Non-thermal Plasma Treatment of ESKAPE Pathogens: A Review

. 2021 ; 12 () : 737635. [epub] 20211012

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34712211

The acronym ESKAPE refers to a group of bacteria consisting of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. They are important in human medicine as pathogens that show increasing resistance to commonly used antibiotics; thus, the search for new effective bactericidal agents is still topical. One of the possible alternatives is the use of non-thermal plasma (NTP), a partially ionized gas with the energy stored particularly in the free electrons, which has antimicrobial and anti-biofilm effects. Its mechanism of action includes the formation of pores in the bacterial membranes; therefore, resistance toward it is not developed. This paper focuses on the current overview of literature describing the use of NTP as a new promising tool against ESKAPE bacteria, both in planktonic and biofilm forms. Thus, it points to the fact that NTP treatment can be used for the decontamination of different types of liquids, medical materials, and devices or even surfaces used in various industries. In summary, the use of diverse experimental setups leads to very different efficiencies in inactivation. However, Gram-positive bacteria appear less susceptible compared to Gram-negative ones, in general.

Zobrazit více v PubMed

Abbas I. K., Hussein M. U., Hasan M. H., Murbat H. (2017). The effect of the non-thermal plasma needle on Pseudomonas aeruginosa bacteria. Iraqi J. Sci. 58 1214–1219. 10.24996/ijs.2017.58.3A.5 DOI

Adler S., Scherrer M., Daschner F. D. (1998). Costs of low-temperature plasma sterilization compared with other sterilization methods. J. Hosp. Infect. 40 125–134. 10.1016/S0195-6701(98)90091-3 PubMed DOI

Agnihotri S., Dhiman N. K., Tripathi A. (2018). “Antimicrobial surface modification of polymeric biomaterials,” in Handbook of Antimicrobial Coatings, ed. Tiwari A. (Amsterdam: Elsevier; ), 435–486. 10.1016/B978-0-12-811982-2.00020-2 DOI

Ahmed A. J. A., Alaa H. A. A. (2016). Virulence factors and antibiotic susceptibility patterns of multidrug resistance Klebsiella pneumoniae isolated from different clinical infections. Afr. J. Microbiol. Res. 10 829–843. 10.5897/AJMR2016.8051 DOI

Ali J., Rafiq Q. A., Ratcliffe E. (2018). Antimicrobial resistance mechanisms and potential synthetic treatments. Future Sci. OA 4:FSO290. 10.4155/fsoa-2017-0109 PubMed DOI PMC

Alkawareek M. Y., Algwari Q. T., Gorman S. P., Graham W. G., O’Connell D., Gilmore B. F. (2012a). Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. FEMS Immunol. Med. Microbiol. 65 381–384. 10.1111/j.1574-695X.2012.00942.x PubMed DOI

Alkawareek M. Y., Algwari Q. T., Laverty G., Gorman S. P., Graham W. G., O’Connell D., et al. (2012b). Eradication of Pseudomonas aeruginosa Biofilms by atmospheric pressure non-thermal plasma. PLoS One 7:e44289. 10.1371/journal.pone.0044289 PubMed DOI PMC

Alkawareek M. Y., Gorman S. P., Graham W. G., Gilmore B. F. (2014). Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int. J. Antimicrob. Agents 43 154–160. 10.1016/j.ijantimicag.2013.08.022 PubMed DOI

Almasaudi S. B. (2018). Acinetobacter spp. as nosocomial pathogens: epidemiology and resistance features. Saudi J. Biol. Sci. 25 586–596. 10.1016/j.sjbs.2016.02.009 PubMed DOI PMC

Anderson D. J., Moehring R. W., Sloane R., Schmader K. E., Weber D. J., Fowler V. G., et al. (2014). Bloodstream infections in community hospitals in the 21st century: a multicenter cohort study. PLoS One 9:e91713. 10.1371/journal.pone.0091713 PubMed DOI PMC

Appelbaum P. C. (2007). Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents 30 398–408. 10.1016/j.ijantimicag.2007.07.011 PubMed DOI

Arias C. A., Murray B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol. 10 266–278. 10.1038/nrmicro2761 PubMed DOI PMC

Atta A. (2019). Influence of cold atmospheric plasma on Acinetobacter baumannii. Baghdad Sci. J. 16:0151. 10.21123/bsj.2019.16.1(Suppl.).0151 DOI

Balasubramanian D., Schneper L., Kumari H., Mathee K. (2013). A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res. 41 1–20. 10.1093/nar/gks1039 PubMed DOI PMC

Barakat M. M., Dallal Bashi Y. H., Carson L., Graham W. G., Gilmore B. F., Flynn P. B. (2019). Atmospheric pressure non-thermal plasma exposure reduces Pseudomonas aeruginosa lipopolysaccharide toxicity in vitro and in vivo. Microb. Pathog. 136:103679. 10.1016/j.micpath.2019.103679 PubMed DOI

Bastien F., Marode E. (1979). The determination of basic quantities during glow-to-arc transition in a positive point-to-plane discharge. J. Phys. D Appl. Phys. 12 249–263. 10.1088/0022-3727/12/2/010 DOI

Boubaker K., Diebold P., Blanc D. S., Vandenesch F., Praz G., Dupuis G., et al. (2004). Panton-valentine leukocidin and Staphyloccoccal skin infections in schoolchildren. Emerg. Infect. Dis. 10 121–124. 10.3201/eid1001.030144 PubMed DOI PMC

Boucher H. W., Talbot G. H., Bradley J. S., Edwards J. E., Gilbert D., Rice L. B., et al. (2009). Bad bugs, no drugs: no ESKAPE! an update from the infectious diseases society of America. Clin. Infect. Dis. 48 1–12. 10.1086/595011 PubMed DOI

Brinkac L. M., White R., D’Souza R., Nguyen K., Obaro S. K., Fouts D. E. (2019). Emergence of New Delhi Metallo-β-Lactamase (NDM-5) in Klebsiella quasipneumoniae from neonates in a Nigerian hospital. mSphere 4:e00685-18. 10.1128/mSphere.00685-18 PubMed DOI PMC

Bryce E. A., Chia E., Logelin G., Smith J. A. (1997). An evaluation of the AbTox plazlyte sterilization system. Infect. Control. Hosp. Epidemiol. 18 649–653. 10.1086/647691 PubMed DOI

Burts M. L., Alexeff I., Meek E. T., McCullers J. A. (2009). Use of atmospheric non-thermal plasma as a disinfectant for objects contaminated with methicillin-resistant Staphylococcus aureus. Am. J. Infect. Control 37 729–733. 10.1016/j.ajic.2009.03.010 PubMed DOI PMC

Cahill O. J., Claro T., Cafolla A. A., Stevens N. T., Daniels S., Humphreys H. (2017). Decontamination of hospital surfaces with multijet cold plasma: a method to enhance infection prevention and control? Infect. Control Hosp. Epidemiol. 38 1182–1187. 10.1017/ice.2017.168 PubMed DOI

Cahill O. J., Claro T., O’Connor N., Cafolla A. A., Stevens N. T., Daniels S., et al. (2014). Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Appl. Environ. Microbiol. 80 2004–2010. 10.1128/AEM.03480-13 PubMed DOI PMC

Cao Y., Yang P., Lu X., Xiong Z., Ye T., Xiong Q., et al. (2011). Efficacy of atmospheric pressure plasma as an antibacterial agent against Enterococcus faecalis in vitro. Plasma Sci. Technol. 13 93–98. 10.1088/1009-0630/13/1/19 DOI

Castanheira M., Deshpande L. M., Mathai D., Bell J. M., Jones R. N., Mendes R. E. (2011). Early dissemination of NDM-1- and OXA-181-Producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007. Antimicrob. Agents Chemother. 55 1274–1278. 10.1128/AAC.01497-10 PubMed DOI PMC

Chang J.-S., Lawless P. A., Yamamoto T. (1991). Corona discharge processes. IEEE Trans. Plasma Sci. 19 1152–1166. 10.1109/27.125038 DOI

Chen T.-P., Liang J., Su T.-L. (2018). Plasma-activated water: antibacterial activity and artifacts? Environ. Sci. Pollut. Res. 25 26699–26706. 10.1007/s11356-017-9169-0 PubMed DOI

Chen W., Huang J., Du N., Liu X.-D., Wang X.-Q., Lv G.-H., et al. (2012). Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition. J. Appl. Phys. 112:013304. 10.1063/1.4732135 DOI

Choi C. H., Lee E. Y., Lee Y. C., Park T. I., Kim H. J., Hyun S. H., et al. (2005). Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol. 7 1127–1138. 10.1111/j.1462-5822.2005.00538.x PubMed DOI

Choi E. J., Yang H. S., Park H. W., Chun H. H. (2018). Inactivation of Escherichia coli O157:H7 and Staphylococcus aureus in red pepper powder using a combination of radio frequency thermal and indirect dielectric barrier discharge plasma non-thermal treatments. LWT Food Sci. Technol. 93 477–484. 10.1016/j.lwt.2018.03.081 DOI

Clauditz A., Resch A., Wieland K.-P., Peschel A., Götz F. (2006). Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. ASM Infect. Immun. 74 4950–4953. 10.1128/IAI.00204-06 PubMed DOI PMC

Clegg S., Murphy C. N. (2016). Epidemiology and virulence of Klebsiella pneumoniae. Microbiol. Spectr. 4 1–17. 10.1128/microbiolspec.UTI-0005-2012 PubMed DOI

Cong Y., Yang S., Rao X. (2020). Vancomycin resistant Staphylococcus aureus infections: a review of case updating and clinical features. J. Adv. Res. 21 169–176. 10.1016/j.jare.2019.10.005 PubMed DOI PMC

Cotter J. J., Maguire P., Soberon F., Daniels S., O’Gara J. P., Casey E. (2011). Disinfection of meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a remote non-thermal gas plasma. J. Hosp. Infect. 78 204–207. 10.1016/j.jhin.2011.03.019 PubMed DOI

Crank C., O’Driscoll T. (2015). Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist. 217 217–230. 10.2147/IDR.S54125 PubMed DOI PMC

Čtvrtečková L., Pichová A., Scholtz V., Khun J., Julák J. (2019). Non-thermal plasma-induced apoptosis in yeast Saccharomyces cerevisiae. Contrib. Plasma Phys. 59:e201800064. 10.1002/ctpp.201800064 DOI

Czapka T., Maliszewska I., Olesiak-Bańska J. (2018). Influence of atmospheric pressure non-thermal plasma on inactivation of biofilm cells. Plasma Chem. Plasma Process. 38 1181–1197. 10.1007/s11090-018-9925-z DOI

Daeschlein G., Napp M., von Podewils S., Lutze S., Emmert S., Lange A., et al. (2014). In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process. Polym. 11 175–183. 10.1002/ppap.201300070 DOI

Daeschlein G., von Woedtke T., Kindel E., Brandenburg R., Weltmann K.-D., Jünger M. (2010). Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Processes. Polym. 7 224–230. 10.1002/ppap.200900059 DOI

Dantas G., Sommer M. O. A., Oluwasegun R. D., Church G. M. (2008). Bacteria subsisting on antibiotics. Science 320 100–103. 10.1126/science.1155157 PubMed DOI

De Oliveira D. M. P., Forde B. M., Kidd T. J., Harris P. N. A., Schembri M. A., Beatson S. A., et al. (2020). Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33:e00181-19. 10.1128/CMR.00181-19 PubMed DOI PMC

De Silva P. M., Kumar A. (2019). Signal transduction proteins in Acinetobacter baumannii: role in antibiotic resistance, virulence, and potential as drug targets. Front. Microbiol. 10:49. 10.3389/fmicb.2019.00049 PubMed DOI PMC

Dexter C., Murray G. L., Paulsen I. T., Peleg A. Y. (2015). Community-acquired Acinetobacter baumannii: clinical characteristics, epidemiology and pathogenesis. Expert Rev. Anti Infect. Ther. 13 567–573. 10.1586/14787210.2015.1025055 PubMed DOI

Dong X.-Y., Xiu Z.-L., Li S., Hou Y.-M., Zhang D.-J., Ren C.-S. (2010). Dielectric barrier discharge plasma as a novel approach for improving 1,3-propanediol production in Klebsiella pneumoniae. Biotechnol. Lett. 32 1245–1250. 10.1007/s10529-010-0284-y PubMed DOI

Donlan R. M. (2001). Biofilm Formation: a clinically relevant microbiological process. Clin. Infect. Dis. 33 1387–1392. 10.1086/322972 PubMed DOI

Du T., Ma J., Yang P., Xiong Z., Lu X., Cao Y. (2012). Evaluation of antibacterial effects by atmospheric pressure nonequilibrium plasmas against Enterococcus faecalis biofilms in vitro. J. Endod. 38 545–549. 10.1016/j.joen.2011.10.021 PubMed DOI

Du T., Shi Q., Shen Y., Cao Y., Ma J., Lu X., et al. (2013). Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro. J. Endod. 39 1438–1443. 10.1016/j.joen.2013.06.027 PubMed DOI

Effah C. Y., Sun T., Liu S., Wu Y. (2020). Klebsiella pneumoniae: an increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 19:1. 10.1186/s12941-019-0343-8 PubMed DOI PMC

Ehlbeck J., Schnabel U., Polak M., Winter J., Von Woedtke T., Brandenburg R., et al. (2011). Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 44:013002. 10.1088/0022-3727/44/1/013002 DOI

Eichenberger E. M., Thaden J. T. (2019). Epidemiology and mechanisms of resistance of extensively drug resistant Gram-negative bacteria. Antibiotics 8:37. 10.3390/antibiotics8020037 PubMed DOI PMC

El-Sayed W. S., Ouf S. A., Mohamed A.-A. H. (2015). Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA-DGGE fingerprinting. Front. Microbiol. 6:1098. 10.3389/fmicb.2015.01098 PubMed DOI PMC

Ercan U. K., Joshi S. S., Yost A., Gogotsi N., O’Toole S., Paff M., et al. (2014). Inhibition of biofilms by non-thermal plasma treated novel solutions. Adv. Microbiol. 04 1188–1196. 10.4236/aim.2014.416128 DOI

Ercan U. K., Wang H., Ji H., Fridman G., Brooks A. D., Joshi S. G. (2013). Nonequilibrium plasma-activated antimicrobial solutions are broad-spectrum and retain their efficacies for extended period of time. Plasma Process. Polym. 10 544–555. 10.1002/ppap.201200104 DOI

Ermolaeva S. A., Varfolomeev A. F., Chernukha M. Y., Yurov D. S., Vasiliev M. M., Kaminskaya A. A., et al. (2011). Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J. Med. Microbiol. 60 75–83. 10.1099/jmm.0.020263-0 PubMed DOI

Eveillard M., Kempf M., Belmonte O., Pailhoriès H., Joly-Guillou M.-L. (2013). Reservoirs of Acinetobacter baumannii outside the hospital and potential involvement in emerging human community-acquired infections. Int. J. Infect. Dis. 17:e00802-05. 10.1016/j.ijid.2013.03.021 PubMed DOI

Fazeli N., Momtaz H. (2014). Virulence gene profiles of multidrug-resistant Pseudomonas aeruginosa isolated from Iranian hospital infections. Iran. Red Crescent Med. J. 16:e15722. 10.5812/ircmj.15722 PubMed DOI PMC

Ferrell J. R., Shen F., Grey S. F., Woolverton C. J. (2013). Pulse-based non-thermal plasma (NTP) disrupts the structural characteristics of bacterial biofilms. Biofouling 29 585–599. 10.1080/08927014.2013.795554 PubMed DOI

Flynn P. B., Busetti A., Wielogorska E., Chevallier O. P., Elliott C. T., Laverty G., et al. (2016). Non-thermal plasma exposure rapidly attenuates bacterial AHL-dependent quorum sensing and virulence. Sci. Rep. 6:26320. 10.1038/srep26320 PubMed DOI PMC

Flynn P. B., Graham W. G., Gilmore B. F. (2019). Acinetobacter baumannii biofilm biomass mediates tolerance to cold plasma. Lett. Appl. Microbiol. 68 344–349. 10.1111/lam.13122 PubMed DOI PMC

Flynn P. B., Higginbotham S., Alshraiedeh N. H., Gorman S. P., Graham W. G., Gilmore B. F. (2015). Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. Int. J. Antimicrob. Agents 46 101–107. 10.1016/j.ijantimicag.2015.02.026 PubMed DOI

Friedman N. D., Temkin E., Carmeli Y. (2016). The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 22 416–422. 10.1016/j.cmi.2015.12.002 PubMed DOI

Gabriel A. A., Aba R. P. M., Tayamora D. J. L., Colambo J. C. R., Siringan M. A. T., Rosario L. M. D., et al. (2016). Reference organism selection for microwave atmospheric pressure plasma jet treatment of young coconut liquid endosperm. Food Control 69 74–82. 10.1016/j.foodcont.2016.04.034 DOI

Gadri R. B., Roth J. R., Montie T. C., Kelly-Wintenberg K., Tsai P. P.-Y., Helfritch D. J., et al. (2000). Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surf. Coat. Technol. 131 528–541. 10.1016/S0257-8972(00)00803-3 DOI

Gilmore B. F., Flynn P. B., O’Brien S., Hickok N., Freeman T., Bourke P. (2018). Cold plasmas for biofilm control: opportunities and challenges. Trends in Biotechnol. 36 627–638. 10.1016/j.tibtech.2018.03.007 PubMed DOI

Gorbunova N. A. (2019). Low-temperature atmospheric-pressure plasma in microbial decontamination and meat technology. A review. Teor. Prakt. Pererab. Mâsa 4 21–29. 10.21323/2414-438X-2019-4-1-21-29 DOI

Graves D. B. (2012). The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 45:263001. 10.1088/0022-3727/45/26/263001 DOI

Guimin X., Guanjun Z., Xingmin S., Yue M., Ning W., Yuan L. (2009). Bacteria inactivation using DBD plasma jet in atmospheric pressure argon. Plasma Sci. Technol. 11 83–88. 10.1088/1009-0630/11/1/17 DOI

Gupta T. T., Ayan H. (2019). Application of non-thermal plasma on biofilm: a review. Appl. Sci. 9:3548. 10.3390/app9173548 DOI

Gupta T. T., Karki S. B., Matson J. S., Gehling D. J., Ayan H. (2017). Sterilization of biofilm on a titanium surface using a combination of nonthermal plasma and chlorhexidine digluconate. Biomed Res. Int. 2017:6085741. 10.1155/2017/6085741 PubMed DOI PMC

Hammann A., Huebner N.-O., Bender C., Ekkernkamp A., Hartmann B., Hinz P., et al. (2010). Antiseptic efficacy and tolerance of tissue-tolerable plasma compared with two wound antiseptics on artificially bacterially contaminated eyes from commercially slaughtered pigs. Skin Pharmacol. Physiol. 23 328–332. 10.1159/000314724 PubMed DOI

Harding C. M., Tracy E. N., Carruthers M. D., Rather P. N., Actis L. A., Munson R. S. (2013). Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. mBio 4:e00360-13. 10.1128/mBio.00360-13 PubMed DOI PMC

Hasan T., Choi C. H., Oh M. H. (2015). Genes involved in the biosynthesis and transport of acinetobactin in Acinetobacter baumannii. Genomics Inform. 13:2. 10.5808/GI.2015.13.1.2 PubMed DOI PMC

Heller L. C., Edelblute C. M., Mattson A. M., Hao X., Kolb J. F. (2012). Inactivation of bacterial opportunistic skin pathogens by nonthermal DC-operated afterglow atmospheric plasma: antibacterial effects of air plasma. Lett. Appl. Microbiol. 54 126–132. 10.1111/j.1472-765X.2011.03186.x PubMed DOI

Hilty M., Sendi P., Seiffert S. N., Droz S., Perreten V., Hujer A. M., et al. (2013). Characterisation and clinical features of Enterobacter cloacae bloodstream infections occurring at a tertiary care university hospital in Switzerland: is cefepime adequate therapy? Int. J. Antimicrob. Agents 41 236–249. 10.1016/j.ijantimicag.2012.10.022 PubMed DOI PMC

Hoffmann C., Berganza C., Zhang J. (2013). Cold atmospheric plasma: methods of production and application in dentistry and oncology. Med. Gas. Res. 3:21. 10.1186/2045-9912-3-21 PubMed DOI PMC

Hozák P., Scholtz V., Khun J., Mertová D., Vaňková E., Julák J. (2018). Further contribution to the chemistry of plasma-activated water: influence on bacteria in planktonic and biofilm Forms. Plasma Phys. Rep. 44 799–804. 10.1134/S1063780X18090040 DOI

Hübner N.-O., Matthes R., Koban I., Rändler C., Müller G., Bender C., et al. (2010). Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol. Physiol. 23 28–34. 10.1159/000318265 PubMed DOI

Hüfner A., Steffen H., Holtfreter B., Schlüter R., Duske K., Matthes R., et al. (2017). Effects of non-thermal atmospheric pressure plasma and sodium hypochlorite solution on Enterococcus faecalis biofilm: an investigation in extracted teeth. Plasma Process. Polym. 14:1600064. 10.1002/ppap.201600064 DOI

Humud H. R. (2019). Strain specificity in antimicrobial activity of non-thermal plasma. Iraqi J. Phys. 11 110–115. 10.30723/ijp.v11i20.388 DOI

Isbary G., Köritzer J., Mitra A., Li Y.-F., Shimizu T., Schroeder J., et al. (2013). Ex vivo human skin experiments for the evaluation of safety of new cold atmospheric plasma devices. Clin. Plasma Med. 1 36–44. 10.1016/j.cpme.2012.10.001 DOI

Jacobs A. C., Hood I., Boyd K. L., Olson P. D., Morrison J. M., Carson S., et al. (2010). Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect. Immun. 78 1952–1962. 10.1128/IAI.00889-09 PubMed DOI PMC

Jiang C., Schaudinn C., Jaramillo D. E., Webster P., Costerton J. W. (2012). In vitro antimicrobial effect of a cold plasma jet against Enterococcus faecalis biofilms. ISRN Dent. 2012:295736. 10.5402/2012/295736 PubMed DOI PMC

Julák J., Scholtz V., Vaňková E. (2018b). Medically important biofilms and non-thermal plasma. World J. Microbiol. Biotechnol. 34:178. 10.1007/s11274-018-2560-2 PubMed DOI

Julák J., Hujacová A., Scholtz V., Khun J., Holada K. (2018a). Contribution to the chemistry of plasma-activated water. Plasma Phys. Rep. 44 125–136. 10.1134/S1063780X18010075 DOI

Justan I., Cernohorska L., Dvorak Z., Slavicek P. (2014). Plasma discharge and time-dependence of its effect to bacteria. Folia Microbiol. 59 315–320. 10.1007/s12223-014-0301-y PubMed DOI

Kan C. (2014). A Novel Green Treatment for Textiles: Plasma Treatment as a Sustainable Technology. Boca Raton, FL: CRC Press, 10.1201/b17328 DOI

Khatoon Z., McTiernan C. D., Suuronen E. J., Mah T.-F., Alarcon E. I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4:e01067. 10.1016/j.heliyon.2018.e01067 PubMed DOI PMC

Khun J., Scholtz V., Hozák P., Fitl P., Julák J. (2018). Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 27:065002. 10.1088/1361-6595/aabdd0 DOI

Ki S. H., Masur K., Baik K. Y., Choi E. H. (2019). Effects of humidity on room disinfection by dielectric barrier discharge plasma. J. Phys. D Appl. Phys. 52:425204. 10.1088/1361-6463/ab3066 DOI

Klämpfl T. G., Shimizu T., Koch S., Balden M., Gemein S., Li Y.-F., et al. (2014). Decontamination of nosocomial bacteria including Clostridium difficile spores on dry inanimate surface by cold atmospheric plasma. Plasma Process. Polym. 11 974–984. 10.1002/ppap.201400080 DOI

Kolb J. F., Mattson A. M., Edelblute C. M., Hao X., Malik M. A., Heller L. C. (2012). Cold DC-operated air plasma jet for the inactivation of infectious microorganisms. IEEE Trans. Plasma Sci. 40 3007–3026. 10.1109/TPS.2012.2216292 DOI

Kondeti V. S. S. K., Phan C. Q., Wende K., Jablonowski H., Gangal U., Granick J. L., et al. (2018). Long-lived and short-lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Radic. Biol. Med. 124 275–287. 10.1016/j.freeradbiomed.2018.05.083 PubMed DOI

Kramer A., Schwebke I., Kampf G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6:130. 10.1186/1471-2334-6-130 PubMed DOI PMC

Laroussi M., Akan T. (2007). Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process. Polym. 4 777–788. 10.1002/ppap.200700066 DOI

Laurita R., Barbieri D., Gherardi M., Colombo V., Lukes P. (2015). Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin. Plasma Med. 3 53–61. 10.1016/j.cpme.2015.10.001 DOI

Lee M. (2018). Interview with CEO You Bong Lim of Plasmapp. Available online at: https://startup.kaist.ac.kr/interview-ceo-bong-lim-plasmapp/?lang=en (accessed January 1, 2021).

Lee M.-J., Kwon J.-S., Jiang H. B., Choi E. H., Park G., Kim K.-M. (2019). The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure. Sci. Rep. 9:1938. 10.1038/s41598-019-39414-9 PubMed DOI PMC

Lee T., Puligundla P., Mok C. (2015). Inactivation of foodborne pathogens on the surfaces of different packaging materials using low-pressure air plasma. Food Control 51 149–155. 10.1016/j.foodcont.2014.11.021 DOI

Li H., Zhang X., Zhu X., Zheng M., Liu S., Qi X., et al. (2017). Translational plasma stomatology: applications of cold atmospheric plasmas in dentistry and their extension. High Voltage 2 188–199. 10.1049/hve.2017.0066 DOI

Li Y., Sun K., Ye G., Liang Y., Pan H., Wang G., et al. (2015). Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal Enterococcus faecalis biofilm In vitro. J. Endod. 41 1325–1330. 10.1016/j.joen.2014.10.020 PubMed DOI

Liao X., Li J., Suo Y., Ahn J., Liu D., Chen S., et al. (2018b). Effect of preliminary stresses on the resistance of Escherichia coli and Staphylococcus aureus toward non-thermal plasma (NTP) challenge. Food Res. Int. 105 178–183. 10.1016/j.foodres.2017.11.010 PubMed DOI

Liao X., Li J., Muhammad A. I., Suo Y., Ahn J., Liu D., et al. (2018a). Preceding treatment of non-thermal plasma (NTP) assisted the bactericidal effect of ultrasound on Staphylococcus aureus. Food Control 90 241–248. 10.1016/j.foodcont.2018.03.008 DOI

Liao X., Liu D., Xiang Q., Ahn J., Chen S., Ye X., et al. (2017). Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75 83–91. 10.1016/j.foodcont.2016.12.021 DOI

Lis K. A., Kehrenberg C., Boulaaba A., von Köckritz-Blickwede M., Binder S., Li Y., et al. (2018). Inactivation of multidrug-resistant pathogens and Yersinia enterocolitica with cold atmospheric-pressure plasma on stainless-steel surfaces. Int. J. Antimicrob. Agents 52 811–818. 10.1016/j.ijantimicag.2018.08.023 PubMed DOI

Liu D. X., Liu Z. C., Chen C., Yang A. J., Li D., Rong M. Z., et al. (2016). Aqueous reactive species induced by a surface air discharge: heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 6:23737. 10.1038/srep23737 PubMed DOI PMC

Liu T., Zeng Y., Chen J., Wei D., Zeng Q., Fu Y., et al. (2021). Acinetobacter baumannii sterilization using DC corona discharge. IEEE Trans. Plasma Sci. 49 317–325. 10.1109/TPS.2020.3042427 DOI

López M., Calvo T., Prieto M., Múgica-Vidal R., Muro-Fraguas I., Alba-Elías F., et al. (2019). A review on non-thermal atmospheric plasma for food preservation: mode of action, determinants of effectiveness, and applications. Front. Microbiol. 10:622. 10.3389/fmicb.2019.00622 PubMed DOI PMC

Lu Y., Wang L., Ma K., Li G., Zhang C., Zhao H., et al. (2011). Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem. Eng. J. 55 17–22. 10.1016/j.bej.2011.02.020 DOI

Lunov O., Zablotskii V., Churpita O., Jäger A., Polívka L., Syková E., et al. (2016a). The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials 82 71–83. 10.1016/j.biomaterials.2015.12.027 PubMed DOI

Lunov O., Zablotskii V., Churpita O., Jäger A., Polívka L., Syková E., et al. (2016b). Towards the understanding of non-thermal air plasma action: effects on bacteria and fibroblasts. RSC Adv. 6 25286–25292. 10.1039/C6RA02368A DOI

Ma R., Wang G., Tian Y., Wang K., Zhang J., Fang J. (2015). Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 300 643–651. 10.1016/j.jhazmat.2015.07.061 PubMed DOI

Machala Z., Laux C. O., Kruger C. H. (2005). Transverse dc glow discharges in atmospheric pressure air. IEEE Trans. Plasma Sci. 33 320–321. 10.1109/TPS.2005.845387 DOI

Mai-Prochnow A., Clauson M., Hong J., Murphy A. B. (2016). Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 6:38610. 10.1038/srep38610 PubMed DOI PMC

Matthes R., Koban I., Bender C., Masur K., Kindel E., Weltmann K.-D., et al. (2013b). Antimicrobial efficacy of an atmospheric pressure plasma jet against biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis. Plasma Process. Polym. 10 161–166. 10.1002/ppap.201100133 DOI

Matthes R., Bender C., Schlüter R., Koban I., Bussiahn R., Reuter S., et al. (2013a). Antimicrobial efficacy of two surface barrier discharges with air plasma against in vitro biofilms. PLoS One 8:e70462. 10.1371/journal.pone.0070462 PubMed DOI PMC

Matthes R., Hübner N.-O., Bender C., Koban I., Horn S., Bekeschus S., et al. (2014). Efficacy of different carrier gases for barrier discharge plasma generation compared to chlorhexidine on the survival of Pseudomonas aeruginosa embedded in biofilm in vitro. Skin Pharmacol. Physiol. 27 148–157. 10.1159/000353861 PubMed DOI

Metelmann H.-R., von Woedtke T., Weltmann K.-D. eds. (2018). Comprehensive Clinical Plasma Medicine. Cham: Springer International Publishing. 10.1007/978-3-319-67627-2 DOI

Mezzatesta M. L., Gona F., Stefani S. (2012). Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 7 887–902. 10.2217/fmb.12.61 PubMed DOI

Miletić M., Vuković D., Živanović I., Dakić I., Soldatović I., Maletić D., et al. (2014). Inhibition of methicillin resistant Staphylococcus aureus by a plasma needle. Open Phys. 12 160–167. 10.2478/s11534-014-0437-z DOI

Modic M., McLeod N. P., Sutton J. M., Walsh J. L. (2017). Cold atmospheric pressure plasma elimination of clinically important single- and mixed-species biofilms. Int. J. Antimicrob. Agents 49 375–378. 10.1016/j.ijantimicag.2016.11.022 PubMed DOI

Mohammed R. K., Abbas H. N. (2018). Bactericidal effect of needle plasma system on Pseudomonas aeruginosa. Iran J. Sci. Technol. Trans. Sci. 42 1725–1733. 10.1007/s40995-017-0474-8 DOI

Mohd Nasir N., Lee B. K., Yap S. S., Thong K. L., Yap S. L. (2016). Cold plasma inactivation of chronic wound bacteria. Arch. Biochem. Biophys. 605 76–85. 10.1016/j.abb.2016.03.033 PubMed DOI

Monecke S., Coombs G., Shore A. C., Coleman D. C., Akpaka P., Borg M., et al. (2011). A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 6:e17936. 10.1371/journal.pone.0017936 PubMed DOI PMC

Moreau M., Orange N., Feuilloley M. G. J. (2008). Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol. Adv. 26 610–617. 10.1016/j.biotechadv.2008.08.001 PubMed DOI

Morris F. C., Dexter C., Kostoulias X., Uddin M. I., Peleg A. Y. (2019). The mechanisms of disease caused by Acinetobacter baumannii. Front. Microbiol. 10:1601. 10.3389/fmicb.2019.01601 PubMed DOI PMC

Muhammad A. I., Chen W., Liao X., Xiang Q., Liu D., Ye X., et al. (2019). Effects of plasma-activated water and blanching on microbial and physicochemical properties of tiger nuts. Food Bioprocess. Technol. 12 1721–1732. 10.1007/s11947-019-02323-w DOI

Mulcahy L. R., Isabella V. M., Lewis K. (2014). Pseudomonas aeruginosa biofilms in disease. Microb. Ecol. 68 1–12. 10.1007/s00248-013-0297-x PubMed DOI PMC

Navon-Venezia S., Kondratyeva K., Carattoli A. (2017). Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 41 252–275. 10.1093/femsre/fux013 PubMed DOI

Nishime T. M. C., Borges A. C., Koga-Ito C. Y., Machida M., Hein L. R. O., Kostov K. G. (2017). Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf. Coat. Technol. 312 19–24. 10.1016/j.surfcoat.2016.07.076 DOI

O’Connor N., Cahill O., Daniels S., Galvin S., Humphreys H. (2014). Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections? J. Hosp. Infect. 88 59–65. 10.1016/j.jhin.2014.06.015 PubMed DOI

Oehmigen K., Hähnel M., Brandenburg R., Wilke C., Weltmann K.-D., von Woedtke T. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process. Polym. 7 250–257. 10.1002/ppap.200900077 DOI

Paldrychová M., Vaňková E., Kašparová P., Sembolová E., Mat’átková O., Masák J., et al. (2020). Use of non-thermal plasma pre-treatment to enhance antibiotic action against mature Pseudomonas aeruginosa biofilms. World J. Microbiol. Biotechnol. 36:108. 10.1007/s11274-020-02891-6 PubMed DOI

Paldrychová M., Vaňková E., Scholtz V., Julák J., Sembolová E., Matátková O., et al. (2019). Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: difference between non-hospital and clinical isolates. AIP Adv. 9:055117. 10.1063/1.5090451 DOI

Pan J., Sun K., Liang Y., Sun P., Yang X., Wang J., et al. (2013). Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J. Endod. 39 105–110. 10.1016/j.joen.2012.08.017 PubMed DOI

Parkey J., Cross J., Hayes R., Parham C., Staack D., Sharma A. C. (2015). A battery powered, portable, and self-contained non-thermal helium plasma jet device for point-of-injury burn wound treatment. Plasma Process. Polym. 12 1244–1255. 10.1002/ppap.201400245 DOI

Parsonnet J., Hansmann M. A., Delaney M. L., Modern P. A., DuBois A. M., Wieland-Alter W., et al. (2005). Prevalence of toxic shock syndrome toxin 1-producing Staphylococcus aureus and the presence of antibodies to this superantigen in menstruating women. J. Clin. Microbiol. 43 4628–4634. 10.1128/JCM.43.9.4628-4634.2005 PubMed DOI PMC

Partridge S. R., Kwong S. M., Firth N., Jensen S. O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31:e00088-17. 10.1128/CMR.00088-17 PubMed DOI PMC

Patenall B. L., Hathaway H., Sedgwick A. C., Thet N. T., Williams G. T., Young A. E., et al. (2018). Limiting Pseudomonas aeruginosa biofilm formation using cold atmospheric pressure plasma. Plasma Med. 8 269–277. 10.1615/PlasmaMed.2018028325 DOI

Poor A. E., Ercan U. K., Yost A., Brooks A. D., Joshi S. G. (2014). Control of multi-drug-resistant pathogens with non-thermal-plasma-treated alginate wound dressing. Surg. Infect. 15 233–243. 10.1089/sur.2013.050 PubMed DOI

Puač N., Miletić M., Mojović M., Popović-Bijelić A., Vuković D., Milièić B., et al. (2014). Sterilization of bacteria suspensions and identification of radicals deposited during plasma treatment. Open Chem. 13 332–338. 10.1515/chem-2015-0041 DOI

Quiloan M. L. G., Vu J., Carvalho J. (2012). Enterococcus faecalis can be distinguished from Enterococcus faecium via differential susceptibility to antibiotics and growth and fermentation characteristics on mannitol salt agar. Front. Biol. 7:167–177. 10.1007/s11515-012-1183-5 DOI

Ranjan P. R., Shree V., Kumar R., Kala K., Kumar P. (2017). Prevalence and antibiotic sensitivity of Pseudomonas aeruginosa isolated from CSOM in NMCH, Patna, India. Int. J. Curr. Microbiol. App. Sci. 6 2912–2916. 10.20546/ijcmas.2017.606.345 DOI

Ren Y. S., Zhu X. S., Fan D. D., Ma P., Liang L. H. (2012). Mutation induction by DBD plasma in phosphate-solubilizing bacteria Enterobacter Agglomerans. Energy Procedia 16 211–216. 10.1016/j.egypro.2012.01.035 DOI

Reyes J., Aguilar A. C., Caicedo A. (2019). Carbapenem-resistant Klebsiella pneumoniae: microbiology key points for clinical practice. Int. J. Gen. Med. 12 437–446. 10.2147/ijgm.s214305 PubMed DOI PMC

Rice L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis. 197 1079–1081. 10.1086/533452 PubMed DOI

Ruan Z., Guo Y., Gao J., Yang C., Lan Y., Shen J., et al. (2018). Control of multidrug-resistant planktonic Acinetobacter baumannii?: biocidal efficacy study by atmospheric-pressure air plasma. Plasma Sci. Technol. 20:065513. 10.1088/2058-6272/aab302 DOI

Santajit S., Indrawattana N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res. Int. 2016:2475067. 10.1155/2016/2475067 PubMed DOI PMC

Scally L., Gulan M., Weigang L., Cullen P., Milosavljevic V. (2018). Significance of a non-thermal plasma treatment on LDPE biodegradation with Pseudomonas Aeruginosa. Materials 11:1925. 10.3390/ma11101925 PubMed DOI PMC

Schmidt M., Hahn V., Altrock B., Gerling T., Gerber I. C., Weltmann K.-D., et al. (2019). Plasma-activation of larger liquid volumes by an inductively-limited discharge for antimicrobial purposes. Appl. Sci. 9:2150. 10.3390/app9102150 DOI

Scholtz V., Julák J. (2010). The “cometary” discharge, a possible new type of DC electric discharge in air at atmospheric pressure, and its bactericidal properties. J. Phys. Conf. Ser. 223:012005. 10.1088/1742-6596/223/1/012005 DOI

Scholtz V., Julák J., Kříha V. (2010). The microbicidal effect of low-temperature plasma generated by corona discharge: comparison of various microorganisms on an agar surface or in aqueous suspension. Plasma Process. Polym. 7 237–243. 10.1002/ppap.200900072 DOI

Scholtz V., Kvasničková E., Julák J. (2013). Microbial inactivation by electric discharge with metallic grid. Acta Phys. Pol. A 124 62–65. 10.12693/APhysPolA.124.62 DOI

Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. (2015). Nonthermal plasma — A tool for decontamination and disinfection. Biotechnol. Adv. 33 1108–1119. 10.1016/j.biotechadv.2015.01.002 PubMed DOI

Seo S.-H., Han I., Lee H. S., Choi J. J., Choi E. H., Kim K.-N., et al. (2017). Antibacterial activity and effect on gingival cells of microwave-pulsed non-thermal atmospheric pressure plasma in artificial saliva. Sci. Rep. 7:8395. 10.1038/s41598-017-08725-0 PubMed DOI PMC

Shen J., Tian Y., Li Y., Ma R., Zhang Q., Zhang J., et al. (2016). Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep. 6:28505. 10.1038/srep28505 PubMed DOI PMC

Siddiqui A. H., Koirala J. (2018). Methicillin Resistant Staphylococcus aureus. Treasure Island, FL: StatPearls. PubMed

Siemens W. (1857). Ueber die elektrostatische induction und die verzögerung des stroms in flaschendrähten. Ann. Phys. Chem. 178 66–122. 10.1002/andp.18571780905 DOI

Simmons B. P., Larson E. L. (2015). Multiple drug resistant organisms in healthcare: the failure of contact precautions. J. Infect. Prev. 16 178–181. 10.1177/1757177415570104 PubMed DOI PMC

Simoncelli E., Barbieri D., Laurita R., Liguori A., Stancampiano A., Viola L., et al. (2015). Preliminary investigation of the antibacterial efficacy of a handheld Plasma Gun source for endodontic procedures. Clin. Plasma Med. 3 77–86. 10.1016/j.cpme.2015.11.001 DOI

Šimončicová J., Kryštofová S., Medvecká V., Ďurišová K., Kaliňáková B. (2019). Technical applications of plasma treatments: current state and perspectives. Appl. Microbiol. Biotechnol. 103 5117–5129. 10.1007/s00253-019-09877-x PubMed DOI

Smith A. (2004). “Bacterial resistance to antibiotics,” in Hugo and Russell’s Pharmaceutical Microbiology, eds Denyer S. P., Hodges N. A., Gorman S. P. (Oxford: Blackwell Science Ltd; ), 220–232. 10.1002/9780470988329.ch13 DOI

Sohbatzadeh F., Hosseinzadeh Colagar A., Mirzanejhad S., Mahmodi S. (2010). E. coli, P. aeruginosa, and B. cereus bacteria sterilization using afterglow of non-thermal plasma at atmospheric pressure. Appl. Biochem. Biotechnol. 160 1978–1984. 10.1007/s12010-009-8817-3 PubMed DOI

Soler-Arango J., Figoli C., Muraca G., Bosch A., Brelles-Mariño G. (2019). The Pseudomonas aeruginosa biofilm matrix and cells are drastically impacted by gas discharge plasma treatment: a comprehensive model explaining plasma-mediated biofilm eradication. PLoS One 14:e0216817. 10.1371/journal.pone.0216817 PubMed DOI PMC

Stevens D. L., Herr D., Lampiris H., Hunt J. L., Batts D. H., Hafkin B., et al. (2002). Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin. Infect. Dis. 34 1481–1490. 10.1086/340353 PubMed DOI

Svarnas P., Spiliopoulou A., Koutsoukos P., Gazeli K., Anastassiou E. (2019). Acinetobacter baumannii deactivation by means of DBD-based helium plasma jet. Plasma 2 77–90. 10.3390/plasma2020008 DOI

Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D. L., et al. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18 318–327. 10.1016/S1473-3099(17)30753-3 PubMed DOI

The PLOS Medicine Editors (2016). Antimicrobial Resistance: is the world unprepared? PLoS Med. 13:e1002130. 10.1371/journal.pmed.1002130 PubMed DOI PMC

Theinkom F., Singer L., Cieplik F., Cantzler S., Weilemann H., Cantzler M., et al. (2019). Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS One 14:e0223925. 10.1371/journal.pone.0223925 PubMed DOI PMC

Thirumdas R., Kothakota A., Annapure U., Siliveru K., Blundell R., Gatt R., et al. (2018). Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture. Trends Food. Sci. Technol. 77 21–31. 10.1016/j.tifs.2018.05.007 DOI

Tian Y., Ma R., Zhang Q., Feng H., Liang Y., Zhang J., et al. (2015). Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above and beneath the water surface. Plasma Process. Polym. 12 439–449. 10.1002/ppap.201400082 DOI

Tiwari A., Chaturvedi A. (2018). “Antimicrobial coatings—Technology advancement or scientific myth,” in Handbook of Antimicrobial Coatings, ed. Tiwari A. (Amsterdam: Elsevier; ), 1–5. 10.1016/B978-0-12-811982-2.00001-9 DOI

Tong S. Y. C., Davis J. S., Eichenberger E., Holland T. L., Fowler V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28 603–661. 10.1128/CMR.00134-14 PubMed DOI PMC

Touchon M., Cury J., Yoon E.-J., Krizova L., Cerqueira G. C., Murphy C., et al. (2014). The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol. Evol. 6 2866–2882. 10.1093/gbe/evu225 PubMed DOI PMC

Triandafillu K. (2003). Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials 24 1507–1518. 10.1016/S0142-9612(02)00515-X PubMed DOI

Upadhyaya P. M. G., Ravikumar K., Umapathy B. (2009). Review of virulence factors of enterococcus: an emerging nosocomial pathogen. Indian J. Med. Microbiol. 27:301. 10.4103/0255-0857.55437 PubMed DOI

Urayama T., McGovern M. (2018). “Selected settings of clinical plasma treatment,” in Comprehensive Clinical Plasma Medicine, eds Metelmann H.-R., von Woedtke T., Weltmann K.-D. (Cham: Springer International Publishing; ), 213–251. 10.1007/978-3-319-67627-2_13 DOI

Üreyen Kaya B., Kececi A. D., Güldaş H. E., Çetin E. S., Öztürk T., Öksuz L., et al. (2014). Efficacy of endodontic applications of ozone and low-temperature atmospheric pressure plasma on root canals infected with Enterococcus faecalis. Lett. Appl. Microbiol. 58 8–15. 10.1111/lam.12148 PubMed DOI

Usta Y. H., Çukur E., Yıldırım Ç, Ercan U. K. (2019). Design of a portable, battery-powered non-thermal atmospheric plasma device and characterization of its antibacterial efficacies. J. Electrost. 99 1–8. 10.1016/j.elstat.2019.03.002 DOI

Vading M., Nauclér P., Kalin M., Giske C. G. (2018). Invasive infection caused by Klebsiella pneumoniae is a disease affecting patients with high comorbidity and associated with high long-term mortality. PLoS One 13:e0195258. 10.1371/journal.pone.0195258 PubMed DOI PMC

Vandenesch F., Naimi T., Enright M. C., Lina G., Nimmo G. R., Heffernan H., et al. (2003). Community-acquired methicillin-resistant Staphylococcus aureus carrying panton-valentine leukocidin genes: worldwide emergence. Emerg. Infect. Dis. 9 978–984. 10.3201/eid0908.030089 PubMed DOI PMC

Vandervoort K. G., Brelles-Mariño G. (2014). Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system. PLoS One 9:e108512. 10.1371/journal.pone.0108512 PubMed DOI PMC

Vaze N. D., Park S., Brooks A. D., Fridman A., Joshi S. G. (2017). Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria. PLoS One 12:e0171434. 10.1371/journal.pone.0171434 PubMed DOI PMC

World Health Organization (2017). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Geneva: WHO press, 1–7.

Xiang Q., Kang C., Zhao D., Niu L., Liu X., Bai Y. (2019). Influence of organic matters on the inactivation efficacy of plasma-activated water against E. coli O157:H7 and S. aureus. Food Control 99 28–33. 10.1016/j.foodcont.2018.12.019 DOI

Xu Z., Shen J., Zhang Z., Ma J., Ma R., Zhao Y., et al. (2015). Inactivation effects of non-thermal atmospheric-pressure helium plasma jet on Staphylococcus aureus biofilms. Plasma Process. Polym. 12 827–835. 10.1002/ppap.201500006 DOI

Yan S., Wu G. (2019). Can biofilm be reversed through quorum sensing in Pseudomonas aeruginosa? Front. Microbiol. 10:1582. 10.3389/fmicb.2019.01582 PubMed DOI PMC

Yang L., Chen J., Gao J. (2009). Low temperature argon plasma sterilization effect on Pseudomonas aeruginosa and its mechanisms. J. Electrost. 67 646–651. 10.1016/j.elstat.2009.01.060 DOI

Yehia A. (2019). Characteristics of the dielectric barrier corona discharges. AIP Adv. 9:045214. 10.1063/1.5085675 DOI

Yong H. I., Lee S. H., Kim S. Y., Park S., Park J., Choe W., et al. (2019). Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innov. Food Sci. Emerg. Technol. 53 78–84. 10.1016/j.ifset.2017.09.005 DOI

Yoo E.-M., Uhm S.-H., Kwon J.-S., Choi H.-S., Choi E. H., Kim K.-M., et al. (2015). The study on inhibition of planktonic bacterial growth by non-thermal atmospheric pressure plasma jet treated surfaces for dental application. J. Biomed. Nanotechnol. 11 334–341. 10.1166/jbn.2015.2030 PubMed DOI

Yu Y., Tan M., Chen H., Wu Z., Xu L., Li J., et al. (2011). Non-thermal plasma suppresses bacterial colonization on skin wound and promotes wound healing in mice. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 31 390–394. 10.1007/s11596-011-0387-2 PubMed DOI

Zelaya A. J., Stough G., Rad N., Vandervoort K., Brelles-Mariño G. (2010). Pseudomonas aeruginosa biofilm inactivation: decreased cell culturability, adhesiveness to surfaces, and biofilm thickness upon high-pressure nonthermal plasma treatment. IEEE Trans. Plasma Sci. 38 3398–3403. 10.1109/TPS.2010.2082570 PubMed DOI PMC

Zhang Q., Liang Y., Feng H., Ma R., Tian Y., Zhang J., et al. (2013). A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Appl. Phys. Lett. 102:203701. 10.1063/1.4807133 DOI

Zhang Y., Li Y., Li Y., Yu S., Li H., Zhang J. (2017). A novel approach to the pacemaker infection with non-thermal atmospheric pressure plasma. Eur. Phys. J. Spec. Top. 226 2901–2910. 10.1140/epjst/e2016-60331-4 PubMed DOI

Zhen X., Lundborg C. S., Sun X., Hu X., Dong H. (2019). Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob. Resist. Infect. Control 8:137. 10.1186/s13756-019-0590-7 PubMed DOI PMC

Zhou X.-C., Li Y.-L., Liu D.-X., Cao Y.-G., Lu X.-P. (2016). Bactericidal effect of plasma jet with helium flowing through 3% hydrogen peroxide against Enterococcus faecalis. Exp. Ther. Med. 12 3073–3077. 10.3892/etm.2016.3726 PubMed DOI PMC

Ziuzina D., Boehm D., Patil S., Cullen P. J., Bourke P. (2015). Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One 10:e0138209. 10.1371/journal.pone.0138209 PubMed DOI PMC

Ziuzina D., Patil S., Cullen P. J., Boehm D., Bourke P. (2014). Dielectric barrier discharge atmospheric cold plasma for inactivation of Pseudomonas aeruginosa biofilms. Plasma Med. 4 137–152. 10.1615/PlasmaMed.2014011996 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...