Surface Dielectric Barrier Discharge plasma: a suitable measure against fungal plant pathogens

. 2020 Feb 28 ; 10 (1) : 3673. [epub] 20200228

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32111863
Odkazy

PubMed 32111863
PubMed Central PMC7048822
DOI 10.1038/s41598-020-60461-0
PII: 10.1038/s41598-020-60461-0
Knihovny.cz E-zdroje

Fungal diseases seriously affect agricultural production and the food industry. Crop protection is usually achieved by synthetic fungicides, therefore more sustainable and innovative technologies are increasingly required. The atmospheric pressure low-temperature plasma is a novel suitable measure. We report on the effect of plasma treatment on phytopathogenic fungi causing quantitative and qualitative losses of products both in the field and postharvest. We focus our attention on the in vitro direct inhibitory effect of non-contact Surface Dielectric Barrier Discharge on conidia germination of Botrytis cinerea, Monilinia fructicola, Aspergillus carbonarius and Alternaria alternata. A few minutes of treatment was required to completely inactivate the fungi on an artificial medium. Morphological analysis of spores by Scanning Electron Microscopy suggests that the main mechanism is plasma etching due to Reactive Oxygen Species or UV radiation. Spectroscopic analysis of plasma generated in humid air gives the hint that the rotational temperature of gas should not play a relevant role being very close to room temperature. In vivo experiments on artificially inoculated cherry fruits demonstrated that inactivation of fungal spores by the direct inhibitory effect of plasma extend their shelf life. Pre-treatment of fruits before inoculation improve the resistance to infections maybe by activating defense responses in plant tissues.

Zobrazit více v PubMed

Hahn M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J. Chem. Biol. 2014;7:133–141. doi: 10.1007/s12154-014-0113-1. PubMed DOI PMC

FAO, IFAD, UNICEF, WFP & WHO. The State of Food Security and Nutrition in the World 2019. Safeguarding against economic slowdowns and downturns. (2019).

Pagliaccia D, Ferrin D, Stanghellini ME. Chemo-biological suppression of root-infecting zoosporic pathogens in recirculating hydroponic systems. Plant Soil. 2007;299:163–179. doi: 10.1007/s11104-007-9373-7. DOI

Riggio G, Jones S, Gibson K. Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation. Horticulturae. 2019;5:25. doi: 10.3390/horticulturae5010025. DOI

Siddique SS, Hardy GESJ, Bayliss KL. Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol. 2018;67:1011–1021. doi: 10.1111/ppa.12825. DOI

Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnol. Adv. 2008;26:610–617. doi: 10.1016/j.biotechadv.2008.08.001. PubMed DOI

Sari AH, Fadaee F. Effect of corona discharge on decontamination of Pseudomonas aeruginosa and E-coli. Surf. Coatings Technol. 2010;205:S385–90. doi: 10.1016/j.surfcoat.2010.08.057. DOI

Ambrico PF, et al. On the air atmospheric pressure plasma treatment effect on the physiology, germination and seedlings of basil seeds. J. Phys. D. Appl. Phys. 2020;53:104001. doi: 10.1088/1361-6463/ab5b1b. DOI

Riès D, et al. LIF and fast imaging plasma jet characterization relevant for NTP biomedical applications. J. Phys. D. Appl. Phys. 2014;47:275401. doi: 10.1088/0022-3727/47/27/275401. DOI

Dilecce G, Ambrico PF, Šimek M, De Benedictis S. OH density measurement by time-resolved broad band absorption spectroscopy in an Ar–H2O dielectric barrier discharge. J. Phys. D. Appl. Phys. 2012;45:125203. doi: 10.1088/0022-3727/45/12/125203. DOI

Šimek M, et al. N2(A3Σu+) behaviour in a N2 –NO surface dielectric barrier discharge in the modulated ac regime at atmospheric pressure. J. Phys. D. Appl. Phys. 2010;43:124003. doi: 10.1088/0022-3727/43/12/124003. DOI

Šimek M, Ambrico PF, Prukner V. Evolution of N2(A3Σu+) in streamer discharges: influence of oxygen admixtures on formation of low vibrational levels. J. Phys. D. Appl. Phys. 2017;50:504002. doi: 10.1088/1361-6463/aa96f3. DOI

Šimek M, Pekárek S, Prukner V. Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air. Plasma Chem. Plasma Process. 2012;32:743–754. doi: 10.1007/s11090-012-9382-z. DOI

Zhang Y, Wei L, Liang X, Šimek M. Ozone production in coaxial DBD using an amplitude-modulated AC power supply in air. Ozone Sci. Eng. 2019;00:1–11.

Dobrynin D, Fridman G, Friedman G, Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 2009;11:0–26. doi: 10.1088/1367-2630/11/11/115020. DOI

Wan J, Coventry J, Swiergon P, Sanguansri P, Versteeg C. Advances in innovative processing technologies for microbial inactivation and enhancement of food safety - pulsed electric field and low-temperature plasma. Trends Food Sci. Technol. 2009;20:414–424. doi: 10.1016/j.tifs.2009.01.050. DOI

Ehlbeck J, et al. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D. Appl. Phys. 2010;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI

Kvam E, Davis B, Mondello F, Garner AL. Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob. Agents Chemother. 2012;56:2028–2036. doi: 10.1128/AAC.05642-11. PubMed DOI PMC

Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 2013;11:443–454. doi: 10.1038/nrmicro3032. PubMed DOI PMC

Joshi SG, et al. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 2011;55:1053–1062. doi: 10.1128/AAC.01002-10. PubMed DOI PMC

Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2004;2:820–832. doi: 10.1038/nrmicro1004. PubMed DOI

Doležalová E, Prukner V, Lukeš P, Šimek M. Stress response of Escherichia coli induced by surface streamer discharge in humid air. J. Phys. D. Appl. Phys. 2016;49:075401. doi: 10.1088/0022-3727/49/7/075401. DOI

Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D. Appl. Phys. 2012;45:263001–42. doi: 10.1088/0022-3727/45/26/263001. DOI

Pavlovich MJ, Clark DS, Graves DB. Quantification of air plasma chemistry for surface disinfection. Plasma Sources Sci. Technol. 2014;23:065036. doi: 10.1088/0963-0252/23/6/065036. DOI

Jeong J, Kim JY, Yoon J. The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ. Sci. Technol. 2006;40:6117–6122. doi: 10.1021/es0604313. PubMed DOI

Frederickson Matika DE, Loake GJ. Redox regulation in plant immune function. Antioxid. Redox Signal. 2014;21:1373–1388. doi: 10.1089/ars.2013.5679. PubMed DOI PMC

Yu H, et al. Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K12. J. Appl. Microbiol. 2006;101:1323–1330. doi: 10.1111/j.1365-2672.2006.03033.x. PubMed DOI

Sakiyama Y, Graves DB, Chang H-W, Shimizu T, Morfill GE. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D. Appl. Phys. 2012;45:425201. doi: 10.1088/0022-3727/45/42/425201. DOI

Machala Z, et al. Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects. Plasma Process. Polym. 2013;10:649–659. doi: 10.1002/ppap.201200113. DOI

Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, Ostrikov K. (Ken). Atmospheric pressure plasmas: Infection control and bacterial responses. Int. J. Antimicrob. Agents. 2014;43:508–517. doi: 10.1016/j.ijantimicag.2014.01.025. PubMed DOI

Montie TC, Kelly-Wintenberg K, Roth JR. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 2000;28:41–50. doi: 10.1109/27.842860. DOI

Bettelheim, F. A. et al. Introduction to General, Organic and Biochemistry, 11th edition. (Cengage, 2020).

Deilmann M, Halfmann H, Bibinov N, Wunderlich J, Awakowicz P. Low-pressure microwave plasma sterilization of polyethylene terephthalate bottles. J. Food Prot. 2008;71:2119–2123. doi: 10.4315/0362-028X-71.10.2119. PubMed DOI

Fridman G, et al. Applied plasma medicine. Plasma Process. Polym. 2008;5:503–533. doi: 10.1002/ppap.200700154. DOI

Selcuk M, Oksuz L, Basaran P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour. Technol. 2008;99:5104–5109. doi: 10.1016/j.biortech.2007.09.076. PubMed DOI

Morfill GE, Shimizu T, Steffes B, Schmidt HU. Nosocomial infections - A new approach towards preventive medicine using plasmas. New J. Phys. 2009;11:115019. doi: 10.1088/1367-2630/11/11/115019. DOI

Hasse S, et al. Atmospheric pressure plasma jet application on human oral mucosa modulates tissue regeneration. Plasma Med. 2014;4:117–129. doi: 10.1615/PlasmaMed.2014011978. DOI

Rupf S, et al. Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology. Plos One. 2011;6:1–9. doi: 10.1371/journal.pone.0025893. PubMed DOI PMC

Pan J, et al. Tooth bleaching using low concentrations of hydrogen peroxide in the presence of a nonthermal plasma jet. IEEE Trans. Plasma Sci. 2013;41:325–329. doi: 10.1109/TPS.2012.2233753. DOI

Heinlin J, et al. Plasma applications in medicine with a special focus on dermatology. J. Eur. Acad. Dermatology Venereol. 2011;25:1–11. doi: 10.1111/j.1468-3083.2010.03702.x. PubMed DOI

Caprini JA, Partsch H, Simman R. Venous ulcers. J. Am. Coll. Clin. Wound Spec. 2012;4:54–60. doi: 10.1016/j.jccw.2013.11.001. PubMed DOI PMC

Foster KW, Moy RL, Fincher EF. Advances in plasma skin regeneration. J. Cosmet. Dermatol. 2008;7:169–179. doi: 10.1111/j.1473-2165.2008.00385.x. PubMed DOI

Bogle MA, Arndt KA, Dover JS. Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation. Arch. Dermatology. 2008;143:168–174. PubMed

Daeschlein G, et al. Plasma medicine in dermatology: basic antimicrobial efficacy testing as prerequisite to clinical plasma therapy. Plasma Med. 2012;2:33–69. doi: 10.1615/PlasmaMed.2014006217. DOI

Ling L, et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci. Rep. 2014;4:1–7. PubMed PMC

Sera B, Sery M, Gavril B, Gajdova I. Seed germination and early growth responses to seed pre-treatment by non-thermal plasma in hemp cultivars (Cannabis sativa L.) Plasma Chem. Plasma Process. 2017;37:207–221. doi: 10.1007/s11090-016-9763-9. DOI

Jiang J, et al. Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (bacterial wilt) PLoS One. 2014;9:1–6. PubMed PMC

Filatova I, et al. The effect of plasma treatment of seeds of some grain and legumes on their sowing quality and productivity. Rom. Reports Phys. 2011;56:139–143.

Jiang J, et al. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci. Technol. 2014;16:54–58. doi: 10.1088/1009-0630/16/1/12. DOI

Stolárik T, et al. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.) Plasma Chem. Plasma Process. 2015;35:659–676. doi: 10.1007/s11090-015-9627-8. DOI

Kitazaki S, Sarinont T, Koga K, Hayashi N, Shiratani M. Plasma induced long-term growth enhancement of Raphanus sativus L. using combinatorial atmospheric air dielectric barrier discharge plasmas. Curr. Appl. Phys. 2014;14:S149–S153. doi: 10.1016/j.cap.2013.11.056. DOI

Zahoranová A, et al. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem. Plasma Process. 2016;36:397–414. doi: 10.1007/s11090-015-9684-z. DOI

Ambrico PF, et al. Reduction of microbial contamination and improvement of germination of sweet basil (Ocimum basilicum L.) seeds via surface dielectric barrier discharge. J. Phys. D. Appl. Phys. 2017;50:305401. doi: 10.1088/1361-6463/aa77c8. DOI

Misra, N. N., Schlüter, O. & Cullen, P. J. Cold plasma in food and agriculture: fundamentals and applications, http://www.sciencedirect.com/science/book/9780128013656 (2016).

Hashizume H, et al. Inactivation effects of neutral reactive-oxygen species on Penicillium digitatum spores using non-equilibrium atmospheric-pressure oxygen radical source. Appl. Phys. Lett. 2013;103:153708. doi: 10.1063/1.4824892. DOI

Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 2014;42:109–116. doi: 10.1016/j.fm.2014.02.007. PubMed DOI

Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol. 2018;36:615–626. doi: 10.1016/j.tibtech.2017.11.001. PubMed DOI

Noriega E, Shama G, Laca A, Díaz M, Kong MG. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol. 2011;28:1293–1300. doi: 10.1016/j.fm.2011.05.007. PubMed DOI

Ouf SA, Basher AH, Mohamed AAH. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J. Sci. Food Agric. 2015;95:3204–3210. doi: 10.1002/jsfa.7060. PubMed DOI

Panngom K, et al. Non-thermal plasma preatment diminishes fungal viability and up-regulates resistance genes in a plant host. Plos One. 2014;9:e99300. doi: 10.1371/journal.pone.0099300. PubMed DOI PMC

Šimek M. Optical diagnostics of streamer discharges in atmospheric gases. J. Phys. DAppl. Phys. 2014;47:463001. doi: 10.1088/0022-3727/47/46/463001. DOI

Obrusnik A, Bilek P, Hoder T, Šimek M, Bonaventura Z. Electric field determination in air plasmas from intensity ratio of nitrogen spectral bands: I. Sensitivity analysis and uncertainty quantification of dominant processes. Plasma Sources Sci. Technol. 2018;27:085013. doi: 10.1088/1361-6595/aad663. DOI

Herrmann HW, Henins I, Park J, Selwyn GS. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ) Phys. Plasmas. 1999;6:2284–2289. doi: 10.1063/1.873480. DOI

Laroussi M. Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process. Polym. 2005;2:391–400. doi: 10.1002/ppap.200400078. DOI

Moisan M, et al. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 2002;74:349–358. doi: 10.1351/pac200274030349. DOI

Lerouge S, Wertheimer MR, Yahia LH. Plasma Sterilization: A review of parameters, mechanisms, and limitations. Plasma Polym. 2001;6:175–188. doi: 10.1023/A:1013196629791. DOI

Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 2011;3:159–170. doi: 10.1007/s12393-011-9041-9. DOI

Ermolaeva SA, et al. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J. Med. Microbiol. 2011;60:75–83. doi: 10.1099/jmm.0.020263-0. PubMed DOI

Kuzminova A, et al. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air. J. Phys. D. Appl. Phys. 2017;50:135201. doi: 10.1088/1361-6463/aa5c21. DOI

Fricke K, et al. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. Plos One. 2012;7:e42539. doi: 10.1371/journal.pone.0042539. PubMed DOI PMC

Reis A, Spickett CM. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta - Biomembr. 2012;1818:2374–2387. doi: 10.1016/j.bbamem.2012.02.002. PubMed DOI

Davies MJ. Protein oxidation and peroxidation. Biochem. J. 2016;473:805–825. doi: 10.1042/BJ20151227. PubMed DOI PMC

Peng S, et al. Atmospheric pressure cold plasma as an antifungal therapy. Appl. Phys. Lett. 2011;98:021501. doi: 10.1063/1.3530434. DOI

Basaran P, Basaran-Akgul N, Oksuz L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol. 2008;25:626–632. doi: 10.1016/j.fm.2007.12.005. PubMed DOI

Dasan BG, Boyaci IH, Mutlu M. Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control. 2016;70:1–8. doi: 10.1016/j.foodcont.2016.05.015. PubMed DOI

Zhang X, et al. Atmospheric cold plasma jet for plant disease treatment. Appl. Phys. Lett. 2014;104:043702. doi: 10.1063/1.4863204. DOI

Nimrichter L, Rodrigues ML, Rodrigues EG, Travassos LR. The multitude of targets for the immune system and drug therapy in the fungal cell wall. Microbes Infect. 2005;7:789–798. doi: 10.1016/j.micinf.2005.03.002. PubMed DOI

Latgé JP, Beauvais A. Functional duality of the cell wall. Curr. Opin. Microbiol. 2014;20:111–117. doi: 10.1016/j.mib.2014.05.009. PubMed DOI

Belozerskaya Tatiana A., Gessler Natalya N., Aver‘yanov Andrey A. Fungal Metabolites. Cham: Springer International Publishing; 2015. Melanin Pigments of Fungi; pp. 1–29.

Gerin D, et al. Functional characterization of the alb1 orthologue gene in the ochratoxigenic fungus Aspergillus carbonarius (Ac49 strain) Toxins (Basel). 2018;10:1–16. doi: 10.3390/toxins10030120. PubMed DOI PMC

Langfelder K, et al. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med. Microbiol. Immunol. 1998;187:79–89. doi: 10.1007/s004300050077. PubMed DOI

Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. The developmentally regulated alb1 gene of Aspergillus fumigatus: Its role in modulation of conidial morphology and virulence. J. Bacteriol. 1998;180:3031–3038. doi: 10.1128/JB.180.12.3031-3038.1998. PubMed DOI PMC

Carzaniga R, Fiocco D, Bowyer P, O’Connell RJ. Localization of melanin in conidia of Alternaria alternata using phage display antibodies. Mol. Plant-Microbe Interact. 2002;15:216–224. doi: 10.1094/MPMI.2002.15.3.216. PubMed DOI

Willetts HJ. Morphology, development and evolution of stromata/sclerotia and macroconidia of the Sclerotiniaceae. Mycol. Res. 1997;101:939–952. doi: 10.1017/S0953756297003559. DOI

Schumacher J. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes. Mol. Microbiol. 2016;99:729–748. doi: 10.1111/mmi.13262. PubMed DOI

Herceg Z, et al. The effect of high-power ultrasound and gas phase plasma treatment on Aspergillus spp. and Penicillium spp. count in pure culture. J. Appl. Microbiol. 2015;118:132–141. doi: 10.1111/jam.12692. PubMed DOI

Liu K, Wang C, Hu H, Lei J, Han L. Indirect treatment effects of water-air MHCD jet on the inactivation of Penicillium digitatum suspension. IEEE Trans. Plasma Sci. 2016;44:2729–2737. doi: 10.1109/TPS.2016.2608926. DOI

Pignata C, D’Angelo D, Fea E, Gilli G. A review on microbiological decontamination of fresh produce with nonthermal plasma. J. Appl. Microbiol. 2017;122:1438–1455. doi: 10.1111/jam.13412. PubMed DOI

del Río LA. ROS and RNS in plant physiology: an overview. J. Exp. Bot. 2015;66:2827–2837. doi: 10.1093/jxb/erv099. PubMed DOI

Adhikari B, Adhikari M, Ghimire B, Park G, Choi EH. Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in tomato seedlings. Sci. Rep. 2019;9:16080. doi: 10.1038/s41598-019-52646-z. PubMed DOI PMC

Perez SM, et al. Plasma activated water as resistance inducer against bacterial leaf spot of tomato. PLoS One. 2019;14:1–19. PubMed PMC

Fernández A, Noriega E, Thompson A. Inactivation of Salmonella enterica serovar typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol. 2013;33:24–29. doi: 10.1016/j.fm.2012.08.007. PubMed DOI

Nunes CA. Biological control of postharvest diseases of fruit. Eur. J. Plant Pathol. 2012;133:181–196. doi: 10.1007/s10658-011-9919-7. DOI

Ambrico PF, Šimek M, Dilecce G, De Benedictis S. On the measurement of N2(A3Σu+) metastable in N2 surface-dielectric barrier discharge at atmospheric pressure. Plasma Chem. Plasma Process. 2008;28:299–316. doi: 10.1007/s11090-008-9131-5. DOI

De Miccolis Angelini RM, Masiello M, Rotolo C, Pollastro S, Faretra F. Molecular characterisation and detection of resistance to succinate dehydrogenase inhibitor fungicides in Botryotinia fuckeliana (Botrytis cinerea) Pest Manag Sci. 2014;70:1884–1893. doi: 10.1002/ps.3748. PubMed DOI

Gahan, P. B. Plant Histochemistry and Cytochemistry. (Academic Press, Inc., 1984).

Brul S, Nussbaum J, Dielbandhoesing S. Fluorescent probes for wall porosity and membrane integrity in filamentous fungi. J. Microbiol. Methods. 1997;28:169–178. doi: 10.1016/S0167-7012(97)00975-5. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...