Decontamination of High-Efficiency Mask Filters From Respiratory Pathogens Including SARS-CoV-2 by Non-thermal Plasma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35237577
PubMed Central
PMC8883054
DOI
10.3389/fbioe.2022.815393
PII: 815393
Knihovny.cz E-zdroje
- Klíčová slova
- Adenovirus, Pseudomonas aerguinosa, Rhinovirus, cold plasma, human respiratory viruses, influenza A, particle filter, protective equipment,
- Publikační typ
- časopisecké články MeSH
The current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production. Non-thermal plasma (NTP) is a decontamination technique with documented efficiency against select bacterial and fungal pathogens combined with low damage to exposed materials. We have investigated NTP for decontamination of high-efficiency P3 R filters from viral respiratory pathogens in comparison to other commonly used techniques. We show that NTP treatment completely inactivates SARS-CoV-2 and three other common human respiratory viruses including Influenza A, Rhinovirus and Adenovirus, revealing an efficiency comparable to 90°C dry heat or UVC light. Unlike some of the tested techniques (e.g., autoclaving), NTP neither influenced the filtering efficiency nor the microstructure of the filter. We demonstrate that NTP is a powerful and economic technology for efficient decontamination of protective filters and other sensitive materials from different respiratory pathogens.
Department of Genetics and Microbiology Charles University Faculty of Sciences Prague Czech Republic
Department of Pediatrics Medical University of Vienna Vienna Austria
Department of Physics and Measurements University of Chemistry and Technology Prague Czech Republic
Faculty of Science University of Hradec Kralove Hradec Králové Czech Republic
St Anna Children's Cancer Research Institute Division Molecular Microbiology Vienna Austria
Zobrazit více v PubMed
Beckman S., Materna B., Goldmacher S., Zipprich J., D'Alessandro M., Novak D., et al. (2013). Evaluation of Respiratory protection Programs and Practices in California Hospitals during the 2009-2010 H1N1 Influenza Pandemic. Am. J. Infect. Control. 41 (11), 1024–1031. 10.1016/j.ajic.2013.05.006 PubMed DOI PMC
Bekeschus S., Kramer A., Suffredini E., Von Woedtke T., Colombo V. (2020). Gas Plasma Technology-An Asset to Healthcare during Viral Pandemics Such as the COVID-19 Crisis? IEEE Trans. Radiat. Plasma Med. Sci. 4 (4), 391–399. 10.1109/trpms.2020.3002658 PubMed DOI PMC
Bergman M. S., Viscusi D. J., Zhuang Z., Palmiero A. J., Powell J. B., Shaffer R. E. (2012). Impact of Multiple Consecutive Donnings on Filtering Facepiece Respirator Fit. Am. J. Infect. Control. 40 (4), 375–380. 10.1016/j.ajic.2011.05.003 PubMed DOI
Boškoski I., Gallo C., Wallace M. B., Costamagna G. (2020). COVID-19 Pandemic and Personal Protective Equipment Shortage: Protective Efficacy Comparing Masks and Scientific Methods for Respirator Reuse. Gastrointest. Endosc. 92 (3), 519–523. 10.1016/j.gie.2020.04.048 PubMed DOI PMC
Bourke P., Ziuzina D., Boehm D., Cullen P. J., Keener K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 36 (6), 615–626. 10.1016/j.tibtech.2017.11.001 PubMed DOI
Brady T. M., Strauch A. L., Almaguer C. M., Niezgoda G., Shaffer R. E., Yorio P. L., et al. (2017). Transfer of Bacteriophage MS2 and Fluorescein from N95 Filtering Facepiece Respirators to Hands: Measuring Fomite Potential. J. Occup. Environ. Hyg. 14 (11), 898–906. 10.1080/15459624.2017.1346799 PubMed DOI PMC
Chen Z., Garcia G., Jr, Arumugaswami V., Wirz R. E. (2020). Cold Atmospheric Plasma for SARS-CoV-2 Inactivation. Phys. Fluids 32 (11), 111702. 10.1063/5.0031332 PubMed DOI PMC
Darmady E. M., Hughes K. E. A., Jones J. D., Prince D., Tuke W. (1961). Sterilization by Dry Heat. J. Clin. Pathol. 14 (1), 38–44. 10.1136/jcp.14.1.38 PubMed DOI PMC
Dasan B. G., Onal-Ulusoy B., Pawlat J., Diatczyk J., Sen Y., Mutlu M. (2017). A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma. Food Bioproc. Technol 10 (4), 650–661. 10.1007/s11947-016-1847-2 DOI
Deffernez C., Wunderli W., Thomas Y., Yerly S., Perrin L., Kaiser L. (2004). Amplicon Sequencing and Improved Detection of Human Rhinovirus in Respiratory Samples. J. Clin. Microbiol. 42 (7), 3212–3218. 10.1128/jcm.42.7.3212-3218.2004 PubMed DOI PMC
Derraik J. G. B., Anderson W. A., Connelly E. A., Anderson Y. C. (2020). Rapid Review of SARS-CoV-1 and SARS-CoV-2 Viability, Susceptibility to Treatment, and the Disinfection and Reuse of PPE, Particularly Filtering Facepiece Respirators. Int. J. Environ. Res. Public Health 17 (17), 6117. 10.3390/ijerph17176117 PubMed DOI PMC
Ehlbeck J., Schnabel U., Polak M., Winter J., von Woedtke T., Brandenburg R., et al. (2010). Low Temperature Atmospheric Pressure Plasma Sources for Microbial Decontamination. J. Phys. D: Appl. Phys. 44 (1), 013002. 10.1088/0022-3727/44/1/013002 DOI
Filipić A., Gutierrez-Aguirre I., Primc G., Mozetič M., Dobnik D. (2020). Cold Plasma, a New Hope in the Field of Virus Inactivation. Trends Biotechnol. 38, 1278–1291. 10.1016/j.tibtech.2020.04.003 PubMed DOI PMC
Fisher E. M., Shaffer R. E. (2014). Considerations for Recommending Extended Use and Limited Reuse of Filtering Facepiece Respirators in Health Care Settings. J. Occup. Environ. Hyg. 11 (8), D115–D128. 10.1080/15459624.2014.902954 PubMed DOI PMC
Godoy L. R. G., Jones A. E., Anderson T. N., Fisher C. L., Seeley K. M. L., Beeson E. A., et al. (2020). Facial protection for Healthcare Workers during Pandemics: a Scoping Review. BMJ Glob. Health 5 (5), e002553. 10.1136/bmjgh-2020-002553 PubMed DOI PMC
Graves D. B. (2012). The Emerging Role of Reactive Oxygen and Nitrogen Species in Redox Biology and Some Implications for Plasma Applications to Medicine and Biology. J. Phys. D: Appl. Phys. 45 (26), 263001. 10.1088/0022-3727/45/26/263001 DOI
Huber T., Goldman O., Epstein A. E., Stella G., Sakmar T. P. (2021). Principles and Practice for SARS-CoV-2 Decontamination of N95 Masks with UV-C. Biophysical J. 120 (14), 2927–2942. 10.1016/j.bpj.2021.02.039 PubMed DOI PMC
Hung L. S. (2003). The SARS Epidemic in Hong Kong: What Lessons Have We Learned? J. R. Soc. Med. 96 (8), 374–378. 10.1258/jrsm.96.8.374 PubMed DOI PMC
Julák J., Scholtz V., Vaňková E. (2018). Medically Important Biofilms and Non-Thermal Plasma. World J. Microbiol. Biotechnol. 34 (12), 178. 10.1007/s11274-018-2560-2 PubMed DOI
Kärber G. (1931). Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Archiv f. experiment. Pathol. u. Pharmakol. 162 (12), 480–483. 10.1007/BF01863914 DOI
Khun J., Jirešová J., Kujalová L., Hozák P., Scholtz V. (2017). Comparing the Biocidal Properties of Non-Thermal Plasma Sources by Reference Protocol. The Eur. Phys. J. D 71 (10), 1–7. 10.1140/epjd/e2017-80115-9 DOI
Lee W.-M., Chen Y., Wang W., Mosser A. (2015). “Infectivity Assays of Human Rhinovirus-A and -B Serotypes,” in Rhinoviruses. Editors Jans D., Ghildyal R. (New York, NY: Humana Press; ), 71–81. 10.1007/978-1-4939-1571-2_7 PubMed DOI
Lindsley W. G., Martin S. B., Jr, Thewlis R. E., Sarkisian K., Nwoko J. O., Mead K. R., et al. (2015). Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity. J. Occup. Environ. Hyg. 12 (8), 509–517. 10.1080/15459624.2015.1018518 PubMed DOI PMC
Lion T., Baumgartinger R., Watzinger F., Matthes-Martin S., Suda M., Preuner S., et al. (2003). Molecular Monitoring of Adenovirus in Peripheral Blood after Allogeneic Bone Marrow Transplantation Permits Early Diagnosis of Disseminated Disease. Blood 102 (3), 1114–1120. 10.1182/blood-2002-07-2152 PubMed DOI
Ludwig-Begall L. F., Wielick C., Dams L., Nauwynck H., Demeuldre P.-F., Napp A., et al. (2020). The Use of Germicidal Ultraviolet Light, Vaporized Hydrogen Peroxide and Dry Heat to Decontaminate Face Masks and Filtering Respirators Contaminated with a SARS-CoV-2 Surrogate Virus. J. Hosp. Infect. 106 (3), 577–584. 10.1016/j.jhin.2020.08.025 PubMed DOI PMC
Lux J., Dobiáš R., Kuklová I., Litvik R., Scholtz V., Soušková H., et al. (2020). Inactivation of Dermatophytes Causing Onychomycosis and its Therapy Using Non-Thermal Plasma. JoF 6 (4), 214. 10.3390/jof6040214 PubMed DOI PMC
Mills D., Harnish D. A., Lawrence C., Sandoval-Powers M., Heimbuch B. K. (2018). Ultraviolet Germicidal Irradiation of Influenza-Contaminated N95 Filtering Facepiece Respirators. Am. J. Infect. Control. 46 (7), e49–e55. 10.1016/j.ajic.2018.02.018 PubMed DOI PMC
Misra N. N., Yadav B., Roopesh M. S., Jo C. (2019). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr. Rev. Food Sci. Food Saf. 18 (1), 106–120. 10.1111/1541-4337.12398 PubMed DOI
Ngaosuwankul N., Noisumdaeng P., Komolsiri P., Pooruk P., Chokephaibulkit K., Chotpitayasunondh T., et al. (2010). Influenza A Viral Loads in Respiratory Samples Collected from Patients Infected with Pandemic H1N1, Seasonal H1N1 and H3N2 Viruses. Virol. J. 7 (1), 75–77. 10.1186/1743-422X-7-75 PubMed DOI PMC
Ono R. (2016). Optical Diagnostics of Reactive Species in Atmospheric-Pressure Nonthermal Plasma. J. Phys. D: Appl. Phys. 49 (8), 83001. 10.1088/0022-3727/49/8/083001 DOI
Paldrychová M., Vaňková E., Kašparová P., Sembolová E., Maťátková O., Masák J., et al. (2020). Use of Non-Thermal Plasma Pre-treatment to Enhance Antibiotic Action against Mature Pseudomonas A Biofilms. World J. Microbiol. Biotechnol. 36 (8), 108. 10.1007/s11274-020-02891-6 PubMed DOI
Paldrychová M., Vaňková E., Scholtz V., Julák J., Sembolová E., Mat’átková O., et al. (2019). Effect of Non-Thermal Plasma on AHL-dependent QS Systems and Biofilm Formation in Pseudomonas A: Difference between Non-hospital and Clinical Isolates. AIP Adv. 9 (5), 55117. 10.1063/1.5090451 DOI
Polkinghorne A., Branley J. (2020). Evidence for Decontamination of Single-Use Filtering Facepiece Respirators. J. Hosp. Infect. 105 (4), 663–669. 10.1016/j.jhin.2020.05.032 PubMed DOI PMC
Rathnasinghe R., Karlicek R. F., Schotsaert M., Koffas M. A., Arduini B., Jangra S., et al. (2021). Scalable, Effective, and Rapid Decontamination of SARS-CoV-2 Contaminated N95 Respirators Using Germicidal Ultra-violet C (UVC) Irradiation Device. MedRxiv. Scientific Reports 11.1, 1–10. 10.1101/2020.10.05.20206953 PubMed DOI PMC
Scholtz V., Khun J., Šerá B. (2019). Nonthermal Plasma for Food Quality and Safety. J. Food Qual. 2019, 1. Hindawi. 10.1155/2019/6468018 DOI
Scholtz V., Soušková H., Švarcová M., Kríha V., Živná H., Julák J. (2017). Inactivation of Dermatophyte Infection by Nonthermal Plasma on Animal Model. Med. Mycol. 55 (4), 422–428. 10.1093/mmy/myw094 PubMed DOI
Scholtz V., Vaňková E., Kašparová P., Premanath R., Karunasagar I., Julák J. (2021). Non-Thermal Plasma Treatment of ESKAPE Pathogens: A Review. Front. Microbiol. 12, 737635. 10.3389/fmicb.2021.737635 PubMed DOI PMC
Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. (2015). Nonthermal Plasma - A Tool for Decontamination and Disinfection. Biotechnol. Adv. 33 (6 Pt 2), 1108–1119. 10.1016/j.biotechadv.2015.01.002 PubMed DOI
Shaw A., Seri P., Borghi C. A., Shama G., Iza F. (2015). A Reference Protocol for Comparing the Biocidal Properties of Gas Plasma Generating Devices. J. Phys. D: Appl. Phys. 48 (48), 484001. 10.1088/0022-3727/48/48/484001 DOI
Shyichuk A. V., White J. R., Craig I. H., Syrotynska I. D. (2005). Comparison of UV-Degradation Depth-Profiles in Polyethylene, Polypropylene and an Ethylene-Propylene Copolymer. Polym. Degrad. Stab. 88 (3), 415–419. 10.1016/j.polymdegradstab.2004.12.006 DOI
Spearman C. (1908). The Method of “Right and Wrong Cases”(“Constant stimuli”) Without Gauss’s Formulae. Br. J. Psychol. 2 (1904–1920), 227–242. 10.1111/j.2044-8295.1908.tb00176.x DOI
Su-Velez B. M., Maxim T., Long J. L., St John M. A., Holliday M. A. (2020). Decontamination Methods for Reuse of Filtering Facepiece Respirators. JAMA Otolaryngol. Head Neck Surg. 146 (8), 734–740. 10.1001/jamaoto.2020.1423 PubMed DOI PMC
Vaňková E., Kašparová P., Dulíčková N., Čeřovský V. (2020b). Combined Effect of Lasioglossin LL-III Derivative with Azoles against Candida Albicans Virulence Factors: Biofilm Formation, Phospholipases, Proteases and Hemolytic Activity. FEMS Yeast Res. 20 (3), foaa020. 10.1093/femsyr/foaa020 PubMed DOI
Vaňková E., Kašparová P., Khun J., Machková A., Julák J., Sláma M., et al. (2020a). Polylactic Acid as a Suitable Material for 3D Printing of Protective Masks in Times of COVID-19 Pandemic. PeerJ 8, e10259. 10.7717/peerj.10259 PubMed DOI PMC
Vaňková E., Válková M., Kašparová P., Masák J., Scholtz V., Khun J., et al. (2019). Prevention of Biofilm Re‐development on Ti‐6Al‐4V alloy by Cometary Discharge with a Metallic Grid. Contrib. Plasma Phys. 59 (2), 166–172. 10.1002/ctpp.201800044 DOI
Viscusi D. J., Eimer B. C., Bergman M. S., Shaffer R. E. (2009). Evaluation of Five Decontamination Methods for Filtering Facepiece Respirators. Ann. Occup. Hyg. 53 (8), 815–827. 10.1093/annhyg/mep070 PubMed DOI PMC
Watzinger F., Suda M., Preuner S., Baumgartinger R., Ebner K., Baskova L., et al. (2004). Real-Time Quantitative PCR Assays for Detection andMonitoring of Pathogenic Human Viruses in ImmunosuppressedPediatricPatients. J. Clin. Microbiol. 42 (11), 5189–5198. 10.1128/jcm.42.11.5189-5198.2004 PubMed DOI PMC
Yi L., Fengzhi L., Qingyong Z. (2005). Numerical Simulation of Virus Diffusion in Facemask during Breathing Cycles. Int. J. Heat Mass. Transf 48 (19–20), 4229–4242. 10.1016/j.ijheatmasstransfer.2005.03.030 PubMed DOI PMC