Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation

. 2018 Mar 01 ; 9 (3) : 1283-1300. [epub] 20180221

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29541521

Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses.

Zobrazit více v PubMed

Anderson R. R., “Lasers for dermatology and skin biology,” J. Invest. Dermatol. 133(E1), E21–E23 (2013).10.1038/skinbio.2013.181 PubMed DOI

Shirasu N., Nam S. O., Kuroki M., “Tumor-targeted photodynamic therapy,” Anticancer Res. 33(7), 2823–2831 (2013). PubMed

Chung H., Dai T., Sharma S. K., Huang Y. Y., Carroll J. D., Hamblin M. R., “The nuts and bolts of low-level laser (light) therapy,” Ann. Biomed. Eng. 40(2), 516–533 (2012).10.1007/s10439-011-0454-7 PubMed DOI PMC

Stern R. S., “Psoralen and ultraviolet a light therapy for psoriasis,” N. Engl. J. Med. 357(7), 682–690 (2007).10.1056/NEJMct072317 PubMed DOI

Soong H. K., Malta J. B., “Femtosecond lasers in ophthalmology,” Am. J. Ophthalmol. 147(2), 189–197 (2009).10.1016/j.ajo.2008.08.026 PubMed DOI

Chow R. T., Johnson M. I., Lopes-Martins R. A., Bjordal J. M., “Efficacy of low-level laser therapy in the management of neck pain: A systematic review and meta-analysis of randomised placebo or active-treatment controlled trials,” Lancet 374(9705), 1897–1908 (2009).10.1016/S0140-6736(09)61522-1 PubMed DOI

Yang D., Yi W., Wang E., Wang M., “Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro,” Sci. Rep. 6(1), 37370 (2016).10.1038/srep37370 PubMed DOI PMC

Ong W. K., Chen H. F., Tsai C. T., Fu Y. J., Wong Y. S., Yen D. J., Chang T. H., Huang H. D., Lee O. K., Chien S., Ho J. H., “The activation of directional stem cell motility by green light-emitting diode irradiation,” Biomaterials 34(8), 1911–1920 (2013).10.1016/j.biomaterials.2012.11.065 PubMed DOI

Wu S., Xing D., Gao X., Chen W. R., “High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species,” J. Cell. Physiol. 218(3), 603–611 (2009).10.1002/jcp.21636 PubMed DOI

Khan I., Tang E., Arany P., “Molecular pathway of near-infrared laser phototoxicity involves atf-4 orchestrated er stress,” Sci. Rep. 5(1), 10581 (2015).10.1038/srep10581 PubMed DOI PMC

Whelan H. T., Buchmann E. V., Dhokalia A., Kane M. P., Whelan N. T., Wong-Riley M. T., Eells J. T., Gould L. J., Hammamieh R., Das R., Jett M., “Effect of nasa light-emitting diode irradiation on molecular changes for wound healing in diabetic mice,” J. Clin. Laser Med. Surg. 21(2), 67–74 (2003).10.1089/104454703765035484 PubMed DOI

Arany P. R., Cho A., Hunt T. D., Sidhu G., Shin K., Hahm E., Huang G. X., Weaver J., Chen A. C., Padwa B. L., Hamblin M. R., Barcellos-Hoff M. H., Kulkarni A. B., J Mooney D., “Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration,” Sci. Transl. Med. 6(238), 238ra69 (2014).10.1126/scitranslmed.3008234 PubMed DOI PMC

Eells J. T., Henry M. M., Summerfelt P., Wong-Riley M. T., Buchmann E. V., Kane M., Whelan N. T., Whelan H. T., “Therapeutic photobiomodulation for methanol-induced retinal toxicity,” Proc. Natl. Acad. Sci. U.S.A. 100(6), 3439–3444 (2003).10.1073/pnas.0534746100 PubMed DOI PMC

Brosseau L., Robinson V., Wells G., Debie R., Gam A., Harman K., Morin M., Shea B., Tugwell P., “Low level laser therapy (classes i, ii and iii) for treating rheumatoid arthritis,” Cochrane Database Syst. Rev. 4, CD002049 (2005). PubMed PMC

Huang Z., Ma J., Chen J., Shen B., Pei F., Kraus V. B., “The effectiveness of low-level laser therapy for nonspecific chronic low back pain: A systematic review and meta-analysis,” Arthritis Res. Ther. 17(1), 360 (2015).10.1186/s13075-015-0882-0 PubMed DOI PMC

Yousefi-Nooraie R., Schonstein E., Heidari K., Rashidian A., Pennick V., Akbari-Kamrani M., Irani S., Shakiba B., Mortaz Hejri S. A., Mortaz Hejri S. O., Jonaidi A., “Low level laser therapy for nonspecific low-back pain,” Cochrane Database Syst. Rev. 2, CD005107 (2008). PubMed PMC

Huang Y. Y., Chen A. C., Carroll J. D., Hamblin M. R., “Biphasic dose response in low level light therapy,” Dose Response 7(4), 358–383 (2009).10.2203/dose-response.09-027.Hamblin PubMed DOI PMC

Huang Y. Y., Sharma S. K., Carroll J., Hamblin M. R., “Biphasic dose response in low level light therapy - an update,” Dose Response 9(4), 602–618 (2011).10.2203/dose-response.11-009.Hamblin PubMed DOI PMC

Karu T., “Photobiology of low-power laser effects,” Health Phys. 56(5), 691–704 (1989).10.1097/00004032-198905000-00015 PubMed DOI

Wu S., Xing D., Wang F., Chen T., Chen W. R., “Mechanistic study of apoptosis induced by high-fluence low-power laser irradiation using fluorescence imaging techniques,” J. Biomed. Opt. 12(6), 064015 (2007).10.1117/1.2804923 PubMed DOI

Vacca R. A., Moro L., Petragallo V. A., Greco M., Fontana F., Passarella S., “The irradiation of hepatocytes with he-ne laser causes an increase of cytosolic free calcium concentration and an increase of cell membrane potential, correlated with it, both increases taking place in an oscillatory manner,” Biochem. Mol. Biol. Int. 43(5), 1005–1014 (1997). PubMed

Greco M., Vacca R. A., Moro L., Perlino E., Petragallo V. A., Marra E., Passarella S., “Helium-neon laser irradiation of hepatocytes can trigger increase of the mitochondrial membrane potential and can stimulate c-fos expression in a Ca2+-dependent manner,” Lasers Surg. Med. 29(5), 433–441 (2001).10.1002/lsm.1137 PubMed DOI

Chen A. C., Arany P. R., Huang Y. Y., Tomkinson E. M., Sharma S. K., Kharkwal G. B., Saleem T., Mooney D., Yull F. E., Blackwell T. S., Hamblin M. R., “Low-level laser therapy activates nf-kb via generation of reactive oxygen species in mouse embryonic fibroblasts,” PLoS One 6(7), e22453 (2011).10.1371/journal.pone.0022453 PubMed DOI PMC

Mariño G., Niso-Santano M., Baehrecke E. H., Kroemer G., “Self-consumption: The interplay of autophagy and apoptosis,” Nat. Rev. Mol. Cell Biol. 15(2), 81–94 (2014).10.1038/nrm3735 PubMed DOI PMC

Fiers W., Beyaert R., Declercq W., Vandenabeele P., “More than one way to die: Apoptosis, necrosis and reactive oxygen damage,” Oncogene 18(54), 7719–7730 (1999).10.1038/sj.onc.1203249 PubMed DOI

Vanden Berghe T., Kaiser W. J., Bertrand M. J. M., Vandenabeele P., “Molecular crosstalk between apoptosis, necroptosis, and survival signaling,” Mol. Cell. Oncol. 2(4), e975093 (2015).10.4161/23723556.2014.975093 PubMed DOI PMC

Nikoletopoulou V., Markaki M., Palikaras K., Tavernarakis N., “Crosstalk between apoptosis, necrosis and autophagy,” Biochim. Biophys. Acta 1833(12), 3448–3459 (2013).10.1016/j.bbamcr.2013.06.001 PubMed DOI

Lim K. S., Harun S. W., Arof H., Ahmad H., “Fabrication and applications of microfiber,” in Selected Topics on Optical Fiber Technology, Chapter 17 (Intech, 2012), pp. 473–508.

Papadopoulos N. G., Dedoussis G. V., Spanakos G., Gritzapis A. D., Baxevanis C. N., Papamichail M., “An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry,” J. Immunol. Methods 177(1-2), 101–111 (1994).10.1016/0022-1759(94)90147-3 PubMed DOI

Kang M. A., So E. Y., Simons A. L., Spitz D. R., Ouchi T., “DNA damage induces reactive oxygen species generation through the h2ax-nox1/rac1 pathway,” Cell Death Dis. 3, e249 (2012).10.1038/cddis.2011.134 PubMed DOI PMC

Lunov O., Zablotskii V., Churpita O., Lunova M., Jirsa M., Dejneka A., Kubinová Š., “Chemically different non-thermal plasmas target distinct cell death pathways,” Sci. Rep. 7(1), 600 (2017).10.1038/s41598-017-00689-5 PubMed DOI PMC

Lunov O., Zablotskii V., Churpita O., Jäger A., Polívka L., Syková E., Dejneka A., Kubinová Š., “The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma,” Biomaterials 82, 71–83 (2016).10.1016/j.biomaterials.2015.12.027 PubMed DOI

Lunov O., Zablotskii V., Churpita O., Chánová E., Syková E., Dejneka A., Kubinová S., “Cell death induced by ozone and various non-thermal plasmas: Therapeutic perspectives and limitations,” Sci. Rep. 4(1), 7129 (2015).10.1038/srep07129 PubMed DOI PMC

Wang H., Joseph J. A., “Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader,” Free Radic. Biol. Med. 27(5-6), 612–616 (1999).10.1016/S0891-5849(99)00107-0 PubMed DOI

Gavet O., Pines J., “Progressive activation of cyclinb1-cdk1 coordinates entry to mitosis,” Dev. Cell 18(4), 533–543 (2010).10.1016/j.devcel.2010.02.013 PubMed DOI PMC

Smiley S. T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T. W., Steele G. D., Jr, Chen L. B., “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation jc-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).10.1073/pnas.88.9.3671 PubMed DOI PMC

Zuliani T., Duval R., Jayat C., Schnébert S., André P., Dumas M., Ratinaud M. H., “Sensitive and reliable jc-1 and toto-3 double staining to assess mitochondrial transmembrane potential and plasma membrane Integrity: interest for cell death investigations,” Cytometry A 54A(2), 100–108 (2003).10.1002/cyto.a.10059 PubMed DOI

Lunova M., Prokhorov A., Jirsa M., Hof M., Olżyńska A., Jurkiewicz P., Kubinová Š., Lunov O., Dejneka A., “Nanoparticle core stability and surface functionalization drive the mtor signaling pathway in hepatocellular cell lines,” Sci. Rep. 7(1), 16049 (2017).10.1038/s41598-017-16447-6 PubMed DOI PMC

Goncalves S. B., Ribeiro J. F., Silva A. F., Costa R. M., Correia J. H., “Design and manufacturing challenges of optogenetic neural interfaces: A review,” J. Neural Eng. 14(4), 041001 (2017).10.1088/1741-2552/aa7004 PubMed DOI

Yizhar O., Fenno L. E., Davidson T. J., Mogri M., Deisseroth K., “Optogenetics in neural systems,” Neuron 71(1), 9–34 (2011).10.1016/j.neuron.2011.06.004 PubMed DOI

Henderson T. A., Morries L. D., “Near-infrared photonic energy penetration: Can infrared phototherapy effectively reach the human brain?” Neuropsychiatr. Dis. Treat. 11, 2191–2208 (2015).10.2147/NDT.S78182 PubMed DOI PMC

Denton M. L., Foltz M. S., Estlack L. E., Stolarski D. J., Noojin G. D., Thomas R. J., Eikum D., Rockwell B. A., “Damage thresholds for exposure to nir and blue lasers in an in vitro rpe cell system,” Invest. Ophthalmol. Vis. Sci. 47(7), 3065–3073 (2006).10.1167/iovs.05-1066 PubMed DOI

Yarmolenko P. S., Moon E. J., Landon C., Manzoor A., Hochman D. W., Viglianti B. L., Dewhirst M. W., “Thresholds for thermal damage to normal tissues: An update,” Int. J. Hyperthermia 27(4), 320–343 (2011).10.3109/02656736.2010.534527 PubMed DOI PMC

Shen J., Chui C., Tao X., “Luminous fabric devices for wearable low-level light therapy,” Biomed. Opt. Express 4(12), 2925–2937 (2013).10.1364/BOE.4.002925 PubMed DOI PMC

Weil M., Jacobson M. D., Coles H. S., Davies T. J., Gardner R. L., Raff K. D., Raff M. C., “Constitutive expression of the machinery for programmed cell death,” J. Cell Biol. 133(5), 1053–1059 (1996).10.1083/jcb.133.5.1053 PubMed DOI PMC

Henle K. J., Warters R. L., “Heat protection by glycerol in vitro,” Cancer Res. 42(6), 2171–2176 (1982). PubMed

Pittet J. F., Lee H., Pespeni M., O’Mahony A., Roux J., Welch W. J., “Stress-induced inhibition of the NF-kappaB signaling pathway results from the insolubilization of the ikappab kinase complex following its dissociation from heat shock protein 90,” J. Immunol. 174(1), 384–394 (2005).10.4049/jimmunol.174.1.384 PubMed DOI

Danial N. N., Korsmeyer S. J., “Cell death: Critical control points,” Cell 116(2), 205–219 (2004).10.1016/S0092-8674(04)00046-7 PubMed DOI

Di Carlo M., Giacomazza D., Picone P., Nuzzo D., San Biagio P. L., “Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases?” Free Radic. Res. 46(11), 1327–1338 (2012).10.3109/10715762.2012.714466 PubMed DOI

Lin M. T., Beal M. F., “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature 443(7113), 787–795 (2006).10.1038/nature05292 PubMed DOI

Kroemer G., Reed J. C., “Mitochondrial control of cell death,” Nat. Med. 6(5), 513–519 (2000).10.1038/74994 PubMed DOI

Ly J. D., Grubb D. R., Lawen A., “The mitochondrial membrane potential (delta psi m) in apoptosis; an update,” Apoptosis 8(2), 115–128 (2003).10.1023/A:1022945107762 PubMed DOI

Matthes R., Bender C., Schlüter R., Koban I., Bussiahn R., Reuter S., Lademann J., Weltmann K. D., Kramer A., “Antimicrobial efficacy of two surface barrier discharges with air plasma against in vitro biofilms,” PLoS One 8(7), e70462 (2013).10.1371/journal.pone.0070462 PubMed DOI PMC

Smiley S. T., Reers M., Mottola-Hartshorn C., Lin M., Chen A., Smith T. W., Steele G. D., Jr, Chen L. B., “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a j-aggregate-forming lipophilic cation jc-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).10.1073/pnas.88.9.3671 PubMed DOI PMC

Martin S. J., Reutelingsperger C. P., McGahon A. J., Rader J. A., van Schie R. C., LaFace D. M., Green D. R., “Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of bcl-2 and abl,” J. Exp. Med. 182(5), 1545–1556 (1995).10.1084/jem.182.5.1545 PubMed DOI PMC

Hoek J. B., Cahill A., Pastorino J. G., “Alcohol and mitochondria: A dysfunctional relationship,” Gastroenterology 122(7), 2049–2063 (2002).10.1053/gast.2002.33613 PubMed DOI PMC

Linkermann A., Green D. R., “Necroptosis,” N. Engl. J. Med. 370(5), 455–465 (2014).10.1056/NEJMra1310050 PubMed DOI PMC

Mariño G., Niso-Santano M., Baehrecke E. H., Kroemer G., “Self-consumption: The interplay of autophagy and apoptosis,” Nat. Rev. Mol. Cell Biol. 15(2), 81–94 (2014).10.1038/nrm3735 PubMed DOI PMC

Degterev A., Huang Z., Boyce M., Li Y., Jagtap P., Mizushima N., Cuny G. D., Mitchison T. J., Moskowitz M. A., Yuan J., “Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury,” Nat. Chem. Biol. 1(2), 112–119 (2005).10.1038/nchembio711 PubMed DOI

Panieri E., Gogvadze V., Norberg E., Venkatesh R., Orrenius S., Zhivotovsky B., “Reactive oxygen species generated in different compartments induce cell death, survival, or senescence,” Free Radic. Biol. Med. 57, 176–187 (2013).10.1016/j.freeradbiomed.2012.12.024 PubMed DOI

Valencia A., Morán J., “Reactive oxygen species induce different cell death mechanisms in cultured neurons,” Free Radic. Biol. Med. 36(9), 1112–1125 (2004).10.1016/j.freeradbiomed.2004.02.013 PubMed DOI

Woo H. A., Yim S. H., Shin D. H., Kang D., Yu D. Y., Rhee S. G., “Inactivation of peroxiredoxin i by phosphorylation allows localized h2o2 accumulation for cell signaling,” Cell 140(4), 517–528 (2010).10.1016/j.cell.2010.01.009 PubMed DOI

Birnboim H. C., Kanabus-Kaminska M., “The production of DNA strand breaks in human leukocytes by superoxide anion may involve a metabolic process,” Proc. Natl. Acad. Sci. U.S.A. 82(20), 6820–6824 (1985).10.1073/pnas.82.20.6820 PubMed DOI PMC

Roos W. P., Thomas A. D., Kaina B., “DNA damage and the balance between survival and death in cancer biology,” Nat. Rev. Cancer 16(1), 20–33 (2016).10.1038/nrc.2015.2 PubMed DOI

Wang F., Chen T. S., Xing D., Wang J. J., Wu Y. X., “Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation,” Lasers Surg. Med. 36(1), 2–7 (2005).10.1002/lsm.20130 PubMed DOI

Winterbourn C. C., “Reconciling the chemistry and biology of reactive oxygen species,” Nat. Chem. Biol. 4(5), 278–286 (2008).10.1038/nchembio.85 PubMed DOI

Ryu S. Y., Peixoto P. M., Teijido O., Dejean L. M., Kinnally K. W., “Role of mitochondrial ion channels in cell death,” Biofactors 36(4), 255–263 (2010).10.1002/biof.101 PubMed DOI

Kinnally K. W., Peixoto P. M., Ryu S. Y., Dejean L. M., “Is mptp the gatekeeper for necrosis, apoptosis, or both?” Biochim. Biophys. Acta 1813(4), 616–622 (2011).10.1016/j.bbamcr.2010.09.013 PubMed DOI PMC

Tait S. W., Green D. R., “Mitochondria and cell death: Outer membrane permeabilization and beyond,” Nat. Rev. Mol. Cell Biol. 11(9), 621–632 (2010).10.1038/nrm2952 PubMed DOI

Vakifahmetoglu-Norberg H., Ouchida A. T., Norberg E., “The role of mitochondria in metabolism and cell death,” Biochem. Biophys. Res. Commun. 482(3), 426–431 (2017).10.1016/j.bbrc.2016.11.088 PubMed DOI

Wang Y., He H., Wang S., Liu Y., Hu M., Cao Y., Kong S., Wei X., Wang C., “Photostimulation by femtosecond laser triggers restorable fragmentation in single mitochondrion,” J. Biophotonics 10(2), 286–293 (2017).10.1002/jbio.201500281 PubMed DOI

Zhu Y., He H., “Molecular response of mitochondria to a short-duration femtosecond-laser stimulation,” Biomed. Opt. Express 8(11), 4965–4973 (2017).10.1364/BOE.8.004965 PubMed DOI PMC

Wu S., Zhou F., Zhang Z., Xing D., “Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins,” FEBS J. 278(6), 941–954 (2011).10.1111/j.1742-4658.2011.08010.x PubMed DOI

Murphy M. P., “How mitochondria produce reactive oxygen species,” Biochem. J. 417(1), 1–13 (2009).10.1042/BJ20081386 PubMed DOI PMC

Moon J., Yun J., Yoon Y. D., Park S. I., Seo Y. J., Park W. S., Chu H. Y., Park K. H., Lee M. Y., Lee C. W., Oh S. J., Kwak Y. S., Jang Y. P., Kang J. S., “Blue light effect on retinal pigment epithelial cells by display devices,” Integr. Biol. 9(5), 436–443 (2017).10.1039/C7IB00032D PubMed DOI

Karu T. I., Pyatibrat L. V., Kolyakov S. F., Afanasyeva N. I., “Absorption measurements of cell monolayers relevant to mechanisms of laser phototherapy: Reduction or oxidation of cytochrome c oxidase under laser radiation at 632.8 nm,” Photomed. Laser Surg. 26(6), 593–599 (2008).10.1089/pho.2008.2246 PubMed DOI

Kaludercic N., Deshwal S., Di Lisa F., “Reactive oxygen species and redox compartmentalization,” Front. Physiol. 5, 285 (2014).10.3389/fphys.2014.00285 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mechanical Regulation of Mitochondrial Dynamics and Function in a 3D-Engineered Liver Tumor Microenvironment

. 2023 May 08 ; 9 (5) : 2408-2425. [epub] 20230331

Liver Organoids: Recent Developments, Limitations and Potential

. 2021 ; 8 () : 574047. [epub] 20210505

Hepatic Tumor Cell Morphology Plasticity under Physical Constraints in 3D Cultures Driven by YAP-mTOR Axis

. 2020 Nov 28 ; 13 (12) : . [epub] 20201128

Light-induced modulation of the mitochondrial respiratory chain activity: possibilities and limitations

. 2020 Jul ; 77 (14) : 2815-2838. [epub] 20191003

Remote Actuation of Apoptosis in Liver Cancer Cells via Magneto-Mechanical Modulation of Iron Oxide Nanoparticles

. 2019 Nov 26 ; 11 (12) : . [epub] 20191126

Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition

. 2019 Mar 18 ; 9 (3) : . [epub] 20190318

A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers

. 2018 Dec 24 ; 10 (1) : . [epub] 20181224

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...