
Zobrazit více v PubMed
Scholtz V, et al. Non-thermal plasma disinfecting procedure is harmless to delicate items of everyday use. Sci. Rep. 2023;13:15479. doi: 10.1038/s41598-023-42405-6. PubMed DOI PMC
Chu PK, Lu X. Low Temperature Plasma Technology: Methods and Applications. CRC Press; 2013.
Chen Z, Wirz RE. Cold Atmospheric Plasma (CAP) Technology and Applications. Springer; 2021.
Okubo M. Nonthermal Plasma Surface Modification of Materials. Springer; 2023.
Güçeri S, Fridman A, Gibson K, Haas Ch. Plasma Assisted Decontamination of Biological and Chemical Agents. Springer; 2008.
Machala Z, Hensel K, Akishev Y. Plasma for Bio-decontamination, Medicine and Food Security. Springer; 2012.
Misra NN, Schlüter O, Cullen PJ. Cold Plasma in Food and Agriculture: Fundamentals and Applications. Academic Press; 2016.
Laroussi M, et al. Low-temperature plasma for biology, hygiene, and medicine: Perspective and roadmap. IEEE Trans. Radiat. Plasma Med. Sci. 2021;6:127–157. doi: 10.1109/TRPMS.2021.3135118. DOI
Ekezie FGC, Sun DW, Cheng JH. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci. Technol. 2017;69:46–58. doi: 10.1016/j.tifs.2017.08.007. DOI
Zille A, Oliveira FR, Souto AP. Plasma treatment in textile industry. Plasma Process. Polym. 2015;12:98–131. doi: 10.1002/ppap.201400052. DOI
Chang JS. Recent development of plasma pollution control technology: A critical review. Sci. Technol. Adv. Mater. 2001;2:571. doi: 10.1016/S1468-6996(01)00139-5. DOI
Chen Z, et al. Cold atmospheric plasma delivery for biomedical applications. Mater. Today. 2022;54:153–188. doi: 10.1016/j.mattod.2022.03.001. DOI
von Woedtke T, Laroussi M, Gherardi M. Foundations of plasmas for medical applications. Plasma Sources Sci. Technol. 2022;31:054002. doi: 10.1088/1361-6595/ac604f. DOI
Weltmann KD, von Woedtke T. Plasma medicine—Current state of research and medical application. Plasma Phys. Control. Fus. 2016;59:014031. doi: 10.1088/0741-3335/59/1/014031. DOI
Fridman G, et al. Applied plasma medicine. Plasma Process. Polym. 2008;5:503–533. doi: 10.1002/ppap.200700154. DOI
Kong MG, et al. Plasma medicine: An introductory review. New J. Phys. 2009;11:115012. doi: 10.1088/1367-2630/11/11/115012. DOI
Duarte S, Panariello BH. Comprehensive biomedical applications of low temperature plasmas. Arch. Biochem. Biophys. 2020;693:108560. doi: 10.1016/j.abb.2020.108560. PubMed DOI PMC
Shintani H, Sakudo A, Burke P, McDonnell G. Gas plasma sterilization of microorganisms and mechanisms of action (review) Exp. Ther. Med. 2010;1:731–738. doi: 10.3892/etm.2010.136. PubMed DOI PMC
Shintani H, et al. Inactivation of microorganisms and endotoxins by low temperature nitrogen gas plasma exposure. Biocontrol Sci. 2007;12:131–143. doi: 10.4265/bio.12.131. PubMed DOI
Kolb JF, et al. Cold atmospheric pressure air plasma jet for medical applications. Appl. Phys. Lett. 2008;92:241501. doi: 10.1063/1.2940325. DOI
Maho T, et al. Anti-bacterial action of plasma multi-jets in the context of chronic wound healing. Appl. Sci. 2021;11:9598. doi: 10.3390/app11209598. DOI
Tipa RS, Kroesen GM. Plasma-stimulated wound healing. IEEE Trans. Plasma Sci. 2011;39:2978–2979. doi: 10.1109/TPS.2011.2159868. DOI
Shimizu T. Wound treatment by low-temperature atmospheric plasmas and issues in plasma engineering for plasma medicine. Jpn. J. Appl. Phys. 2020;59:120501. doi: 10.35848/1347-4065/abc3a0. DOI
Nastuta AV, Topala I, Grigoras C, Pohoata V, Popa G. Stimulation of wound healing by helium atmospheric pressure plasma treatment. J. Phys. D Appl. Phys. 2011;44:105204. doi: 10.1088/0022-3727/44/10/105204. DOI
Haertel B, von Woedtke T, Weltmann KD, Lindequist U. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol. Ther. 2014;22:477. doi: 10.4062/biomolther.2014.105. PubMed DOI PMC
Lloyd G, et al. Gas plasma: Medical uses and developments in wound care. Plasma Process. Polym. 2010;7:194–211. doi: 10.1002/ppap.200900097. DOI
Huang J, et al. Dielectric barrier discharge plasma in Ar/O2 promoting apoptosis behavior in A549 cancer cells. Appl. Phys. Lett. 2011;99:253701. doi: 10.1063/1.3666819. DOI
Semmler ML, et al. Molecular mechanisms of the efficacy of cold atmospheric pressure plasma (CAP) in cancer treatment. Cancers. 2020;12:269. doi: 10.3390/cancers12020269. PubMed DOI PMC
Keidar M. Plasma for cancer treatment. Plasma Sources Sci. Technol. 2015;24:033001. doi: 10.1088/0963-0252/24/3/033001. DOI
Babington P, et al. Use of cold atmospheric plasma in the treatment of cancer. Biointerphases. 2015;10:029403. doi: 10.1116/1.4915264. PubMed DOI
Ratovitski EA, et al. Anti-cancer therapies of 21st century: Novel approach to treat human cancers using cold atmospheric plasma. Plasma Process. Polym. 2014;11:1128–1137. doi: 10.1002/ppap.201400071. DOI
Friedman PC. From precancers to skin rejuvenation—A review of the wide spectrum of current applications and future possibilities for plasma dermatology. Plasma Med. 2020;10:217–232. doi: 10.1615/PlasmaMed.2020036898. DOI
Heinlin J, et al. Plasma applications in medicine with a special focus on dermatology. J. Eur. Acad. Dermatol. Venereol. 2011;25:1–11. doi: 10.1111/j.1468-3083.2010.03702.x. PubMed DOI
Laurita R, et al. Cold atmospheric plasma treatment of infected skin tissue: Evaluation of sterility, viability, and integrity. IEEE Trans. Radiat. Plasma Med. Sci. 2017;1:275–279. doi: 10.1109/TRPMS.2017.2679010. DOI
Gay-Mimbrera J, et al. Clinical and biological principles of cold atmospheric plasma application in skin cancer. Adv. Ther. 2016;33:894–909. doi: 10.1007/s12325-016-0338-1. PubMed DOI PMC
Gherardi M, Tonini R, Colombo V. Plasma in dentistry: Brief history and current status. Trends Biotechnol. 2018;36:583–585. doi: 10.1016/j.tibtech.2017.06.009. PubMed DOI
Kim JH, Lee MA, Han GJ, Cho BH. Plasma in dentistry: A review of basic concepts and applications in dentistry. Acta Odontol. Scand. 2014;72:1–12. doi: 10.3109/00016357.2013.795660. PubMed DOI
Cha S, Park YS. Plasma in dentistry. Clin. Plasma Med. 2014;2:4–10. doi: 10.1016/j.cpme.2014.04.002. PubMed DOI PMC
Kim GC, et al. Dental applications of low-temperature nonthermal plasmas. Plasma Process. Polym. 2013;10:199–206. doi: 10.1002/ppap.201200065. DOI
Xiong Z, Roe J, Grammer TC, Graves DB. Plasma treatment of onychomycosis. Plasma Process. Polym. 2016;13:588–597. doi: 10.1002/ppap.201600010. DOI
Bulson JM, et al. Non-thermal atmospheric plasma treatment of onychomycosis in an in vitro human nail model. Mycoses. 2020;63:225–232. doi: 10.1111/myc.13030. PubMed DOI PMC
de Morais Gouvêa Lima G, et al. Cold atmospheric pressure plasma is effective against P. gingivalis (HW24D-1) mature biofilms and non-genotoxic to oral cells. Appl. Sci. 2022;12:7247. doi: 10.3390/app12147247. DOI
Park JH, et al. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Sci. Rep. 2015;5:13849. doi: 10.1038/srep13849. PubMed DOI PMC
Lunov O, et al. Cell death induced by ozone and various non-thermal plasmas: Therapeutic perspectives and limitations. Sci. Rep. 2014;4:7129. doi: 10.1038/srep07129. PubMed DOI PMC
Daeschlein G, et al. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD) Plasma Process. Polym. 2014;11:175–183. doi: 10.1002/ppap.201300070. DOI
Nicol MJ, et al. Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species. Sci. Rep. 2020;10:3066. doi: 10.1038/s41598-020-59652-6. PubMed DOI PMC
Graves DB. Mechanisms of plasma medicine: Coupling plasma physics, biochemistry, and biology. IEEE Trans. Radiat. Plasma Med. Sci. 2017;1:281–292. doi: 10.1109/TRPMS.2017.2710880. DOI
Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017;123:308–324. doi: 10.1111/jam.13429. PubMed DOI
Gilmore BF, et al. Cold plasmas for biofilm control: Opportunities and challenges. Trends Biotechnol. 2018;36:627–638. doi: 10.1016/j.tibtech.2018.03.007. PubMed DOI
Zimmermann JL, et al. Test for bacterial resistance build-up against plasma treatment. New J. Phys. 2012;14:073037. doi: 10.1088/1367-2630/14/7/073037. DOI
Cohen ML. Epidemiology of drug resistance: Implications for a post-antimicrobial era. Science. 1992;257:1050–1055. doi: 10.1126/science.257.5073.1050. PubMed DOI
Tomasz A. Multiple-antibiotic-resistant pathogenic bacteria. New Eng. J. Med. 1994;330:1247–1251. doi: 10.1056/NEJM199404283301725. PubMed DOI
Livermore DM. Antibiotic resistance in Staphylococci. Int. J. Antimicrob. Agents. 2000;16:3–10. doi: 10.1016/S0924-8579(00)00299-5. PubMed DOI
Lowy FD. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003;111:1265–1273. doi: 10.1172/JCI18535. PubMed DOI PMC
Levy SB, Marshall B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004;10:S122–S129. doi: 10.1038/nm1145. PubMed DOI
Eichenberger EM, Thaden JT. Epidemiology and mechanisms of resistance of extensively drug resistant gram-negative bacteria. Antibiotics. 2019;8:37. doi: 10.3390/antibiotics8020037. PubMed DOI PMC
Bombaywala S, Mandpe A, Paliy S, Kumar S. Antibiotic resistance in the environment: A critical insight on its occurrence, fate, and eco-toxicity. Environ. Sci. Pollut. Res. 2021;28:24889–24916. doi: 10.1007/s11356-021-13143-x. PubMed DOI
Zhang H, Zhang C, Han Q. Mechanisms of bacterial inhibition and tolerance around cold atmospheric plasma. Appl. Microbiol. Biotechnol. 2023;107:5301–5316. doi: 10.1007/s00253-023-12618-w. PubMed DOI PMC
Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI
Dharini M, Jaspin S, Mahendran R. Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chem. 2023;405:134746. doi: 10.1016/j.foodchem.2022.134746. PubMed DOI
Machala Z, Tarabová B, Sersenová D, Janda M, Hensel K. Chemical and antibacterial effects of plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J. Phys. D Appl. Phys. 2018;52:034002. doi: 10.1088/1361-6463/aae807. DOI
Sakiyama Y, Graves DB, Chang HW, Shimizu T, Morfill GE. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D Appl. Phys. 2012;45:425201. doi: 10.1088/0022-3727/45/42/425201. DOI
Peng Y, et al. Kinetic study of key species and reactions of atmospheric pressure pulsed corona discharge in humid air. Plasma Sci. Technol. 2022;24:055404. doi: 10.1088/2058-6272/ac4693. DOI
Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP. Kinetic scheme of the non-equilibrium discharge in nitrogen–oxygen mixtures. Plasma Sources Sci. Technol. 1992;1:207. doi: 10.1088/0963-0252/1/3/011. DOI
Ehlbeck J, et al. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 2010;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI
Bruggeman PJ, Iza F, Brandenburg R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci. Technol. 2017;26:123002. doi: 10.1088/1361-6595/aa97af. DOI
Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochim. Acta B Atom. Spectrosc. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI
Laroussi M, Akan T. Arc-free atmospheric pressure cold plasma jets: A review. Plasma Process. Polym. 2007;4:777–788. doi: 10.1002/ppap.200700066. DOI
Winter J, Brandenburg R, Weltmann KD. Atmospheric pressure plasma jets: An overview of devices and new directions. Plasma Sources Sci. Technol. 2015;24:064001. doi: 10.1088/0963-0252/24/6/064001. DOI
Korbut AN, Kelman VA, Zhmenyak YV, Klenovskii MS. Emission properties of an atmospheric-pressure helium plasma jet generated by a barrier discharge. Opt. Spectrosc. 2014;116:919–925. doi: 10.1134/S0030400X14040146. DOI
Brandenburg R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017;26:053001. doi: 10.1088/1361-6595/aa6426. DOI
Lu X, Laroussi M. Optimization of ultraviolet emission and chemical species generation from a pulsed dielectric barrier discharge at atmospheric pressure. J. Appl. Phys. 2005;98:023301. doi: 10.1063/1.1980530. DOI
Thiyagarajan M, Alexeff I, Parameswaran S, Beebe S. Atmospheric pressure resistive barrier cold plasma for biological decontamination. IEEE Trans. Plasma Sci. 2005;33:322–323. doi: 10.1109/TPS.2005.845938. DOI
Fridman A, Chirokov A, Gutsol A. Non-thermal atmospheric pressure discharges. J. Phys. D Appl. Phys. 2005;38:R1. doi: 10.1088/0022-3727/38/2/R01. DOI
Khun J, Scholtz V, Hozák P, Fitl P, Julák J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI
Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O. Gliding arc gas discharge. Prog. Energy Combust. Sci. 1999;25:211–231. doi: 10.1016/S0360-1285(98)00021-5. DOI
Coulombe S, Léveillé V, Yonson S, Leask RL. Miniature atmospheric pressure glow discharge torch (APGD-t) for local biomedical applications. Pure Appl. Chem. 2006;78:1147–1156. doi: 10.1351/pac200678061147. DOI
Ni Y, Lynch MJ, Modic M, Whalley RD, Walsh JL. A solar powered handheld plasma source for microbial decontamination applications. J. Phys. D Appl. Phys. 2016;49:355203. doi: 10.1088/0022-3727/49/35/355203. DOI
Walsh JL, Kong MG. Portable nanosecond pulsed air plasma jet. Appl. Phys. Lett. 2011;99:081501. doi: 10.1063/1.3623487. DOI
Pei X, Liu J, Xian Y, Lu X. A battery-operated atmospheric-pressure plasma wand for biomedical applications. J. Phys. D Appl. Phys. 2014;47:145204. doi: 10.1088/0022-3727/47/14/145204. DOI
Parkey J, et al. A battery powered, portable, and self-contained non-thermal helium plasma jet device for point-of-injury burn wound treatment. Plasma Process. Polym. 2015;12:1244–1255. doi: 10.1002/ppap.201400245. DOI
Thiyagarajan M. A portable atmospheric air plasma device for biomedical treatment applications. J. Med. Dev. 2013;7:011007. doi: 10.1115/1.4023498. DOI
Ho KN, Chaijaruwanich A. Thermal characteristics of helical coiled heat exchanger with graphene-deionized water on waste heat recovery of combustion stack gas. CMU J. Nat. Sci. 2018;17:47–59.
do Nascimento F, et al. A low cost, flexible atmospheric pressure plasma jet device with good antimicrobial efficiency. IEEE Trans. Radiat. Plasma Med. Sci. 2023;8:307–322. doi: 10.1109/TRPMS.2023.3342709. DOI
Khun J, et al. Non-thermal plasma sources based on cometary and point-to-ring discharges. Molecules. 2021;27:238. doi: 10.3390/molecules27010238. PubMed DOI PMC
Scholtz V, Julák J. The, “cometary” discharge, a possible new type of DC electric discharge in air at atmospheric pressure, and its bactericidal properties. J. Phys. Conf. Ser. 2010;223:012005. doi: 10.1088/1742-6596/223/1/012005. DOI
Scholtz V, Julák J. Plasma jetlike point-to-point electrical discharge in air and its bactericidal properties. IEEE Trans. Plasma Sci. 2010;38:1978–1980. doi: 10.1109/TPS.2010.2051461. DOI
Julák J, Scholtz V. Decontamination of human skin by low-temperature plasma produced by cometary discharge. Clin. Plasma Med. 2013;1:31–34. doi: 10.1016/j.cpme.2013.09.002. DOI
Paldrychová M, et al. Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: Difference between non-hospital and clinical isolates. AIP Adv. 2019;9:055117. doi: 10.1063/1.5090451. DOI
Scholtz V, Julák J, Kříha V. The microbicidal effect of low-temperature plasma generated by corona discharge: Comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Process. Polym. 2010;7:237–243. doi: 10.1002/ppap.200900072. DOI
Scholtz V, Kvasničková E, Julák J. Microbial inactivation by electric discharge with metallic grid. Acta Phys. Pol. A. 2013;124:62–65. doi: 10.12693/APhysPolA.124.62. DOI
Švarcová M, Julák J, Hubka V, Soušková H, Scholtz V. Treatment of a superficial mycosis by low-temperature plasma: A case report. Prague Med. Rep. 2015;115:73–78. doi: 10.14712/23362936.2014.8. PubMed DOI
Vaňková E, et al. Prevention of biofilm re-development on Ti–6Al–4V alloy by cometary discharge with a metallic grid. Contrib. Plasma Phys. 2019;59:166–172. doi: 10.1002/ctpp.201800044. DOI
Guide to Creating a Portable Non-thermal Plasma Source. https://ufmt.vscht.cz/pns.
do Nascimento F, et al. Plasma electrode dielectric barrier discharge: Development, characterization and preliminary assessment for large surface decontamination. Plasma Chem. Plasma Process. 2023;43:1791–1817. doi: 10.1007/s11090-023-10409-9. DOI
Andrés CMC, de Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Superoxide anion chemistry—Its role at the core of the innate immunity. Int. J. Mol. Sci. 2023;24:1841. doi: 10.3390/ijms24031841. PubMed DOI PMC
Lam PL, et al. The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chem. Biol. Interact. 2020;320:109023. doi: 10.1016/j.cbi.2020.109023. PubMed DOI
Robinson M. Movement of air in the electric wind of the corona discharge. AIEE Trans. 1961;80:143–150.
Moreau E. Airflow control by non-thermal plasma actuators. J. Phys. D Appl. Phys. 2007;40:605. doi: 10.1088/0022-3727/40/3/S01. DOI
Li L, Lee SJ, Kim W, Kim D. An empirical model for ionic wind generation by a needle-to-cylinder dc corona discharge. J. Electrostat. 2015;73:125–130. doi: 10.1016/j.elstat.2014.11.001. DOI
Sigmond RS, Lagstad IH. Mass and species transport in corona discharges. High Temp. Chem. Proces. 1993;2:221–229.
Moreau E, Benard N, Lan-Sun-Luk JD, Chabriat JP. Electrohydrodynamic force produced by a wire-to-cylinder DC corona discharge in air at atmospheric pressure. J. Phys. D Appl. Phys. 2013;46:475204. doi: 10.1088/0022-3727/46/47/475204. DOI
Rickard M, Dunn-Rankin D, Weinberg F, Carleton F. Maximizing ion-driven gas flows. J. Electrostat. 2006;64:368–376. doi: 10.1016/j.elstat.2005.09.005. DOI
Deng XL, Nikiforov AY, Vanraes P, Leys C. Direct current plasma jet at atmospheric pressure operating in nitrogen and air. J. Appl. Phys. 2013;113:023305. doi: 10.1063/1.4774328. DOI
Akishev Y, Grushin M, Karalnik V, Petryakov A, Trushkin N. Non-equilibrium constricted DC glow discharge in N2 flow at atmospheric pressure: Stable and unstable regimes. J. Phys. D Appl. Phys. 2010;43:075202. doi: 10.1088/0022-3727/43/7/075202. DOI
Callebaut T, Kochetov I, Akishev Y, Napartovich A, Leys C. Numerical simulation and experimental study of the corona and glow regime of a negative pin-to-plate discharge in flowing ambient air. Plasma Sources Sci. Technol. 2004;13:245. doi: 10.1088/0963-0252/13/2/008. DOI
Gilmore FR, Laher RR, Espy PJ. Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems. J. Phys. Chem. Ref. Data. 1992;21:1005–1107. doi: 10.1063/1.555910. DOI
Guerra V, Loureiro J, Sa PA. Role played by the N2(A3Σu+) metastable in stationary N2 and N2–O2 discharges. J. Phys. D Appl. Phys. 2001;34:1745. doi: 10.1088/0022-3727/34/12/301. DOI
Lu X, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 2016;630:1–84. doi: 10.1016/j.physrep.2016.03.003. DOI
van Gaens W, Bogaerts A. Reaction pathways of biomedically active species in an Ar plasma jet. Plasma Sources Sci. Technol. 2014;23:035015. doi: 10.1088/0963-0252/23/3/035015. DOI
Pontiga, F. and Castellanos, A. Nitrogen oxides generation induced by negative corona discharge in N2 + O2 mixtures. In IEEE Conf. Electr. Insul. Dielectr. Phenom. 264–267 (2006).
Liu F, Wang W, Zheng W, Wang Y. Investigation of spatially resolved spectra of OH and N2+ in N2 and H2O mixture wire-plate positive pulsed streamer discharge. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008;69:776–781. doi: 10.1016/j.saa.2007.04.033. PubMed DOI
Herron JT. Evaluated chemical kinetics data for reactions of N(2D), N(2P), and N2(A3Σu+) in the gas phase. J. Phys. Chem. Ref. Data. 1999;28:1453–1483. doi: 10.1063/1.556043. DOI
Ono R. Optical diagnostics of reactive species in atmospheric-pressure nonthermal plasma. J. Phys. D Appl. Phys. 2016;49:083001. doi: 10.1088/0022-3727/49/8/083001. DOI
Murakami T, Niemi K, Gans T, O'Connell D, Graham WG. Afterglow chemistry of atmospheric-pressure helium–oxygen plasmas with humid air impurity. Plasma Sources Sci. Technol. 2014;23:025005. doi: 10.1088/0963-0252/23/2/025005. DOI
Huang L, et al. Bactericidal effect of surface plasma under different discharge modes. Phys. Plasmas. 2021;28:123501. doi: 10.1063/5.0068094. DOI
Brisset JL, Hnatiuc E. Peroxynitrite: A re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions. Plasma Chem. Plasma Process. 2012;32:655–674. doi: 10.1007/s11090-012-9384-x. DOI
Pavlovich MJ, Clark DS, Graves DB. Quantification of air plasma chemistry for surface disinfection. Plasma Sources Sci. Technol. 2014;23:065036. doi: 10.1088/0963-0252/23/6/065036. DOI
van Bokhorst-van de Veen H, et al. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. Food Microbiol. 2015;45:26–33. doi: 10.1016/j.fm.2014.03.018. PubMed DOI
Kolb JF, et al. Cold DC-operated air plasma jet for the inactivation of infectious microorganisms. IEEE Trans. Plasma Sci. 2012;40:3007–3026. doi: 10.1109/TPS.2012.2216292. DOI
Kučerová K, Machala Z, Hensel K. Transient spark discharge generated in various N2/O2 gas mixtures: Reactive species in the gas and water and their antibacterial effects. Plasma Chem. Plasma Process. 2020;40:749–773. doi: 10.1007/s11090-020-10082-2. DOI
Wang J, et al. Antimicrobial mechanism and the effect of atmospheric pressure N2 plasma jet on the regeneration capacity of Staphylococcus aureus biofilm. Biofouling. 2018;34:935–949. doi: 10.1080/08927014.2018.1530350. PubMed DOI
Lukes P, Dolezalova E, Sisrova I, Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci. Technol. 2014;23:015019. doi: 10.1088/0963-0252/23/1/015019. DOI
Sharma M, Hudson JB. Ozone gas is an effective and practical antibacterial agent. Am. J. Infect. Control. 2008;36:559–563. doi: 10.1016/j.ajic.2007.10.021. PubMed DOI
Wang X, et al. Analysis of bactericidal effect of three medical ozonation dosage forms on multidrug-resistant bacteria from burn patients. Infect. Drug Resist. 2022;15:1637–1643. doi: 10.2147/IDR.S353277. PubMed DOI PMC
Eto H, Ono Y, Ogino A, Nagatsu M. Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge. Appl. Phys. Lett. 2008;93:221502. doi: 10.1063/1.3039808. DOI
Park JS, Sung BJ, Yoon KS, Jeong CS. The bactericidal effect of an ionizer under low concentration of ozone. BMC Microbiol. 2016;16:173. doi: 10.1186/s12866-016-0785-5. PubMed DOI PMC
Dobrynin D, Friedman G, Fridman A, Starikovskiy A. Inactivation of bacteria using DC corona discharge: Role of ions and humidity. New J. Phys. 2011;13:103033. doi: 10.1088/1367-2630/13/10/103033. PubMed DOI PMC
Douat C, Hübner S, Engeln R, Benedikt J. Production of nitric/nitrous oxide by an atmospheric pressure plasma jet. Plasma Sources Sci. Technol. 2016;25:025027. doi: 10.1088/0963-0252/25/2/025027. DOI
Yehia A, Mizuno A. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors. J. Appl. Phys. 2013;113:183301. doi: 10.1063/1.4804065. DOI
Janda M, Martišovitš V, Hensel K, Machala Z. Generation of antimicrobial NOx by atmospheric air transient spark discharge. Plasma Chem. Plasma Process. 2016;36:767–781. doi: 10.1007/s11090-016-9694-5. DOI
Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 2003;23:1–46. doi: 10.1023/A:1022470901385. DOI
Liu Z, et al. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis. J. Phys. D Appl. Phys. 2017;50:195204. doi: 10.1088/1361-6463/aa66f0. DOI
Oehmigen K, et al. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 2010;7:250–257. doi: 10.1002/ppap.200900077. DOI
Bartis EAJ, Knoll AJ, Luan P, Seog J, Oehrlein GS. On the interaction of cold atmospheric pressure plasma with surfaces of bio-molecules and model polymers. Plasma Chem. Plasma Process. 2016;36:121–149. doi: 10.1007/s11090-015-9673-2. DOI
Zhou R, et al. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020;53:303001. doi: 10.1088/1361-6463/ab81cf. DOI
Liu DX, et al. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737. PubMed DOI PMC
Mai-Prochnow A, et al. Interactions of plasma-activated water with biofilms: Inactivation, dispersal effects and mechanisms of action. NPJ Biofilms Microbiomes. 2021;7:11. doi: 10.1038/s41522-020-00180-6. PubMed DOI PMC
Timoshkin IV, et al. Bactericidal effect of corona discharges in atmospheric air. IEEE Trans. Plasma Sci. 2012;40:2322–2333. doi: 10.1109/TPS.2012.2193621. DOI
Rainey FA, et al. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl. Environ. Microbiol. 2005;71:5225–5235. doi: 10.1128/AEM.71.9.5225-5235.2005. PubMed DOI PMC
Agapov AA, Kulbachinskiy A. Mechanisms of stress resistance and gene regulation in the radioresistant bacterium Deinococcus radiodurans. Biochemistry (Moscow) 2015;80:1201–1216. doi: 10.1134/S0006297915100016. PubMed DOI
Slade D, Radman M. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 2011;75:133–191. doi: 10.1128/MMBR.00015-10. PubMed DOI PMC
Mattimore V, Battista JR. Radioresistance of Deinococcus radiodurans: Functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 1996;178:633–637. doi: 10.1128/jb.178.3.633-637.1996. PubMed DOI PMC