Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25410636
PubMed Central
PMC4238021
DOI
10.1038/srep07129
PII: srep07129
Knihovny.cz E-resources
- MeSH
- Acetylcysteine pharmacology MeSH
- Annexin A5 MeSH
- Antioxidants pharmacology MeSH
- Cell Death drug effects MeSH
- 3T3 Cells MeSH
- Helium chemistry MeSH
- Rats MeSH
- Lysosomes drug effects MeSH
- Membrane Potential, Mitochondrial drug effects MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Neuroglia cytology drug effects metabolism MeSH
- Ozone chemistry MeSH
- Plasma Gases pharmacology MeSH
- Reactive Nitrogen Species agonists antagonists & inhibitors metabolism MeSH
- Reactive Oxygen Species agonists antagonists & inhibitors metabolism MeSH
- Signal Transduction MeSH
- Cell Survival drug effects MeSH
- Air MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acetylcysteine MeSH
- Annexin A5 MeSH
- Antioxidants MeSH
- Helium MeSH
- Ozone MeSH
- Plasma Gases MeSH
- Reactive Nitrogen Species MeSH
- Reactive Oxygen Species MeSH
Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications.
Institute of Experimental Medicine AS CR Prague Czech Republic
Institute of Macromolecular Chemistry AS CR Prague Czech Republic
See more in PubMed
Yousfi M., Merbahi N., Pathak A. & Eichwald O. Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine. Fundam. Clin. Pharmacol. 28, 123–135 (2014). PubMed
De Geyter N. & Morent R. Nonthermal plasma sterilization of living and nonliving surfaces. Annu. Rev. Biomed. Eng. 14, 255–274 (2012). PubMed
Fridman G. et al. Applied plasma medicine. Plasma Process. Polym. 5, 503–533 (2008).
Levy S. B. & Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004). PubMed
Andersson D. I. & Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010). PubMed
Ermolaeva S. A. et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J. Med. Microbiol. 60, 75–83 (2011). PubMed
Daeschlein G. et al. In Vitro Susceptibility of Multidrug Resistant Skin and Wound Pathogens Against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma (DBD). Plasma Process. Polym. 11, 175–183 (2014).
Fridman A., Chirokov A. & Gutsol A. Non-thermal atmospheric pressure discharges. J. Phys. D Appl. Phys. 38, R1–R24 (2005).
Tian W. & Kushner M. J. Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. J. Phys. D Appl. Phys. 47, 165201 (2014).
Lee D. H. et al. Suppression of scar formation in a murine burn wound model by the application of non-thermal plasma. Appl. Phys. Lett. 99, 203701 (2011).
Isbary G. et al. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of an open retrospective randomized controlled study in vivo. Clin. Plasma Med. 1, 25–30 (2013).
Rupf S. et al. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J. Med. Microbiol. 59, 206–212 (2010). PubMed
Gweon B. et al. Suppression of angiogenesis by atmospheric pressure plasma in human aortic endothelial cells. Appl. Phys. Lett. 104, 133701 (2014).
Kalghatgi S. et al. Effects of non-thermal plasma on mammalian cells. PLoS One 6, e16270 (2011). PubMed PMC
Ahn H. J. et al. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS One 6, e28154 (2011). PubMed PMC
Ahn H. J. et al. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma. PLoS One 9, e86173 (2014). PubMed PMC
Mittler R. et al. ROS signaling: the new wave? Trends. Plant Sci. 16, 300–309 (2011). PubMed
Finkel T. Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15 (2011). PubMed PMC
Kalghatgi S., Friedman G., Fridman A. & Clyne A. M. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann. Biomed. Eng. 38, 748–757 (2010). PubMed
Gweon B. et al. Plasma effects on subcellular structures. Appl. Phys. Lett. 96, 101501 (2010).
Kosmider B., Loader J. E., Murphy R. C. & Mason R. J. Apoptosis induced by ozone and oxysterols in human alveolar epithelial cells. Free Radic. Biol. Med. 48, 1513–1524 (2010). PubMed PMC
Klestadt D., Laval-Gilly P. & Falla J. Ozone-mediated cytotoxicity after short-term exposure and its relation to the production of cellular metabolites (NO, H2O2). Cell Biol. Toxicol. 18, 259–269 (2002). PubMed
Baier M., Kandlbinder A., Golldack D. & Dietz K. J. Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ. 28, 1012–1020 (2005).
Kim G. J., Kim W., Kim K. T. & Lee J. K. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma. Appl. Phys. Lett. 96, 021502 (2010).
Churpita O., Dejneka A., Zablotskii V., Kubinová Š. & E. S. Atmospheric plasma source for biomedical applications. Patent number, 25959 (2013).
Kim K. et al. Simple Atmospheric-Pressure Nonthermal Plasma-Jet System for Poly(dimethylsiloxane) Bonding Process. Jpn. J. Appl. Phys. 51, 06FL15 (2012).
Zimmermann J. L. et al. Test for bacterial resistance build-up against plasma treatment. New J. Phys. 14, 073037 (2012).
Park C. H. et al. Wound healing with nonthermal microplasma jets generated in arrays of hourglass microcavity devices. J. Phys. D Appl. Phys. 47, 435402 (2014).
Daeschlein G. et al. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process. Polym. 7, 224–230 (2010).
Matthes R. et al. Antimicrobial efficacy of two surface barrier discharges with air plasma against in vitro biofilms. PLoS One 8, e70462 (2013). PubMed PMC
Kang S. U. et al. Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death Dis. 5, e1056 (2014). PubMed PMC
Panngom K. et al. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death Dis. 4, e642 (2013). PubMed PMC
Gabrielson E. W., Yu X. Y. & Spannhake E. W. Comparison of the toxic effects of hydrogen-peroxide and ozone on cultured human bronchial epithelial-cells. Environ. Health Perspect. 102, 972–974 (1994). PubMed PMC
Kuonen R. et al. Effects of Lipophilic Extract of Viscum album L. and Oleanolic Acid on Migratory Activity of NIH/3T3 Fibroblasts and on HaCat Keratinocytes. Evid. Based Complement. Alternat. Med. 2013, 718105 (2013). PubMed PMC
Barth R. F. & Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J. Neurooncol. 94, 299–312 (2009). PubMed PMC
Cheng X. Q. et al. The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One 9, e98652 (2014). PubMed PMC
Sawai H. & Domae N. Discrimination between primary necrosis and apoptosis by necrostatin-1 in Annexin V-positive/propidium iodide-negative cells. Biochem. Biophys. Res. Commun. 411, 569–573 (2011). PubMed
Riccardi C. & Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1, 1458–1461 (2006). PubMed
Temkin V. & Karin M. From death receptor to reactive oxygen species and c-Jun N-terminal protein kinase: the receptor-interacting protein 1 odyssey. Immunol. Rev. 220, 8–21 (2007). PubMed
Kroemer G. & Reed J. C. Mitochondrial control of cell death. Nat. Med. 6, 513–519 (2000). PubMed
Zhao M., Antunes F., Eaton J. W. & Brunk U. T. Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur. J. Biochem. 270, 3778–3786 (2003). PubMed
Windelborn J. A. & Lipton P. Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J. Neurochem. 106, 56–69 (2008). PubMed PMC
Erdal H. et al. Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc. Natl. Acad. Sci. U. S. A. 102, 192–197 (2005). PubMed PMC
Lin M. T. & Beal M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006). PubMed
Smiley S. T. et al. Intracellular Heterogeneity in Mitochondrial-Membrane Potentials Revealed by a J-Aggregate-Forming Lipophilic Cation Jc-1. Proc. Natl. Acad. Sci. U. S. A. 88, 3671–3675 (1991). PubMed PMC
Halasi M. et al. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem. J. 454, 201–208 (2013). PubMed PMC
Gillissen A. & Nowak D. Characterization of N-acetylcysteine and ambroxol in anti-oxidant therapy. Respir. Med. 92, 609–623 (1998). PubMed
Lunov O. et al. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 31, 5063–5071 (2010). PubMed
Lebeer S., Vanderleyden J. & De Keersmaecker S. C. J. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat. Rev. Microbiol. 8, 171–184 (2010). PubMed
Silhavy T. J., Kahne D. & Walker S. The Bacterial Cell Envelope. Csh. Perspect. Biol. 2, a000414 (2010). PubMed PMC
Winterbourn C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008). PubMed
Boya P. Lysosomal Function and Dysfunction: Mechanism and Disease. Antioxid. Redox Sign. 17, 766–774 (2012). PubMed
Trachootham D., Alexandre J. & Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009). PubMed
Kim K. et al. Cellular membrane collapse by atmospheric-pressure plasma jet. Appl. Phys. Lett. 104, 013701 (2014).
Zhou J. et al. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 23, 508–523 (2013). PubMed PMC
Bjornsti M. A. & Houghton P. J. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer. 4, 335–348 (2004). PubMed
Zoncu R., Efeyan A. & Sabatini D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Bio. 12, 21–35 (2011). PubMed PMC
Kang M. A., So E. Y., Simons A. L., Spitz D. R. & Ouchi T. DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway. Cell Death Dis. 3, e249 (2012). PubMed PMC
Ziegler J. F., Ziegler M. D. & Biersack J. P. SRIM - The stopping and range of ions in matter (2010). Nucl. Instrum. Meth. B 268, 1818–1823 (2010).
Butterbaugh J. W., Baston L. D. & Sawin H. H. Measurement and Analysis of Radio-Frequency Glow-Discharge Electrical-Impedance and Network Power Loss. J. Vac. Sci. Technol. A 8, 916–923 (1990).
Portable and affordable cold air plasma source with optimized bactericidal effect
Chemically different non-thermal plasmas target distinct cell death pathways
Non-thermal air plasma promotes the healing of acute skin wounds in rats