A simple non-invasive method to collect soft tick saliva reveals differences in Ornithodoros moubata saliva composition between ticks infected and uninfected with Borrelia duttonii spirochetes

. 2023 ; 13 () : 1112952. [epub] 20230120

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36743301

Introduction: We developed a new simple method to assess the composition of proteinaceous components in the saliva of Ornithodoros moubata, the main vehicle for pathogen transmission and a likely source of bioactive molecules acting at the tick-vertebrate host interface. To collect naturally expectorated saliva from the ticks we employed an artificial membrane feeding technique using a simple, chemically defined diet containing phagostimulants and submitted native saliva samples collected in this way for liquid chromatography-mass spectrometry (LC-MS) analysis. These experiments were conducted with groups of uninfected ticks as well as with O. moubata infected with B. duttonii. The ticks exhibited a fair feeding response to the tested diet with engorgement rates reaching as high as 60-100% of ticks per feeding chamber. The LC-MS analysis identified a total of 17 and 15 proteins in saliva samples from the uninfected and infected O. moubata nymphs, respectively. Importantly, the analysis was sensitive enough to detect up to 9 different proteins in the samples of saliva containing diet upon which as few as 6 nymphal ticks fed during the experiments. Some of the proteins recognized in the analysis are well known for their immunomodulatory activity in a vertebrate host, whereas others are primarily thought of as structural or "housekeeping" proteins and their finding in the naturally expectorated tick saliva confirms that they can be secreted and might serve some functions at the tick-host interface. Most notably, some of the proteins that have long been suspected for their importance in the vector-pathogen interactions of Borrelia spirochetes were detected only in the samples from infected ticks, suggesting that their expression was altered by the persistent colonization of the tick's salivary glands by spirochetes. The simple method described herein is an important addition to the toolbox available to study the vector-host-pathogen interactions in the rapidly feeding soft ticks.

Zobrazit více v PubMed

Bakkes D. K., De Klerk D., Latif A. A., Mans B. J. (2018). Integrative taxonomy of Afrotropical ornithodoros (Ornithodoros) (Acari: Ixodida: Argasidae). Ticks Tick-borne Diseases. 9 (4), 1006–1037. doi: 10.1016/j.ttbdis.2018.03.024 PubMed DOI

Baranda J. A., Pérez-Sánchez R., Oleaga-Pérez P., Encinas-Grandes A. (1997). Antigens of interest for the diagnosis of parasitism in pigs by ornithodoros erraticus and ornithodoros moubata. J. Parasitology. 83 (5), 831–838. doi: 10.2307/3284276 PubMed DOI

Barker R. W., Burris E., Sauer J. R., Hair J. A. (1973). Composition of tick oral secretions obtained by three different collection Methods1. J. Med. Entomology. 10 (2), 198–201. doi: 10.1093/jmedent/10.2.198 PubMed DOI

Ben-Yakir D., Galun R. (1993). Comparative study of two argasid tick species: feeding response to phagostimulants. Israel J. Zoology. 39 (2), 169–176. doi: 10.1080/00212210.1993.10688708 DOI

Bernard J., Hutet E., Paboeuf F., Randriamparany T., Holzmuller P., Lancelot R., et al. . (2016). Effect of o. porcinus tick salivary gland extract on the African swine fever virus infection in domestic pig. PloS One 11 (2), e0147869. doi: 10.1371/journal.pone.0147869 PubMed DOI PMC

Blakemore R., Canale-Parola E. (1976). Arginine catabolism by treponema denticola. J. Bacteriology 128 (2), 616–622. doi: 10.1128/jb.128.2.616-622.1976 PubMed DOI PMC

Blome S., Franzke K., Beer M. (2020). African Swine fever – a review of current knowledge. Virus Res. 287, 198099. doi: 10.1016/j.virusres.2020.198099 PubMed DOI

Bourret T. J., Boyle W. K., Zalud A. K., Valenzuela J. G., Oliveira F., Lopez J. E. (2019). The relapsing fever spirochete Borrelia turicatae persists in the highly oxidative environment of its soft-bodied tick vector. Cell. Microbiol. 21 (2), e12987. doi: 10.1111/cmi.12987 PubMed DOI PMC

Brown D., Upcroft J., Edwards M., Upcroft P. (1998). Anaerobic bacterial metabolism in the ancient eukaryote giardia duodenalis. Int. J. parasitology. 28 (1), 149–164. doi: 10.1016/S0020-7519(97)00172-0 PubMed DOI

Chenais E., Lewerin S. S., Boqvist S., Ståhl K., Alike S., Nokorach B., et al. . (2019). Smallholders’ perceptions on biosecurity and disease control in relation to African swine fever in an endemically infected area in northern Uganda. BMC Veterinary Res. 15 (1), 279. doi: 10.1186/s12917-019-2005-7 PubMed DOI PMC

Cotté V., Sabatier L., Schnell G., Carmi-Leroy A., Rousselle J.-C., Arsène-Ploetze F., et al. . (2014). Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex. J. proteomics. 96, 29–43. doi: 10.1016/j.jprot.2013.10.033 PubMed DOI

Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26 (12), 1367–1372. doi: 10.1038/nbt.1511 PubMed DOI

Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10 (4), 1794–1805. doi: 10.1021/pr101065j PubMed DOI

Cutler S. J. (2002). Relapsing fever borrelia. Mol. Med. microbiology: Elsevier; p, 2093–2113. doi: 10.1016/B978-012677530-3/50317-2 DOI

Cutler S. J. (2006). Possibilities for relapsing fever reemergence. Emerging Infect. diseases. 12 (3), 369–374. doi: 10.3201/eid1203.050899 PubMed DOI PMC

De Oliveira R. P., Hutet E., Duhayon M., Paboeuf F., Le Potier M.-F., Vial L. (2020). No experimental evidence of Co-feeding transmission of African swine fever virus between ornithodoros soft ticks. Pathogens. 9 (3), 168. doi: 10.3390/pathogens9030168 PubMed DOI PMC

Díaz-Martín V., Manzano-Román R., Valero L., Oleaga A., Encinas-Grandes A., Pérez-Sánchez R. (2013). An insight into the proteome of the saliva of the argasid tick Ornithodoros moubata reveals important differences in saliva protein composition between the sexes. J. proteomics. 80, 216–235. doi: 10.1016/j.jprot.2013.01.015 PubMed DOI

Espinosa P. J., Alberdi P., Villar M., Cabezas-Cruz A., de la Fuente J. (2017). Heat shock proteins in vector-pathogen interactions: The anaplasma phagocytophilum model. Heat Shock Proteins Veterinary Med. Sciences: Springer; p, 375–398. doi: 10.1007/978-3-319-73377-7_15 DOI

Galun R., Kindler S. (1965). Glutathione as an inducer of feeding in ticks. Science. 147 (3654), 166–167. doi: 10.1126/science.147.3654.166 PubMed DOI

Galun R., Kindler S. (1968). Chemical basis of feeding in the tick ornithodoros tholozani. J. Insect Physiol. 14 (10), 1409–1421. doi: 10.1016/0022-1910(68)90175-3 DOI

Hokama Y., Lane R. S., Howarth J. A. (1987). Maintenance of adult and nymphal Ornithodoros coriaceus (Acari: Argasidae) by artificial feeding through a parafilm membrane. J. Med. Entomology. 24 (3), 319–323. doi: 10.1093/jmedent/24.3.319 DOI

Jonckheere W., Dermauw W., Zhurov V., Wybouw N., Van den Bulcke J., Villarroel C. A., et al. . (2016). The salivary protein repertoire of the polyphagous spider mite Tetranychus urticae: A quest for effectors. Mol. Cell. Proteomics. 15 (12), 3594–3613. doi: 10.1074/mcp.M116.058081 PubMed DOI PMC

Kalume D. E., Okulate M., Zhong J., Reddy R., Suresh S., Deshpande N., et al. . (2005). A proteomic analysis of salivary glands of female anopheles gambiae mosquito. Proteomics. 5 (14), 3765–3777. doi: 10.1002/pmic.200401210 PubMed DOI

Kang L., Shi H., Liu X., Zhang C., Yao Q., Wang Y., et al. . (2011). Arginine kinase is highly expressed in a resistant strain of silkworm (Bombyx mori, lepidoptera): Implication of its role in resistance to bombyx mori nucleopolyhedrovirus. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 158 (3), 230–234. doi: 10.1016/j.cbpb.2010.12.001 PubMed DOI

Kim H. J., Filatov S., Lopez J. E., Pérez De León A. A., Teel P. D. (2017). Blood feeding of ornithodoros turicata larvae using an artificial membrane system. Med. Veterinary Entomology. 31 (2), 230–233. doi: 10.1111/mve.12223 PubMed DOI PMC

Kim T. K., Tirloni L., Bencosme-Cuevas E., Kim T. H., Diedrich J. K., Yates J. R., et al. . (2021). Borrelia burgdorferi infection modifies protein content in saliva of Ixodes scapularis nymphs. BMC Genomics 22 (1), 152. doi: 10.1186/s12864-021-07429-0 PubMed DOI PMC

Kim D., Urban J., Boyle D. L., Park Y. (2016). Multiple functions of Na/K-ATPase in dopamine-induced salivation of the blacklegged tick, ixodes scapularis. Sci. Rep. 6 (1), 21047. doi: 10.1038/srep21047 PubMed DOI PMC

Kröber T., Guerin P. M. (2007). In vitro feeding assays for hard ticks. Trends parasitology. 23 (9), 445–449. doi: 10.1016/j.pt.2007.07.010 PubMed DOI

Lescot M., Audic S., Robert C., Nguyen T. T., Blanc G., Cutler S. J., et al. . (2008). The genome of borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne borrelia duttonii. PloS Genet. 4 (9), e1000185. doi: 10.1371/journal.pgen.1000185 PubMed DOI PMC

Lin Y.-H., Romo J. A., Smith T. C., 2nd, Reyes A. N., Karna S. L. R., Miller C. L., et al. . (2017). Spermine and spermidine alter gene expression and antigenic profile of borrelia burgdorferi. Infection immunity. 85 (3), e00684–e00616. doi: 10.1128/IAI.00684-16 PubMed DOI PMC

Mans B. J. (2016). Glandular matrices and secretions: blood-feeding arthropods. Extracellular composite matrices arthropods: Springer; p, 625–688. doi: 10.1007/978-3-319-40740-1_17 DOI

Mans B. J. (2019). Chemical equilibrium at the tick–host feeding Interface:A critical examination of biological relevance in hematophagous behavior. Front. Physiol. 10 (530). doi: 10.3389/fphys.2019.00530 PubMed DOI PMC

Mans B. J. (2020). Quantitative visions of reality at the tick-host interface: Biochemistry, genomics, proteomics, and transcriptomics as measures of complete inventories of the tick sialoverse. Front. Cell. infection Microbiol. 10, 574405. doi: 10.3389/fcimb.2020.574405 PubMed DOI PMC

Mans B. J., Featherston J., Kvas M., Pillay K.-A., de Klerk D. G., Pienaar R., et al. . (2019). Argasid and ixodid systematics: Implications for soft tick evolution and systematics, with a new argasid species list. Ticks tick-borne diseases. 10 (1), 219–240. doi: 10.1016/j.ttbdis.2018.09.010 PubMed DOI

Miller B. R., Loomis R., Dejean A., Hoogstraal H. (1985). Experimental studies on the replication and dissemination of qalyub virus (Bunyaviridae: Nairovirus) in the putative tick vector, ornithodoros (Pavlovskyella) erraticus. Am. J. Trop. Med. Hygiene 34 (1), 180–187. doi: 10.4269/ajtmh.1985.34.180 PubMed DOI

Narasimhan S., Sukumaran B., Bozdogan U., Thomas V., Liang X., DePonte K., et al. . (2007). A tick antioxidant facilitates the Lyme disease agent's successful migration from the mammalian host to the arthropod vector. Cell Host Microbe 2 (1), 7–18. doi: 10.1016/j.chom.2007.06.001 PubMed DOI PMC

Nuttall P. A. (2019). Wonders of tick saliva. Ticks tick-borne diseases. 10 (2), 470–481. doi: 10.1016/j.ttbdis.2018.11.005 PubMed DOI

Oleaga A., Carnero-Moran A., Valero M. L., Pérez-Sánchez R. (2021. b). Proteomics informed by transcriptomics for a qualitative and quantitative analysis of the sialoproteome of ornithodoros moubata adult ticks. Parasites Vectors. 14, 396. doi: 10.1186/s13071-021-04892-2 PubMed DOI PMC

Oleaga A., Soriano B., Llorens C., Pérez-Sánchez R. (2021. a). Sialotranscriptomics of the argasid tick Ornithodoros moubata along the trophogonic cycle. PloS Negl. Trop. Diseases. 15 (2), e0009105. doi: 10.1371/journal.pntd.0009105 PubMed DOI PMC

Oliveira C. J. F., Sá-Nunes A., Francischetti I. M. B., Carregaro V., Anatriello E., Silva J. S., et al. . (2011). Deconstructing tick saliva: non-protein molecules with potent immunomodulatory properties. J. Biol. Chem. 286 (13), 10960–10969. doi: 10.1074/jbc.M110.205047 PubMed DOI PMC

Pereira de Oliveira R., Hutet E., Paboeuf F., Duhayon M., Boinas F., Perez de Leon A., et al. . (2019). Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and palearctic species, O. erraticus O. verrucosus Afr. swine fever Virus strains circulating Eurasia. PloS One 14 (11), e0225657. doi: 10.1371/journal.pone.0225657 PubMed DOI PMC

Rappsilber J., Mann M., Ishihama Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2 (8), 1896–1906. doi: 10.1038/nprot.2007.261 PubMed DOI

Ribeiro J. M. C., Mans B. J. (2020). TickSialoFam (TSFam): A database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front. Cell. Infection Microbiol. 10 (374). doi: 10.3389/fcimb.2020.00374 PubMed DOI PMC

Richards C. L., Raffel S. J., Bontemps-Gallo S., Dulebohn D. P., Herbert T. C., Gherardini F. C. (2022). The arginine deaminase system plays distinct roles in borrelia burgdorferi and borrelia hermsii. PloS Pathogens. 18 (3), e1010370. doi: 10.1371/journal.ppat.1010370 PubMed DOI PMC

Rohoušová I., Volfová V., Nová S., Volf P. (2012). Individual variability of salivary gland proteins in three Phlebotomus species. Acta tropica. 122 (1), 80–86. doi: 10.1016/j.actatropica.2011.12.004 PubMed DOI

Schwan T. G. (2021). Vector specificity of the relapsing fever spirochete Borrelia hermsii (Spirochaetales: Borreliaceae) for the tick Ornithodoros hermsi (Acari: Argasidae) involves persistent infection of the salivary glands. J. Med. Entomology. 58(4), 1926–1930. doi: 10.1093/jme/tjab060 PubMed DOI PMC

Schwan T. G., Piesman J. (2002). Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerging Infect. diseases. 8 (2), 115. doi: 10.3201/eid0802.010198 PubMed DOI PMC

Sri-In C., Weng S.-C., Shiao S.-H., Tu W.-C. (2020). A simplified method for blood feeding, oral infection, and saliva collection of the dengue vector mosquitoes. PloS One 15 (5), e0233618. doi: 10.1371/journal.pone.0233618 PubMed DOI PMC

Tabb D. L., Vega-Montoto L., Rudnick P. A., Variyath A. M., Ham A.-J. L., Bunk D. M., et al. . (2010). Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. J. Proteome Res. 9 (2), 761–776. doi: 10.1021/pr9006365 PubMed DOI PMC

Tyanova S., Cox J. (2018). Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Cancer Syst. biology: Springer; p, 133–148. doi: 10.1007/978-1-4939-7493-1_7 PubMed DOI

van Bel A. J. E., Will T. (2016). Functional evaluation of proteins in watery and gel saliva of aphids. Front. Plant Sci. 7, 1840. doi: 10.3389/fpls.2016.01840 PubMed DOI PMC

Villar M., Ayllón N., Alberdi P., Moreno A., Moreno M., Tobes R., et al. . (2015). Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol. Cell. Proteomics MCP. 14 (12), 3154–3172. doi: 10.1074/mcp.M115.051938 PubMed DOI PMC

Villar M., López V., Ayllón N., Cabezas-Cruz A., López J. A., Vázquez J., et al. . (2016). The intracellular bacterium Anaplasma phagocytophilum selectively manipulates the levels of vertebrate host proteins in the tick vector ixodes scapularis. Parasites vectors. 9 (1), 1–17. doi: 10.1186/s13071-016-1747-3 PubMed DOI PMC

Wang H., Kaufman W., Cui W., Nuttall P. (2001). Molecular individuality and adaptation of the tick Rhipicephalus appendiculatus in changed feeding environments. Med. veterinary entomology. 15 (4), 403–412. doi: 10.1046/j.0269-283x.2001.00328.x PubMed DOI

Whitman L., Aitken T. H. G. (1960). Potentiality of Ornithodoros moubata Murray (Acarina, argasidae) as a reservoir-vector of West Nile virus. Ann. Trop. Med. Parasitology. 54 (2), 192–204. doi: 10.1080/00034983.1960.11685975 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...