Development and validation of systems for genetic manipulation of the Old World tick-borne relapsing fever spirochete, Borrelia duttonii
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P20 GM103625
NIGMS NIH HHS - United States
P30 GM145393
NIGMS NIH HHS - United States
R03 AI151432
NIAID NIH HHS - United States
PubMed
39038047
PubMed Central
PMC11293673
DOI
10.1371/journal.pntd.0012348
PII: PNTD-D-24-00756
Knihovny.cz E-zdroje
- MeSH
- Borrelia * genetika klasifikace MeSH
- lidé MeSH
- myši MeSH
- návratná horečka * mikrobiologie MeSH
- testy genetické komplementace MeSH
- zelené fluorescenční proteiny genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- zelené fluorescenční proteiny MeSH
Relapsing fever (RF), a vector-borne disease caused by Borrelia spp., is characterized by recurring febrile episodes due to repeated bouts of bacteremia. RF spirochetes can be geographically and phylogenetically divided into two distinct groups; Old World RF Borrelia (found in Africa, Asia, and Europe) and New World RF Borrelia (found in the Americas). While RF is a rarely reported disease in the Americas, RF is prevalent in endemic parts of Africa. Despite phylogenetic differences between Old World and New World RF Borrelia and higher incidence of disease associated with Old World RF spirochete infection, genetic manipulation has only been described in New World RF bacteria. Herein, we report the generation of genetic tools for use in the Old World RF spirochete, Borrelia duttonii. We describe methods for transformation and establish shuttle vector- and integration-based approaches for genetic complementation, creating green fluorescent protein (gfp)-expressing B. duttonii strains as a proof of principle. Allelic exchange mutagenesis was also used to inactivate a homolog of the Borrelia burgdorferi p66 gene, which encodes an important virulence factor, in B. duttonii and demonstrate that this mutant was attenuated in a murine model of RF. Finally, the B. duttonii p66 mutant was complemented using shuttle vector- and cis integration-based approaches. As expected, complemented p66 mutant strains were fully infectious, confirming that P66 is required for optimal mammalian infection. The genetic tools and techniques reported herein represent an important advancement in the study of RF Borrelia that allows for future characterization of virulence determinants and colonization factors important for the enzootic cycle of Old World RF spirochetes.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre CAS České Budějovice Czech Republic
Zobrazit více v PubMed
Cutler SJ. Relapsing fever—a forgotten disease revealed. J Appl Microbiol. 2010;108(4):1115–22. Epub 2009/11/06. doi: 10.1111/j.1365-2672.2009.04598.x . PubMed DOI
Steere AC, Strle F, Wormser GP, Hu LDT, Branda JA, Hovius JR, et al.. Lyme borreliosis. Nat Rev Dis Primers. 2016;2. ARTN 16090 doi: 10.1038/nrdp.2016.90 WOS:000397870500001. PubMed DOI PMC
Adeolu M, Gupta RS. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Anton Leeuw Int J G. 2014;105(6):1049–72. doi: 10.1007/s10482-014-0164-x WOS:000336026200006. PubMed DOI
Dworkin MS, Anderson DE Jr., Schwan TG, Shoemaker PC, Banerjee SN, Kassen BO, et al.. Tick-borne relapsing fever in the northwestern United States and southwestern Canada. Clin Infect Dis. 1998;26(1):122–31. Epub 1998/02/10. doi: 10.1086/516273 . PubMed DOI
Dworkin MS, Schwan TG, Anderson DE Jr., Borchardt SM. Tick-borne relapsing fever. Infect Dis Clin North Am. 2008;22(3):449–68, viii. Epub 2008/08/30. doi: 10.1016/j.idc.2008.03.006 . PubMed DOI PMC
Stoenner HG, Dodd T, Larsen C. Antigenic variation of Borrelia hermsii. J Exp Med. 1982;156(5):1297–311. Epub 1982/11/01. doi: 10.1084/jem.156.5.1297 ; PubMed Central PMCID: PMC2186838. PubMed DOI PMC
Cadavid D, Thomas DD, Crawley R, Barbour AG. Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J Exp Med. 1994;179(2):631–42. Epub 1994/02/01. doi: 10.1084/jem.179.2.631 ; PubMed Central PMCID: PMC2191368. PubMed DOI PMC
Pennington PM, Allred CD, West CS, Alvarez R, Barbour AG. Arthritis severity and spirochete burden are determined by serotype in the Borrelia turicatae-mouse model of Lyme disease. Infect Immun. 1997;65(1):285–92. Epub 1997/01/01. doi: 10.1128/iai.65.1.285-292.1997 ; PubMed Central PMCID: PMC174589. PubMed DOI PMC
Jongen VHWM, vanRoosmalen J, Tiems J, VanHolten J, Wetsteyn JCFM. Tick-borne relapsing fever and pregnancy outcome in rural Tanzania. Acta Obstet Gynecol Scand. 1997;76(9):834–8. doi: 10.3109/00016349709024361 WOS:A1997YA56800005. PubMed DOI
Murphy FK, Parker S, Stokich D, Murray M, Fogelman V, Todd R, et al.. Acute respiratory distress syndrome in persons with tickborne relapsing fever—Three states, 2004–2005 (Reprinted from MMWR, vol 56, pg 1073–1076, 2007). Jama-J Am Med Assoc. 2007;298(23):2734–6. WOS:000251716000010.
Wang GQ, Ojaimi C, Wu HY, Saksenberg V, Iyer R, Liveris D, et al.. Disease severity in a murine model of Lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. Journal of Infectious Diseases. 2002;186(6):782–91. doi: 10.1086/343043 WOS:000177694800008. PubMed DOI PMC
Davis GE. Ornithodoros turicata: the possible vector of relapsing fever in southwestern Kansas. Pub Health Rep. 1936;51:1719.
Davis GE. Ornithodoros hermsi and relapsing fever in Oregon. Pub Health Rep. 1941;56:2010–2.
Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP. Lyme disease-a tick-borne spirochetosis? Science. 1982;216(4552):1317–9. Epub 1982/06/18. doi: 10.1126/science.7043737 . PubMed DOI
Barbour AG. Borreliaceae. In: Whitman WB, Rainey F, Kämpfer P, Truijillo J, Chun J, DeVos P, et al.., editors. Bergey’s Manual of Systematics of Archaea and Bacteria: John Wiley & Sons, Inc.; 2018.
Barbour AG, Schwan TG. Borrelia. In: Whitman WB, Rainey F, Kämpfer P, Truijillo J, Chun J, DeVos P, et al.., editors. Bergey’s Manual of Systematics of Archaea and Bacteria: John Wiley & Sons, Inc.; 2019.
Fukunaga M, Takahashi Y, Tsuruta Y, Matsushita O, Ralph D, Mcclelland M, et al.. Genetic and Phenotypic Analysis of Borrelia-Miyamotoi Sp-Nov, Isolated from the Ixodid Tick Ixodes-Persulcatus, the Vector for Lyme-Disease in Japan. Int J Syst Bacteriol. 1995;45(4):804–10. doi: 10.1099/00207713-45-4-804 WOS:A1995RZ21600027. PubMed DOI
Drecktrah D, Samuels DS. Genetic manipulation of Borrelia spp. Curr Top Microbiol Immunol. 2018;415:113–40. Epub 2017/09/18. doi: 10.1007/82_2017_51 ; PubMed Central PMCID: PMC5857249. PubMed DOI PMC
Rosa PA, Jewett MW. Genetic Manipulation of Borrelia. Curr Issues Mol Biol. 2021;42:307–32. doi: 10.21775/cimb.042.307 WOS:000600423600008. PubMed DOI PMC
Talagrand-Reboul E, Boyer PH, Bergstrom S, Vial L, Boulanger N. Relapsing Fevers: Neglected Tick-Borne Diseases. Front Cell Infect Microbiol. 2018;8:98. Epub 2018/04/20. doi: 10.3389/fcimb.2018.00098 ; PubMed Central PMCID: PMC5893795. PubMed DOI PMC
Goubau PF. Relapsing fevers. A review. Ann Soc Belg Med Trop. 1984;64(4):335–64. Epub 1984/01/01. . PubMed
Rawlings JA. An overview of tick-borne relapsing fever with emphasis on outbreaks in Texas. Tex Med. 1995;91(5):56–9. Epub 1995/05/01. . PubMed
Lopez JE, Krishnavajhala A, Garcia MN, Bermudez S. Tick-Borne Relapsing Fever Spirochetes in the Americas (vol 3, 16, 2016). Veterinary Sciences. 2019;6(4). ARTN 98 doi: 10.3390/vetsci6040098 WOS:000565914100024. PubMed DOI PMC
Assous MV, Wilamowski A. Relapsing fever borreliosis in Eurasia—forgotten, but certainly not gone! Clin Microbiol Infect. 2009;15(5):407–14. Epub 2009/06/06. doi: 10.1111/j.1469-0691.2009.02767.x . PubMed DOI
Vial L, Diatta G, Tall A, Ba el H, Bouganali H, Durand P, et al.. Incidence of tick-borne relapsing fever in west Africa: longitudinal study. Lancet. 2006;368(9529):37–43. Epub 2006/07/04. doi: 10.1016/S0140-6736(06)68968-X . PubMed DOI
Cutler SJ, Abdissa A, Trape JF. New concepts for the old challenge of African relapsing fever borreliosis. Clin Microbiol Infect. 2009;15(5):400–6. Epub 2009/06/06. doi: 10.1111/j.1469-0691.2009.02819.x . PubMed DOI
Dupont HT, La Scola B, Williams R, Raoult D. A focus of tick-borne relapsing fever in southern Zaire. Clin Infect Dis. 1997;25(1):139–44. Epub 1997/07/01. doi: 10.1086/514496 . PubMed DOI
Schwan TG, Anderson JM, Lopez JE, Fischer RJ, Raffel SJ, McCoy BN, et al.. Endemic Foci of the Tick-Borne Relapsing Fever Spirochete Borrelia crocidurae in Mali, West Africa, and the Potential for Human Infection. PLoS Negl Trop Dis. 2012;6(11):e1924. Epub 2012/12/05. doi: 10.1371/journal.pntd.0001924 ; PubMed Central PMCID: PMC3510061. PubMed DOI PMC
Naddaf SR, Ghazinezhad B, Sedaghat MM, Asl HM, Cutler SJ. Tickborne Relapsing Fever in Southern Iran, 2011–2013. Emerg Infect Dis. 2015;21(6):1078–80. doi: 10.3201/eid2106.141715 WOS:000355386900032. PubMed DOI PMC
Kahlig P, Paris DH, Neumayr A. Louse-borne relapsing fever-A systematic review and analysis of the literature: Part 1-Epidemiology and diagnostic aspects. PLoS Negl Trop Dis. 2021;15(3):e0008564. Epub 20210311. doi: 10.1371/journal.pntd.0008564 ; PubMed Central PMCID: PMC7951878. PubMed DOI PMC
Toledo A, Anda P, Escudero R, Larsson C, Bergstrom S, Benach JL. Phylogenetic analysis of a virulent Borrelia species isolated from patients with relapsing fever. J Clin Microbiol. 2010;48(7):2484–9. Epub 2010/05/14. doi: 10.1128/JCM.00541-10 ; PubMed Central PMCID: PMC2897527. PubMed DOI PMC
Cutler SJ. Relapsing Fever Borreliae A Global Review. Clin Lab Med. 2015;35(4):847-+. doi: 10.1016/j.cll.2015.07.001 WOS:000366882100009. PubMed DOI
Davis GE. The Relapsing Fevers—Tick-Spirochete Specificity Studies. Exp Parasitol. 1952;1(4):406–10. doi: 10.1016/0014-4894(52)90030-1 WOS:A1952YB47400009. DOI
Elbir H, Abi-Rached L, Pontarotti P, Yoosuf N, Drancourt M. African relapsing Fever borreliae genomospecies revealed by comparative genomics. Front Public Health. 2014;2:43. Epub 2014/09/18. doi: 10.3389/fpubh.2014.00043 ; PubMed Central PMCID: PMC4157404. PubMed DOI PMC
Brahim H, Perrier-Gros-Claude JD, Postic D, Baranton G, Jambou R. Identifying relapsing fever Borrelia, Senegal. Emerg Infect Dis. 2005;11(3):474–5. doi: 10.3201/eid1103.040506 WOS:000227421400023. PubMed DOI PMC
Ndiaye EHI, Diouf FS, Ndiaye M, Bassene H, Raoult D, Sokhna C, et al.. Tick-borne relapsing fever Borreliosis, a major public health problem overlooked in Senegal. PLoS Negl Trop Dis. 2021;15(4):e0009184. Epub 20210422. doi: 10.1371/journal.pntd.0009184 ; PubMed Central PMCID: PMC8096072. PubMed DOI PMC
Parola P, Diatta G, Socolovschi C, Mediannikov O, Tall A, Bassene H, et al.. Tick-borne relapsing fever borreliosis, rural senegal. Emerg Infect Dis. 2011;17(5):883–5. Epub 2011/05/03. doi: 10.3201/eid1705.100573 ; PubMed Central PMCID: PMC3321757. PubMed DOI PMC
Nordstrand A, Bunikis I, Larsson C, Tsogbe K, Schwan TG, Nilsson M, et al.. Tickborne relapsing fever diagnosis obscured by malaria, Togo. Emerg Infect Dis. 2007;13(1):117–23. Epub 2007/03/21. doi: 10.3201/eid1301.060670 ; PubMed Central PMCID: PMC2725822. PubMed DOI PMC
Falkow S. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis. 1988;10 Suppl 2:S274-6. Epub 1988/07/01. doi: 10.1093/cid/10.supplement_2.s274 . PubMed DOI
Falkow S. Molecular Koch’s postulates applied to bacterial pathogenicity—a personal recollection 15 years later. Nat Rev Microbiol. 2004;2(1):67–72. Epub 2004/03/24. doi: 10.1038/nrmicro799 . PubMed DOI
Battisti JM, Raffel SJ, Schwan TG. A system for site-specific genetic manipulation of the relapsing fever spirochete Borrelia hermsii. Methods Mol Biol. 2008;431:69–84. Epub 2008/02/22. doi: 10.1007/978-1-60327-032-8_6 . PubMed DOI
Fine LM, Earnhart CG, Marconi RT. Genetic transformation of the relapsing fever spirochete Borrelia hermsii: stable integration and expression of green fluorescent protein from linear plasmid 200. J Bacteriol. 2011;193(13):3241–5. Epub 2011/05/10. doi: 10.1128/JB.05037-11 ; PubMed Central PMCID: PMC3133285. PubMed DOI PMC
Fine LM, Miller DP, Mallory KL, Tegels BK, Earnhart CG, Marconi RT. The Borrelia hermsii factor H binding protein FhbA is not required for infectivity in mice or for resistance to human complement in vitro. Infect Immun. 2014;82(8):3324–32. doi: 10.1128/IAI.01892-14 ; PubMed Central PMCID: PMC4136202. PubMed DOI PMC
Jackson-Litteken CD, Curtis MW, Armstrong BA, Krishnavajhala A, Filatov S, Blevins JS, et al.. Characterization of the arthropod associated lipoprotein (Alp) in the tick-mammalian transmission cycle of Borrelia turicatae. Ticks Tick Borne Dis. 2022;13(6). ARTN 102052 doi: 10.1016/j.ttbdis.2022.102052 WOS:000883685000002. PubMed DOI PMC
Jackson-Litteken CD, Ratliff CT, Kneubehl AR, Siletti C, Pack L, Lan R, et al.. The Diadenylate Cyclase CdaA Is Critical for Borrelia turicatae Virulence and Physiology. Infect Immun. 2021;89(6). ARTN e00787-20 doi: 10.1128/IAI.00787-20 WOS:000652408200012. PubMed DOI PMC
Jackson-Litteken CD, Zalud AK, Ratliff CT, Latham JI, Bourret TJ, Lopez JE, et al.. Assessing the contribution of an HtrA family serine protease during Borrelia turicatae mammalian infection. Front Cell Infect Microbiol. 2019;9:290. Epub 2019/08/29. doi: 10.3389/fcimb.2019.00290 ; PubMed Central PMCID: PMC6700303. PubMed DOI PMC
Lopez JE, Wilder HK, Hargrove R, Brooks CP, Peterson KE, Beare PA, et al.. Development of genetic system to inactivate a Borrelia turicatae surface protein selectively produced within the salivary glands of the arthropod vector. PLoS Negl Trop Dis. 2013;7(10):e2514. Epub 2013/11/10. doi: 10.1371/journal.pntd.0002514 ; PubMed Central PMCID: PMC3814808. PubMed DOI PMC
Raffel SJ, Battisti JM, Fischer RJ, Schwan TG. Inactivation of genes for antigenic variation in the relapsing fever spirochete Borrelia hermsii reduces infectivity in mice and transmission by ticks. PLoS Pathog. 2014;10(4):e1004056. doi: 10.1371/journal.ppat.1004056 ; PubMed Central PMCID: PMC3974855. PubMed DOI PMC
James AE, Rogovskyy AS, Crowley MA, Bankhead T. Characterization of a DNA adenine methyltransferase gene of Borrelia hermsii and its dispensability for murine infection and persistence. PLoS One. 2016;11(5):e0155798. Epub 2016/05/20. doi: 10.1371/journal.pone.0155798 ; PubMed Central PMCID: PMC4873019. PubMed DOI PMC
Krishnavajhala A, Wilder HK, Boyle WK, Damania A, Thornton JA, Perez de Leon AA, et al.. Imaging of Borrelia turicatae producing the green fluorescent protein reveals persistent colonization of the Ornithodoros turicata midgut and salivary glands from nymphal acquisition through transmission. Appl Environ Microbiol. 2017;83(5):e02503–16. Epub 2016/12/18. doi: 10.1128/AEM.02503-16 ; PubMed Central PMCID: PMC5311397. PubMed DOI PMC
Ristow LC, Bonde M, Lin YP, Sato H, Curtis M, Wesley E, et al.. Integrin binding by Borrelia burgdorferi P66 facilitates dissemination but is not required for infectivity. Cell Microbiol. 2015;17(7):1021–36. Epub 2015/01/22. doi: 10.1111/cmi.12418 ; PubMed Central PMCID: PMC4478124. PubMed DOI PMC
Ristow LC, Miller HE, Padmore LJ, Chettri R, Salzman N, Caimano MJ, et al.. The beta 3-integrin ligand of Borrelia burgdorferi is critical for infection of mice but not ticks. Mol Microbiol. 2012;85(6):1105–18. doi: 10.1111/j.1365-2958.2012.08160.x WOS:000308584400008. PubMed DOI PMC
Thein M, Bunikis I, Denker K, Larsson C, Cutler S, Drancourt M, et al.. Oms38 Is the first identified pore-forming protein in the outer membrane of relapsing fever spirochetes. J Bacteriol. 2008; 190(21):7053–42. doi: 10.1128/jb.00818-08 Epub 2008/08/29. ; PubMed Central PMCID: PMC2580676. PubMed DOI PMC
Barbour AG. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med. 1984;57(4):521–5. Epub 1984/07/01. ; PubMed Central PMCID: PMC2589996. PubMed PMC
Revel AT, Blevins JS, Almazan C, Neil L, Kocan KM, de la Fuente J, et al.. bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proc Natl Acad Sci U S A. 2005;102(19):6972–7. Epub 2005/04/30. doi: 10.1073/pnas.0502565102 ; PubMed Central PMCID: PMC1100799. PubMed DOI PMC
Rojas CM, Ham JH, Deng WL, Doyle JJ, Collmer A. HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A. 2002;99(20):13142–7. doi: 10.1073/pnas.202358699 WOS:000178391700116. PubMed DOI PMC
Miller WG, Lindow SE. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene. 1997;191(2):149–53. doi: 10.1016/s0378-1119(97)00051-6 WOS:A1997XG69400004. PubMed DOI
Lescot M, Audic S, Robert C, Nguyen TT, Blanc G, Cutler SJ, et al.. The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii. PLoS Genet. 2008;4(9):e1000185. Epub 2008/09/13. doi: 10.1371/journal.pgen.1000185 ; PubMed Central PMCID: PMC2525819. PubMed DOI PMC
Stewart PE, Thalken R, Bono JL, Rosa P. Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol Microbiol. 2001;39(3):714–21. Epub 2001/02/13. doi: 10.1046/j.1365-2958.2001.02256.x . PubMed DOI
Sartakova ML, Dobrikova EY, Terekhova DA, Devis R, Bugrysheva JV, Morozova OV, et al.. Novel antibiotic-resistance markers in pGK12-derived vectors for Borrelia burgdorferi. Gene. 2003;303:131–7. Epub 2003/02/01. doi: 10.1016/s0378-1119(02)01146-0 . PubMed DOI
Drecktrah D, Lybecker M, Popitsch N, Rescheneder P, Hall LS, Samuels DS. The Borrelia burgdorferi RelA/SpoT Homolog and Stringent Response Regulate Survival in the Tick Vector and Global Gene Expression during Starvation. PLoS Pathog. 2015;11(9). ARTN e1005160 doi: 10.1371/journal.ppat.1005160 WOS:000362269800032. PubMed DOI PMC
Jorgenson MA, Bryant JC. A genetic screen to identify factors affected by undecaprenyl phosphate recycling uncovers novel connections to morphogenesis inEscherichia coli. Mol Microbiol. 2021;115(2):191–207. doi: 10.1111/mmi.14609 WOS:000578613600001. PubMed DOI PMC
Boyle WK, Wilder HK, Lawrence AM, Lopez JE. Transmission dynamics of Borrelia turicatae from the arthropod vector. PLoS Negl Trop Dis. 2014;8(4):e2767. doi: 10.1371/journal.pntd.0002767 ; PubMed Central PMCID: PMC3974661. PubMed DOI PMC
McCoy BN, Raffel SJ, Lopez JE, Schwan TG. Bloodmeal size and spirochete acquisition of Ornithodoros hermsi (Acari: Argasidae) during feeding. J Med Entomol. 2010;47(6):1164–72. Epub 2010/12/24. doi: 10.1603/me10175 ; PubMed Central PMCID: PMC3071302. PubMed DOI PMC
Guyard C, Raffel SJ, Schrumpf ME, Dahlstrom E, Sturdevant D, Ricklefs SM, et al.. Periplasmic flagellar export apparatus protein, FliH, is involved in post-transcriptional regulation of FlaB, motility and virulence of the relapsing fever spirochete Borrelia hermsii. PLoS One. 2013;8(8):e72550. Epub 2013/09/07. doi: 10.1371/journal.pone.0072550 ; PubMed Central PMCID: PMC3757020. PubMed DOI PMC
Blevins JS, Hagman KE, Norgard MV. Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. BMC Microbiol. 2008;8:82. Epub 2008/05/30. doi: 10.1186/1471-2180-8-82 ; PubMed Central PMCID: PMC2430964. PubMed DOI PMC
Stewart PE, Byram R, Grimm D, Tilly K, Rosa PA. The plasmids of Borrelia burgdorferi: essential genetic elements of a pathogen. Plasmid. 2005;53(1):1–13. doi: 10.1016/j.plasmid.2004.10.006 WOS:000226314500001. PubMed DOI
Hinnebusch J, Barbour AG. Linear-Plasmid and Circular-Plasmid Copy Numbers in Borrelia-Burgdorferi. J Bacteriol. 1992;174(16):5251–7. doi: 10.1128/Jb.174.16.5251–5257.1992 WOS:A1992JH97900011. PubMed DOI PMC
Kitten T, Barbour AG. The Relapsing Fever Agent Borrelia-Hermsii Has Multiple Copies of Its Chromosome and Linear Plasmids. Genetics. 1992;132(2):311–24. WOS:A1992JQ14600004. doi: 10.1093/genetics/132.2.311 PubMed DOI PMC
Casjens S, Huang WM. Linear Chromosomal Physical and Genetic-Map of Borrelia-Burgdorferi, the Lyme-Disease Agent. Mol Microbiol. 1993;8(5):967–80. doi: 10.1111/j.1365-2958.1993.tb01641.x WOS:A1993LF03600017. PubMed DOI
Grimm D, Eggers CH, Caimano MJ, Tilly K, Stewart PE, Elias AF, et al.. Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect Immun. 2004;72(10):5938–46. doi: 10.1128/IAI.72.10.5938-5946.2004 WOS:000224134000048. PubMed DOI PMC
Jewett MW, Lawrence K, Bestor AC, Tilly K, Grimm D, Shaw P, et al.. The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi. Mol Microbiol. 2007;64(5):1358–74. doi: 10.1111/j.1365-2958.2007.05746.x WOS:000247175600016. PubMed DOI PMC
Dulebohn DP, Bestor A, Rego ROM, Stewart PE, Rosa PA. Borrelia burgdorferi Linear Plasmid 38 Is Dispensable for Completion of the Mouse-Tick Infectious Cycle. Infect Immun. 2011;79(9):3510–7. doi: 10.1128/IAI.05014-11 WOS:000293891000004. PubMed DOI PMC
Samuels DS, Drecktrah D, Hall LS. Genetic Transformation and Complementation. Methods Mol Biol. 2018;1690:183–200. doi: 10.1007/978-1-4939-7383-5_15 ; PubMed Central PMCID: PMC5806694. PubMed DOI PMC
Hyde JA, Weening EH, Skare JT. Genetic transformation of Borrelia burgdorferi. Curr Protoc Microbiol. 2011;Chapter 12:Unit 12C 4. Epub 2011/03/15. doi: 10.1002/9780471729259.mc12c04s20 ; PubMed Central PMCID: PMC3561735. PubMed DOI PMC
Li X, Pal U, Ramamoorthi N, Liu X, Desrosiers DC, Eggers CH, et al.. The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol. 2007;63(3):694–710. Epub 2006/12/22. doi: 10.1111/j.1365-2958.2006.05550.x . PubMed DOI
Skare JT, Mirzabekov TA, Shang ES, Blanco DR, ErdjumentBromage H, Bunikis J, et al.. The Oms66 (p66) protein is a Borrelia burgdorferi porin. Infect Immun. 1997;65(9):3654–61. doi: 10.1128/Iai.65.9.3654–3661.1997 WOS:A1997XT42000022. PubMed DOI PMC
Defoe G, Coburn J. Delineation of Borrelia burgdorferi p66 sequences required for integrin alpha(IIb)beta(3) recognition. Infect Immun. 2001;69(5):3455–9. doi: 10.1128/IAI.69.5.3455-3459.2001 WOS:000168158400088. PubMed DOI PMC
Coburn J, Cugini C. Targeted mutation of the outer membrane protein P66 disrupts attachment of the Lyme disease agent, Borrelia burgdorferi, to integrin alpha(v)beta(3). Proc Natl Acad Sci U S A. 2003;100(12):7301–6. doi: 10.1073/pnas.1131117100 WOS:000183493500073. PubMed DOI PMC
Coburn J, Chege W, Magoun L, Bodary SC, Leong JM. Characterization of a candidate Borrelia burgdorferi beta(3)-chain integrin ligand identified using a phage display library. Mol Microbiol. 1999;34(5):926–40. doi: 10.1046/j.1365-2958.1999.01654.x WOS:000084433900006. PubMed DOI
Antonara S, Chafel RM, LaFrance M, Coburn J. Borrelia burgdorferi adhesins identified using in vivo phage display. Mol Microbiol. 2007;66(1):262–76. doi: 10.1111/j.1365-2958.2007.05924.x WOS:000249927100019. PubMed DOI PMC
Pinne M, Thein M, Denker K, Benz R, Coburn J, Bergstrom S. Elimination of channel-forming activity by insertional inactivation of the p66 gene in Borrelia burgdorferi. FEMS Microbiol Lett. 2007;266(2):241–9. doi: 10.1111/j.1574-6968.2006.00529.x WOS:000242785200017. PubMed DOI
Barcena-Uribarri I, Thein M, Sacher A, Bunikis I, Bonde M, Bergstrom S, et al.. P66 porins are present in both Lyme disease and relapsing fever spirochetes: A comparison of the biophysical properties of P66 porins from six Borrelia species. Bba-Biomembranes. 2010;1798(6):1197–203. doi: 10.1016/j.bbamem.2010.02.011 WOS:000278321200021. PubMed DOI
Caine JA, Coburn J. A Short-Term Borrelia burgdorferi Infection Model Identifies Tissue Tropisms and Bloodstream Survival Conferred by Adhesion Proteins. Infect Immun. 2015;83(8):3184–94. doi: 10.1128/IAI.00349-15 WOS:000357618300018. PubMed DOI PMC
Kumar D, Ristow LC, Shi MQ, Mukherjee P, Caine JA, Lee WY, et al.. Intravital Imaging of Vascular Transmigration by the Lyme Spirochete: Requirement for the Integrin Binding Residues of the B. burgdorferi P66 Protein. PLoS Pathog. 2015;11(12). ARTN e1005333 doi: 10.1371/journal.ppat.1005333 WOS:000368332800045. PubMed DOI PMC
Frank KL, Bundle SF, Kresge ME, Eggers CH, Samuels DS. aadA confers streptomycin resistance in Borrelia burgdorferi. J Bacteriol. 2003;185(22):6723–7. doi: 10.1128/JB.185.22.6723-6727.2003 ; PubMed Central PMCID: PMC262111. PubMed DOI PMC
Schwan TG, Battisti JM, Porcella SF, Raffel SJ, Schrumpf ME, Fischer ER, et al.. Glycerol-3-phosphate acquisition in spirochetes: distribution and biological activity of glycerophosphodiester phosphodiesterase (GlpQ) among Borrelia species. J Bacteriol. 2003;185(4):1346–56. Epub 2003/02/04. doi: 10.1128/JB.185.4.1346-1356.2003 ; PubMed Central PMCID: PMC142843. PubMed DOI PMC
Barbour A, Guo BP. Pathogenesis of relapsing fever. In: Radolf J, Samuels DS, editors. Borrelia: molecular biology, host interaction, and pathogenesis. Norfolk: Caister Academic Press; 2010. p. 333–58.
Eggers CH, Caimano MJ, Clawson ML, Miller WG, Samuels DS, Radolf JD. Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the lyme disease spirochaete. Mol Microbiol. 2002;43(2):281–95. doi: 10.1046/j.1365-2958.2002.02758.x . PubMed DOI
Tilly K, Checroun C, Rosa PA. Requirements for Borrelia burgdorferi plasmid maintenance. Plasmid. 2012;68(1):1–12. Epub 20120124. doi: 10.1016/j.plasmid.2012.01.009 ; PubMed Central PMCID: PMC3367046. PubMed DOI PMC
Moriarty TJ, Norman MU, Colarusso P, Bankhead T, Kubes P, Chaconas G. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog. 2008;4(6):e1000090. Epub 20080620. doi: 10.1371/journal.ppat.1000090 ; PubMed Central PMCID: PMC2408724. PubMed DOI PMC
Miller JC, von Lackum K, Woodman ME, Stevenson B. Detection of Borrelia burgdorferi gene expression during mammalian infection using transcriptional fusions that produce green fluorescent protein. Microb Pathog. 2006;41(1):43–7. Epub 20060524. doi: 10.1016/j.micpath.2006.04.004 . PubMed DOI
Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, et al.. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest. 2009;119(12):3652–65. Epub 20091116. doi: 10.1172/JCI39401 ; PubMed Central PMCID: PMC2786795. PubMed DOI PMC
Filatov S, Dycka F, Sterba J, Rego ROM. A simple non-invasive method to collect soft tick saliva reveals differences in Ornithodoros moubata saliva composition between ticks infected and uninfected with Borrelia duttonii spirochetes. Front Cell Infect Microbiol. 2023;13:1112952. Epub 20230120. doi: 10.3389/fcimb.2023.1112952 ; PubMed Central PMCID: PMC9895398. PubMed DOI PMC
Bono JL, Elias AF, Kupko JJ, 3rd, Stevenson B, Tilly K, Rosa P. Efficient targeted mutagenesis in Borrelia burgdorferi. J Bacteriol. 2000;182(9):2445–52. doi: 10.1128/JB.182.9.2445–2452.2000 ; PubMed Central PMCID: PMC111306. PubMed DOI PMC
Elias AF, Bono JL, Kupko JJ, 3rd, Stewart PE, Krum JG, Rosa PA. New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. J Mol Microbiol Biotechnol. 2003;6(1):29–40. doi: 10.1159/000073406 . PubMed DOI
Sartakova M, Dobrikova E, Cabello FC. Development of an extrachromosomal cloning vector system for use in Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2000;97(9):4850–5. doi: 10.1073/pnas.080068797 ; PubMed Central PMCID: PMC18321. PubMed DOI PMC
Takacs CN, Kloos ZA, Scott M, Rosa PA, Jacobs-Wagner C. Fluorescent Proteins, Promoters, and Selectable Markers for Applications in the Lyme Disease Spirochete Borrelia burgdorferi. Appl Environ Microbiol. 2018;84(24). Epub 20181130. doi: 10.1128/AEM.01824-18 ; PubMed Central PMCID: PMC6275353. PubMed DOI PMC
Blevins JS, Revel AT, Smith AH, Bachlani GN, Norgard MV. Adaptation of a luciferase gene reporter and lac expression system to Borrelia burgdorferi. Appl Environ Microbiol. 2007;73(5):1501–13. Epub 2007/01/16. doi: 10.1128/AEM.02454-06 ; PubMed Central PMCID: PMC1828772. PubMed DOI PMC
Sohaskey CD, Arnold C, Barbour AG. Analysis of promoters in Borrelia burgdorferi by use of a transiently expressed reporter gene. J Bacteriol. 1997;179(21):6837–42. doi: 10.1128/jb.179.21.6837-6842.1997 ; PubMed Central PMCID: PMC179616. PubMed DOI PMC
Alverson J, Bundle SF, Sohaskey CD, Lybecker MC, Samuels DS. Transcriptional regulation of the ospAB and ospC promoters from Borrelia burgdorferi. Mol Microbiol. 2003;48(6):1665–77. doi: 10.1046/j.1365-2958.2003.03537.x . PubMed DOI
Hayes BM, Jewett MW, Rosa PA. lacZ reporter system for use in Borrelia burgdorferi. Appl Environ Microbiol. 2010;76(22):7407–12. Epub 20100917. doi: 10.1128/AEM.01389-10 ; PubMed Central PMCID: PMC2976203. PubMed DOI PMC
Carroll JA, Stewart PE, Rosa P, Elias AF, Garon CF. An enhanced GFP reporter system to monitor gene expression in Borrelia burgdorferi. Microbiology (Reading). 2003;149(Pt 7):1819–28. doi: 10.1099/mic.0.26165–0 . PubMed DOI
Schulze RJ, Zuckert WR. Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol. 2006;59(5):1473–84. doi: 10.1111/j.1365-2958.2006.05039.x . PubMed DOI
Lee WY, Moriarty TJ, Wong CH, Zhou H, Strieter RM, van Rooijen N, et al.. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol. 2010;11(4):295–302. Epub 20100314. doi: 10.1038/ni.1855 ; PubMed Central PMCID: PMC5114121. PubMed DOI PMC
Lawrenz MB, Kawabata H, Purser JE, Norris SJ. Decreased electroporation efficiency in Borrelia burgdorferi containing linear plasmids lp25 and lp56: impact on transformation of infectious B. burgdorferi. Infect Immun. 2002;70(9):4798–804. doi: 10.1128/IAI.70.9.4798-4804.2002 ; PubMed Central PMCID: PMC128261. PubMed DOI PMC
Kawabata H, Norris SJ, Watanabe H. BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect Immun. 2004;72(12):7147–54. doi: 10.1128/IAI.72.12.7147-7154.2004 ; PubMed Central PMCID: PMC529111. PubMed DOI PMC
Chen Q, Fischer JR, Benoit VM, Dufour NP, Youderian P, Leong JM. In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J Bacteriol. 2008;190(24):7885–91. Epub 20081010. doi: 10.1128/JB.00324-08 ; PubMed Central PMCID: PMC2593207. PubMed DOI PMC
Rego RO, Bestor A, Rosa PA. Defining the plasmid-borne restriction-modification systems of the Lyme disease spirochete Borrelia burgdorferi. J Bacteriol. 2011;193(5):1161–71. Epub 20101230. doi: 10.1128/JB.01176-10 ; PubMed Central PMCID: PMC3067601. PubMed DOI PMC
Chung CT, Niemela SL, Miller RH. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. 1989;86(7):2172–5. doi: 10.1073/pnas.86.7.2172 ; PubMed Central PMCID: PMC286873. PubMed DOI PMC
Elias AF, Stewart PE, Grimm D, Caimano MJ, Eggers CH, Tilly K, et al.. Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun. 2002;70(4):2139–50. doi: 10.1128/IAI.70.4.2139-2150.2002 ; PubMed Central PMCID: PMC127854. PubMed DOI PMC