Decontamination of High-Efficiency Mask Filters From Respiratory Pathogens Including SARS-CoV-2 by Non-thermal Plasma

. 2022 ; 10 () : 815393. [epub] 20220214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35237577

The current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production. Non-thermal plasma (NTP) is a decontamination technique with documented efficiency against select bacterial and fungal pathogens combined with low damage to exposed materials. We have investigated NTP for decontamination of high-efficiency P3 R filters from viral respiratory pathogens in comparison to other commonly used techniques. We show that NTP treatment completely inactivates SARS-CoV-2 and three other common human respiratory viruses including Influenza A, Rhinovirus and Adenovirus, revealing an efficiency comparable to 90°C dry heat or UVC light. Unlike some of the tested techniques (e.g., autoclaving), NTP neither influenced the filtering efficiency nor the microstructure of the filter. We demonstrate that NTP is a powerful and economic technology for efficient decontamination of protective filters and other sensitive materials from different respiratory pathogens.

Zobrazit více v PubMed

Beckman S., Materna B., Goldmacher S., Zipprich J., D'Alessandro M., Novak D., et al. (2013). Evaluation of Respiratory protection Programs and Practices in California Hospitals during the 2009-2010 H1N1 Influenza Pandemic. Am. J. Infect. Control. 41 (11), 1024–1031. 10.1016/j.ajic.2013.05.006 PubMed DOI PMC

Bekeschus S., Kramer A., Suffredini E., Von Woedtke T., Colombo V. (2020). Gas Plasma Technology-An Asset to Healthcare during Viral Pandemics Such as the COVID-19 Crisis? IEEE Trans. Radiat. Plasma Med. Sci. 4 (4), 391–399. 10.1109/trpms.2020.3002658 PubMed DOI PMC

Bergman M. S., Viscusi D. J., Zhuang Z., Palmiero A. J., Powell J. B., Shaffer R. E. (2012). Impact of Multiple Consecutive Donnings on Filtering Facepiece Respirator Fit. Am. J. Infect. Control. 40 (4), 375–380. 10.1016/j.ajic.2011.05.003 PubMed DOI

Boškoski I., Gallo C., Wallace M. B., Costamagna G. (2020). COVID-19 Pandemic and Personal Protective Equipment Shortage: Protective Efficacy Comparing Masks and Scientific Methods for Respirator Reuse. Gastrointest. Endosc. 92 (3), 519–523. 10.1016/j.gie.2020.04.048 PubMed DOI PMC

Bourke P., Ziuzina D., Boehm D., Cullen P. J., Keener K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 36 (6), 615–626. 10.1016/j.tibtech.2017.11.001 PubMed DOI

Brady T. M., Strauch A. L., Almaguer C. M., Niezgoda G., Shaffer R. E., Yorio P. L., et al. (2017). Transfer of Bacteriophage MS2 and Fluorescein from N95 Filtering Facepiece Respirators to Hands: Measuring Fomite Potential. J. Occup. Environ. Hyg. 14 (11), 898–906. 10.1080/15459624.2017.1346799 PubMed DOI PMC

Chen Z., Garcia G., Jr, Arumugaswami V., Wirz R. E. (2020). Cold Atmospheric Plasma for SARS-CoV-2 Inactivation. Phys. Fluids 32 (11), 111702. 10.1063/5.0031332 PubMed DOI PMC

Darmady E. M., Hughes K. E. A., Jones J. D., Prince D., Tuke W. (1961). Sterilization by Dry Heat. J. Clin. Pathol. 14 (1), 38–44. 10.1136/jcp.14.1.38 PubMed DOI PMC

Dasan B. G., Onal-Ulusoy B., Pawlat J., Diatczyk J., Sen Y., Mutlu M. (2017). A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma. Food Bioproc. Technol 10 (4), 650–661. 10.1007/s11947-016-1847-2 DOI

Deffernez C., Wunderli W., Thomas Y., Yerly S., Perrin L., Kaiser L. (2004). Amplicon Sequencing and Improved Detection of Human Rhinovirus in Respiratory Samples. J. Clin. Microbiol. 42 (7), 3212–3218. 10.1128/jcm.42.7.3212-3218.2004 PubMed DOI PMC

Derraik J. G. B., Anderson W. A., Connelly E. A., Anderson Y. C. (2020). Rapid Review of SARS-CoV-1 and SARS-CoV-2 Viability, Susceptibility to Treatment, and the Disinfection and Reuse of PPE, Particularly Filtering Facepiece Respirators. Int. J. Environ. Res. Public Health 17 (17), 6117. 10.3390/ijerph17176117 PubMed DOI PMC

Ehlbeck J., Schnabel U., Polak M., Winter J., von Woedtke T., Brandenburg R., et al. (2010). Low Temperature Atmospheric Pressure Plasma Sources for Microbial Decontamination. J. Phys. D: Appl. Phys. 44 (1), 013002. 10.1088/0022-3727/44/1/013002 DOI

Filipić A., Gutierrez-Aguirre I., Primc G., Mozetič M., Dobnik D. (2020). Cold Plasma, a New Hope in the Field of Virus Inactivation. Trends Biotechnol. 38, 1278–1291. 10.1016/j.tibtech.2020.04.003 PubMed DOI PMC

Fisher E. M., Shaffer R. E. (2014). Considerations for Recommending Extended Use and Limited Reuse of Filtering Facepiece Respirators in Health Care Settings. J. Occup. Environ. Hyg. 11 (8), D115–D128. 10.1080/15459624.2014.902954 PubMed DOI PMC

Godoy L. R. G., Jones A. E., Anderson T. N., Fisher C. L., Seeley K. M. L., Beeson E. A., et al. (2020). Facial protection for Healthcare Workers during Pandemics: a Scoping Review. BMJ Glob. Health 5 (5), e002553. 10.1136/bmjgh-2020-002553 PubMed DOI PMC

Graves D. B. (2012). The Emerging Role of Reactive Oxygen and Nitrogen Species in Redox Biology and Some Implications for Plasma Applications to Medicine and Biology. J. Phys. D: Appl. Phys. 45 (26), 263001. 10.1088/0022-3727/45/26/263001 DOI

Huber T., Goldman O., Epstein A. E., Stella G., Sakmar T. P. (2021). Principles and Practice for SARS-CoV-2 Decontamination of N95 Masks with UV-C. Biophysical J. 120 (14), 2927–2942. 10.1016/j.bpj.2021.02.039 PubMed DOI PMC

Hung L. S. (2003). The SARS Epidemic in Hong Kong: What Lessons Have We Learned? J. R. Soc. Med. 96 (8), 374–378. 10.1258/jrsm.96.8.374 PubMed DOI PMC

Julák J., Scholtz V., Vaňková E. (2018). Medically Important Biofilms and Non-Thermal Plasma. World J. Microbiol. Biotechnol. 34 (12), 178. 10.1007/s11274-018-2560-2 PubMed DOI

Kärber G. (1931). Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Archiv f. experiment. Pathol. u. Pharmakol. 162 (12), 480–483. 10.1007/BF01863914 DOI

Khun J., Jirešová J., Kujalová L., Hozák P., Scholtz V. (2017). Comparing the Biocidal Properties of Non-Thermal Plasma Sources by Reference Protocol. The Eur. Phys. J. D 71 (10), 1–7. 10.1140/epjd/e2017-80115-9 DOI

Lee W.-M., Chen Y., Wang W., Mosser A. (2015). “Infectivity Assays of Human Rhinovirus-A and -B Serotypes,” in Rhinoviruses. Editors Jans D., Ghildyal R. (New York, NY: Humana Press; ), 71–81. 10.1007/978-1-4939-1571-2_7 PubMed DOI

Lindsley W. G., Martin S. B., Jr, Thewlis R. E., Sarkisian K., Nwoko J. O., Mead K. R., et al. (2015). Effects of Ultraviolet Germicidal Irradiation (UVGI) on N95 Respirator Filtration Performance and Structural Integrity. J. Occup. Environ. Hyg. 12 (8), 509–517. 10.1080/15459624.2015.1018518 PubMed DOI PMC

Lion T., Baumgartinger R., Watzinger F., Matthes-Martin S., Suda M., Preuner S., et al. (2003). Molecular Monitoring of Adenovirus in Peripheral Blood after Allogeneic Bone Marrow Transplantation Permits Early Diagnosis of Disseminated Disease. Blood 102 (3), 1114–1120. 10.1182/blood-2002-07-2152 PubMed DOI

Ludwig-Begall L. F., Wielick C., Dams L., Nauwynck H., Demeuldre P.-F., Napp A., et al. (2020). The Use of Germicidal Ultraviolet Light, Vaporized Hydrogen Peroxide and Dry Heat to Decontaminate Face Masks and Filtering Respirators Contaminated with a SARS-CoV-2 Surrogate Virus. J. Hosp. Infect. 106 (3), 577–584. 10.1016/j.jhin.2020.08.025 PubMed DOI PMC

Lux J., Dobiáš R., Kuklová I., Litvik R., Scholtz V., Soušková H., et al. (2020). Inactivation of Dermatophytes Causing Onychomycosis and its Therapy Using Non-Thermal Plasma. JoF 6 (4), 214. 10.3390/jof6040214 PubMed DOI PMC

Mills D., Harnish D. A., Lawrence C., Sandoval-Powers M., Heimbuch B. K. (2018). Ultraviolet Germicidal Irradiation of Influenza-Contaminated N95 Filtering Facepiece Respirators. Am. J. Infect. Control. 46 (7), e49–e55. 10.1016/j.ajic.2018.02.018 PubMed DOI PMC

Misra N. N., Yadav B., Roopesh M. S., Jo C. (2019). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr. Rev. Food Sci. Food Saf. 18 (1), 106–120. 10.1111/1541-4337.12398 PubMed DOI

Ngaosuwankul N., Noisumdaeng P., Komolsiri P., Pooruk P., Chokephaibulkit K., Chotpitayasunondh T., et al. (2010). Influenza A Viral Loads in Respiratory Samples Collected from Patients Infected with Pandemic H1N1, Seasonal H1N1 and H3N2 Viruses. Virol. J. 7 (1), 75–77. 10.1186/1743-422X-7-75 PubMed DOI PMC

Ono R. (2016). Optical Diagnostics of Reactive Species in Atmospheric-Pressure Nonthermal Plasma. J. Phys. D: Appl. Phys. 49 (8), 83001. 10.1088/0022-3727/49/8/083001 DOI

Paldrychová M., Vaňková E., Kašparová P., Sembolová E., Maťátková O., Masák J., et al. (2020). Use of Non-Thermal Plasma Pre-treatment to Enhance Antibiotic Action against Mature Pseudomonas A Biofilms. World J. Microbiol. Biotechnol. 36 (8), 108. 10.1007/s11274-020-02891-6 PubMed DOI

Paldrychová M., Vaňková E., Scholtz V., Julák J., Sembolová E., Mat’átková O., et al. (2019). Effect of Non-Thermal Plasma on AHL-dependent QS Systems and Biofilm Formation in Pseudomonas A: Difference between Non-hospital and Clinical Isolates. AIP Adv. 9 (5), 55117. 10.1063/1.5090451 DOI

Polkinghorne A., Branley J. (2020). Evidence for Decontamination of Single-Use Filtering Facepiece Respirators. J. Hosp. Infect. 105 (4), 663–669. 10.1016/j.jhin.2020.05.032 PubMed DOI PMC

Rathnasinghe R., Karlicek R. F., Schotsaert M., Koffas M. A., Arduini B., Jangra S., et al. (2021). Scalable, Effective, and Rapid Decontamination of SARS-CoV-2 Contaminated N95 Respirators Using Germicidal Ultra-violet C (UVC) Irradiation Device. MedRxiv. Scientific Reports 11.1, 1–10. 10.1101/2020.10.05.20206953 PubMed DOI PMC

Scholtz V., Khun J., Šerá B. (2019). Nonthermal Plasma for Food Quality and Safety. J. Food Qual. 2019, 1. Hindawi. 10.1155/2019/6468018 DOI

Scholtz V., Soušková H., Švarcová M., Kríha V., Živná H., Julák J. (2017). Inactivation of Dermatophyte Infection by Nonthermal Plasma on Animal Model. Med. Mycol. 55 (4), 422–428. 10.1093/mmy/myw094 PubMed DOI

Scholtz V., Vaňková E., Kašparová P., Premanath R., Karunasagar I., Julák J. (2021). Non-Thermal Plasma Treatment of ESKAPE Pathogens: A Review. Front. Microbiol. 12, 737635. 10.3389/fmicb.2021.737635 PubMed DOI PMC

Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. (2015). Nonthermal Plasma - A Tool for Decontamination and Disinfection. Biotechnol. Adv. 33 (6 Pt 2), 1108–1119. 10.1016/j.biotechadv.2015.01.002 PubMed DOI

Shaw A., Seri P., Borghi C. A., Shama G., Iza F. (2015). A Reference Protocol for Comparing the Biocidal Properties of Gas Plasma Generating Devices. J. Phys. D: Appl. Phys. 48 (48), 484001. 10.1088/0022-3727/48/48/484001 DOI

Shyichuk A. V., White J. R., Craig I. H., Syrotynska I. D. (2005). Comparison of UV-Degradation Depth-Profiles in Polyethylene, Polypropylene and an Ethylene-Propylene Copolymer. Polym. Degrad. Stab. 88 (3), 415–419. 10.1016/j.polymdegradstab.2004.12.006 DOI

Spearman C. (1908). The Method of “Right and Wrong Cases”(“Constant stimuli”) Without Gauss’s Formulae. Br. J. Psychol. 2 (1904–1920), 227–242. 10.1111/j.2044-8295.1908.tb00176.x DOI

Su-Velez B. M., Maxim T., Long J. L., St John M. A., Holliday M. A. (2020). Decontamination Methods for Reuse of Filtering Facepiece Respirators. JAMA Otolaryngol. Head Neck Surg. 146 (8), 734–740. 10.1001/jamaoto.2020.1423 PubMed DOI PMC

Vaňková E., Kašparová P., Dulíčková N., Čeřovský V. (2020b). Combined Effect of Lasioglossin LL-III Derivative with Azoles against Candida Albicans Virulence Factors: Biofilm Formation, Phospholipases, Proteases and Hemolytic Activity. FEMS Yeast Res. 20 (3), foaa020. 10.1093/femsyr/foaa020 PubMed DOI

Vaňková E., Kašparová P., Khun J., Machková A., Julák J., Sláma M., et al. (2020a). Polylactic Acid as a Suitable Material for 3D Printing of Protective Masks in Times of COVID-19 Pandemic. PeerJ 8, e10259. 10.7717/peerj.10259 PubMed DOI PMC

Vaňková E., Válková M., Kašparová P., Masák J., Scholtz V., Khun J., et al. (2019). Prevention of Biofilm Re‐development on Ti‐6Al‐4V alloy by Cometary Discharge with a Metallic Grid. Contrib. Plasma Phys. 59 (2), 166–172. 10.1002/ctpp.201800044 DOI

Viscusi D. J., Eimer B. C., Bergman M. S., Shaffer R. E. (2009). Evaluation of Five Decontamination Methods for Filtering Facepiece Respirators. Ann. Occup. Hyg. 53 (8), 815–827. 10.1093/annhyg/mep070 PubMed DOI PMC

Watzinger F., Suda M., Preuner S., Baumgartinger R., Ebner K., Baskova L., et al. (2004). Real-Time Quantitative PCR Assays for Detection andMonitoring of Pathogenic Human Viruses in ImmunosuppressedPediatricPatients. J. Clin. Microbiol. 42 (11), 5189–5198. 10.1128/jcm.42.11.5189-5198.2004 PubMed DOI PMC

Yi L., Fengzhi L., Qingyong Z. (2005). Numerical Simulation of Virus Diffusion in Facemask during Breathing Cycles. Int. J. Heat Mass. Transf 48 (19–20), 4229–4242. 10.1016/j.ijheatmasstransfer.2005.03.030 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Non-thermal plasma disinfecting procedure is harmless to delicate items of everyday use

. 2023 Sep 19 ; 13 (1) : 15479. [epub] 20230919

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace