Non-thermal plasma disinfecting procedure is harmless to delicate items of everyday use
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37726338
PubMed Central
PMC10509187
DOI
10.1038/s41598-023-42405-6
PII: 10.1038/s41598-023-42405-6
Knihovny.cz E-zdroje
- MeSH
- COVID-19 * prevence a kontrola MeSH
- elektronika MeSH
- lidé MeSH
- měď MeSH
- pandemie MeSH
- plazmové plyny * MeSH
- potřeby pro domácnost * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- měď MeSH
- plazmové plyny * MeSH
Non-thermal plasma (NTP) is a well-known decontamination tool applicable for a wide range of microorganisms and viruses. Since the recent COVID-19 pandemic highlighted the need to decontaminate all daily used items, it is highly desirable to address the applicability of NTP, including its possible harmful effects. To the best of our knowledge, a comprehensive characterization of NTP effects on sensitive materials is still lacking. We investigated the potential damage to common materials of daily use inflicted by air atmospheric NTP generated in Plasmatico v1.0. The materials tested were paper, various metals, and passive and active electronic components modelling sensitive parts of commonly used small electronic devices. The NTP-exposed paper remained fully usable with only slight changes in its properties, such as whitening, pH change, and degree of polymerization. NTP caused mild oxidation of copper, tinned copper, brass, and a very mild oxidation of stainless steel. However, these changes do not affect the normal functionality of these materials. No significant changes were observed for passive electronic components; active components displayed a very slight shift of the measured values observed for the humidity sensor. In conclusion, NTP can be considered a gentle tool suitable for decontamination of various sensitive materials.
Department of Biotechnology University of Chemistry and Technology Prague Czech Republic
Department of Physics and Measurements University of Chemistry and Technology Prague Czech Republic
Division Molecular Microbiology St Anna Children's Cancer Research Institute Vienna Austria
Faculty of Science University of Hradec Kralove Hradec Králové Czech Republic
Zobrazit více v PubMed
Ehlbeck J, et al. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. Appl. Phys. 2010;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI
Misra NN, Yadav B, Roopesh MS, Jo C. Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Compr. Rev. Food Sci. Food Saf. 2019;18:106–120. doi: 10.1111/1541-4337.12398. PubMed DOI
Paldrychová M, et al. Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: Difference between non-hospital and clinical isolates. AIP Adv. 2019;9:055117. doi: 10.1063/1.5090451. DOI
Liao X, et al. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 2017;75:83–91. doi: 10.1016/j.foodcont.2016.12.021. DOI
Moisan M, et al. Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 2001;226:1–21. doi: 10.1016/S0378-5173(01)00752-9. PubMed DOI
Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017;123:308–324. doi: 10.1111/jam.13429. PubMed DOI
Kašparová P, et al. Non-thermal plasma causes Pseudomonas aeruginosa biofilm release to planktonic form and inhibits production of Las-B elastase, protease and pyocyanin. Front. Cell. Infect. Microbiol. 2022;12:993029. doi: 10.3389/fcimb.2022.993029. PubMed DOI PMC
Obrová K, et al. Decontamination of high-efficiency mask filters from respiratory pathogens including SARS-CoV-2 by non-thermal plasma. Front. Bioeng. Biotechnol. 2022;10:815393. doi: 10.3389/fbioe.2022.815393. PubMed DOI PMC
Assadi I, et al. Review on inactivation of airborne viruses using non-thermal plasma technologies: From MS2 to coronavirus. Environ. Sci. Pollut. Res. 2022;29:4880–4892. doi: 10.1007/s11356-021-17486-3. PubMed DOI PMC
Pankaj SK, Keener KM. Cold plasma: Background, applications and current trends. Curr. Opin. Food Sci. 2017;16:49–52. doi: 10.1016/j.cofs.2017.07.008. DOI
Tabares FL, Junkar I. Cold plasma systems and their application in surface treatments for medicine. Molecules. 2021;26:1903. doi: 10.3390/molecules26071903. PubMed DOI PMC
Laroque D, Seó S, Valencia G, Laurindo J, Carciofi B. Cold plasma in food processing: Design, mechanisms, and application. J. Food Eng. 2022;312:110748. doi: 10.1016/j.jfoodeng.2021.110748. DOI
Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI
Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI
Bekeschus S, von Woedtke T, Emmert S, Schmidt A. Medical gas plasma-stimulated wound healing: Evidence and mechanisms. Redox Biol. 2021;46:102116. doi: 10.1016/j.redox.2021.102116. PubMed DOI PMC
Gan L, et al. Medical applications of nonthermal atmospheric pressure plasma in dermatology. J. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG. 2018;16:7–13. PubMed
Ma C, Nikiforov A, De Geyter N, Morent R, Ostrikov K. Plasma for biomedical decontamination: From plasma-engineered to plasma-active antimicrobial surfaces. Curr. Opin. Chem. Eng. 2022;36:100764. doi: 10.1016/j.coche.2021.100764. DOI
Han I, Mumtaz S, Choi EH. Nonthermal biocompatible plasma inactivation of coronavirus SARS-CoV-2: Prospects for future antiviral applications. Viruses. 2022;14:2685. doi: 10.3390/v14122685. PubMed DOI PMC
Bisag A, et al. Cold atmospheric plasma inactivation of aerosolized microdroplets containing bacteria and purified SARS-CoV-2 RNA to contrast airborne indoor transmission. Plasma Process. Polym. 2020;17:2000154. doi: 10.1002/ppap.202000154. DOI
Sahun M, et al. Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection. ACS Sustain. Chem. Eng. 2023;11:5206–5215. doi: 10.1021/acssuschemeng.2c07622. PubMed DOI
Setiawan UH, Nurcahyo IF, Saraswati TE. Atmospheric pressure plasma jet for surface material modification: A mini-review. J. Phys. Conf. Ser. 2022;2190:012010. doi: 10.1088/1742-6596/2190/1/012010. DOI
Jordá-Vilaplana A, Fombuena V, García-García D, Samper MD, Sánchez-Nácher L. Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. Eur. Polym. J. 2014;58:23–33. doi: 10.1016/j.eurpolymj.2014.06.002. DOI
De Geyter N, et al. Plasma modification of polylactic acid in a medium pressure DBD. Surf. Coat. Technol. 2010;204:3272–3279. doi: 10.1016/j.surfcoat.2010.03.037. DOI
Li Z, Beck P, Ohlberg DAA, Stewart DR, Williams RS. Surface properties of platinum thin films as a function of plasma treatment conditions. Surf. Sci. 2003;529:410–418. doi: 10.1016/S0039-6028(03)00015-3. DOI
Alavi SK, et al. Atmospheric pressure plasma jet treatment of polymers enables reagent-free covalent attachment of biomolecules for bioprinting. ACS Appl. Mater. Interfaces. 2020;12:38730–38743. doi: 10.1021/acsami.0c07169. PubMed DOI
Vizárová K, Kaliňáková B, Tiňo R, Vajová I, Čížová K. Microbial decontamination of lignocellulosic materials with low-temperature atmospheric plasma. J. Cult. Herit. 2021;47:28–33. doi: 10.1016/j.culher.2020.09.016. DOI
Pietrzak K, et al. Disinfection of archival documents using thyme essential oil, silver nanoparticles misting and low temperature plasma. J. Cult. Herit. 2017;24:69–77. doi: 10.1016/j.culher.2016.10.011. DOI
Skácelová, D., Kováčik, D., Homola, T., Čech, J. & Černák, M. Surface modification of paper and paperboards using atmospheric pressure plasma. In Atmospheric Pressure Plasmas: Processes, Technology and Applications (Parker, M.) 227–236 (Nova Science Publishers, Inc, 2016) ISBN 978-1-63485-180-0.
Cogollo de Cádiz M, López Arrabal A, Díaz Lantada A, Aguirre MV. Materials degradation in non-thermal plasma generators by corona discharge. Sci. Rep. 2021;11:24175. doi: 10.1038/s41598-021-03447-w. PubMed DOI PMC
Khun J, et al. Non-thermal plasma sources based on cometary and point-to-ring discharges. Molecules. 2022;27:238. doi: 10.3390/molecules27010238. PubMed DOI PMC
Milichovsky M, Milichovska S. Characterization of oxidized cellulose with ultraviolet–visible spectroscopy. J. Appl. Polym. Sci. 2008;107:2045–2052. doi: 10.1002/app.27232. DOI
Pan J, et al. A novel method of tooth whitening using cold plasma microjet driven by direct current in atmospheric-pressure air. IEEE Trans. Plasma Sci. 2010;38:3143–3151. doi: 10.1109/TPS.2010.2066291. DOI
Tredwin CJ, Naik S, Lewis NJ, Scully C. Hydrogen peroxide tooth-whitening (bleaching) products: Review of adverse effects and safety issues. Br. Dent. J. 2006;200:371–376. doi: 10.1038/sj.bdj.4813423. PubMed DOI
Chai J, Lu F, Li B, Kwok DY. Wettability interpretation of oxygen plasma modified poly(methyl methacrylate) Langmuir. 2004;20:10919–10927. doi: 10.1021/la048947s. PubMed DOI
Morent R, et al. Non-thermal plasma treatment of textiles. Surf. Coat. Technol. 2008;202:3427–3449. doi: 10.1016/j.surfcoat.2007.12.027. DOI
Scholtz V, Šerá B, Khun J, Šerý M, Julák J. Effects of nonthermal plasma on wheat grains and products. J. Food Qual. 2019;2019:e7917825. doi: 10.1155/2019/7917825. DOI