Development and Validation of a Capillary Zone Electrophoresis-Tandem Mass Spectrometry Method for Simultaneous Quantification of Eight β-Lactam Antibiotics and Two β-Lactamase Inhibitors in Plasma Samples
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 1/0514/22
Vedecká grantová agentúra MŠVVaM SR a SAV (VEGA)
PubMed
38675486
PubMed Central
PMC11054939
DOI
10.3390/ph17040526
PII: ph17040526
Knihovny.cz E-zdroje
- Klíčová slova
- bioanalysis, capillary zone electrophoresis, tandem mass spectrometry, therapeutic drug monitoring, β-lactam antibiotics,
- Publikační typ
- časopisecké články MeSH
Monitoring plasma concentrations of β-lactam antibiotics is crucial, particularly in critically ill patients, where variations in concentrations can lead to treatment failure or adverse events. Standardized antimicrobial regimens may not be effective for all patients, especially in special groups with altered physiological parameters. Pharmacokinetic/pharmacodynamic (PK/PD) studies highlight the time-dependent antibacterial activity of these antibiotics, emphasizing the need for personalized dosing. Therapeutic drug monitoring (TDM) is essential, requiring rapid and accurate analytical methods for precise determination of drugs in biological material (typically plasma or serum). This study presents a novel capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) method designed for the simultaneous quantification of five penicillin antibiotics, two cephalosporins, one carbapenem, and two β-lactamase inhibitors in a single run. The method involves a simple sample pretreatment-precipitation with organic solvent-and has a run time of 20 min. Optimization of CZE separation conditions revealed that 20 mM ammonium hydrogen carbonate (NH4HCO3) serves as the optimal background electrolyte (BGE). Positive electrospray ionization (ESI) mode, with isopropyl alcohol (IP)/10 mM ammonium formate water solution (50/50, v/v) as the sheath liquid, was identified as the optimal condition for MS detection. Method validation according to the Food and Drug Administration (FDA) guideline for development of bioanalytical methods demonstrated satisfactory selectivity, linearity, recovery, robustness, and stability. The method's practicality was evaluated using the Blue Applicability Grade Index (BAGI), yielding a score of 77.5. Moreover, the greenness of the proposed method was evaluated by two commonly used metric tools-Analytical GREEnness (AGREE) and Green Analytical Procedure Index (GAPI). The developed CZE-MS/MS method offers a practical and reliable approach for quantifying a broad spectrum of β-lactam antibiotics in plasma. Its ability to simultaneously quantify multiple analytes in a single run, coupled with a straightforward sample pretreatment, positions it as a valuable and prospective tool for TDM in critically ill patients.
Zobrazit více v PubMed
Carlier M., Stove V., De Waele J.J., Verstraete A.G. Ultrafast Quantification of β-Lactam Antibiotics in Human Plasma Using UPLC–MS/MS. J. Chromatogr. B. 2015;978–979:89–94. doi: 10.1016/j.jchromb.2014.11.034. PubMed DOI
Dhaese S., Van Vooren S., Boelens J., De Waele J. Therapeutic Drug Monitoring of β-Lactam Antibiotics in the ICU. Expert. Rev. Anti Infect. Ther. 2020;18:1155–1164. doi: 10.1080/14787210.2020.1788387. PubMed DOI
Cusumano J.A., Klinker K.P., Huttner A., Luther M.K., Roberts J.A., LaPlante K.L. Towards Precision Medicine: Therapeutic Drug Monitoring-Guided Dosing of Vancomycin and β-Lactam Antibiotics to Maximize Effectiveness and Minimize Toxicity. Am. J. Health Syst. Pharm. 2020;77:1104–1112. doi: 10.1093/ajhp/zxaa128. PubMed DOI
Roberts J.A., Paul S.K., Akova M., Bassetti M., De Waele J.J., Dimopoulos G., Kaukonen K.-M., Koulenti D., Martin C., Montravers P., et al. DALI: Defining Antibiotic Levels in Intensive Care Unit Patients: Are Current β-Lactam Antibiotic Doses Sufficient for Critically Ill Patients? Clin. Infect. Dis. 2014;58:1072–1083. doi: 10.1093/cid/ciu027. PubMed DOI
Stašek J., Keller F., Kočí V., Klučka J., Klabusayová E., Wiewiorka O., Strašilová Z., Beňovská M., Škardová M., Maláska J. Update on Therapeutic Drug Monitoring of Beta-Lactam Antibiotics in Critically Ill Patients—A Narrative Review. Antibiotics. 2023;12:568. doi: 10.3390/antibiotics12030568. PubMed DOI PMC
Dilworth T.J., Schulz L.T., Micek S.T., Kollef M.H., Rose W.E. β-Lactam Therapeutic Drug Monitoring in Critically Ill Patients: Weighing the Challenges and Opportunities to Assess Clinical Value. Crit. Care Explor. 2022;4:e0726. doi: 10.1097/CCE.0000000000000726. PubMed DOI PMC
Gatti M., Cojutti P.G., Pascale R., Tonetti T., Laici C., Dell’Olio A., Siniscalchi A., Giannella M., Viale P., Pea F. Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections. Antibiotics. 2021;10:1311. doi: 10.3390/antibiotics10111311. PubMed DOI PMC
Maguigan K.L., Al-Shaer M.H., Peloquin C.A. Beta-Lactams Dosing in Critically Ill Patients with Gram-Negative Bacterial Infections: A PK/PD Approach. Antibiotics. 2021;10:1154. doi: 10.3390/antibiotics10101154. PubMed DOI PMC
Martinez M.N., Papich M.G., Drusano G.L. Dosing Regimen Matters: The Importance of Early Intervention and Rapid Attainment of the Pharmacokinetic/Pharmacodynamic Target. Antimicrob. Agents Chemother. 2012;56:2795–2805. doi: 10.1128/AAC.05360-11. PubMed DOI PMC
Owens R.C., Shorr A.F. Rational Dosing of Antimicrobial Agents: Pharmacokinetic and Pharmacodynamic Strategies. Am. J. Health-Syst. Pharm. 2009;66:S23–S30. doi: 10.2146/090087d. PubMed DOI
Legrand T., Vodovar D., Tournier N., Khoudour N., Hulin A. Simultaneous Determination of Eight β-Lactam Antibiotics, Amoxicillin, Cefazolin, Cefepime, Cefotaxime, Ceftazidime, Cloxacillin, Oxacillin, and Piperacillin, in Human Plasma by Using Ultra-High-Performance Liquid Chromatography with Ultraviolet Detection. Antimicrob. Agents Chemother. 2016;60:4734–4742. doi: 10.1128/AAC.00176-16. PubMed DOI PMC
Carlier M., Noe M., De Waele J.J., Stove V., Verstraete A.G., Lipman J., Roberts J.A. Population Pharmacokinetics and Dosing Simulations of Amoxicillin/Clavulanic Acid in Critically Ill Patients. J. Antimicrob. Chemother. 2013;68:2600–2608. doi: 10.1093/jac/dkt240. PubMed DOI
Huttner A., Harbarth S., Hope W.W., Lipman J., Roberts J.A. Therapeutic Drug Monitoring of the β-Lactam Antibiotics: What Is the Evidence and Which Patients Should We Be Using It for? J. Antimicrob. Chemother. 2015;70:dkv201. doi: 10.1093/jac/dkv201. PubMed DOI
Gonçalves-Pereira J., Póvoa P. Antibiotics in Critically Ill Patients: A Systematic Review of the Pharmacokinetics of β-Lactams. Crit. Care. 2011;15:R206. doi: 10.1186/cc10441. PubMed DOI PMC
Abdulla A., Ewoldt T.M.J., Hunfeld N.G.M., Muller A.E., Rietdijk W.J.R., Polinder S., van Gelder T., Endeman H., Koch B.C.P. The Effect of Therapeutic Drug Monitoring of Beta-Lactam and Fluoroquinolones on Clinical Outcome in Critically Ill Patients: The DOLPHIN Trial Protocol of a Multi-Centre Randomised Controlled Trial. BMC Infect. Dis. 2020;20:57. doi: 10.1186/s12879-020-4781-x. PubMed DOI PMC
Blondiaux N., Wallet F., Favory R., Onimus T., Nseir S., Courcol R.J., Durocher A., Roussel-Delvallez M. Daily Serum Piperacillin Monitoring Is Advisable in Critically Ill Patients. Int. J. Antimicrob. Agents. 2010;35:500–503. doi: 10.1016/j.ijantimicag.2010.01.018. PubMed DOI
Kurihara Y., Kizu J., Hori S. Simple and Rapid Determination of Serum Carbapenem Concentrations by High-Performance Liquid Chromatography. J. Infect. Chemother. 2008;14:30–34. doi: 10.1007/s10156-007-0576-X. PubMed DOI
Denooz R., Charlier C. Simultaneous Determination of Five β-Lactam Antibiotics (Cefepim, Ceftazidim, Cefuroxim, Meropenem and Piperacillin) in Human Plasma by High-Performance Liquid Chromatography with Ultraviolet Detection. J. Chromatogr. B. 2008;864:161–167. doi: 10.1016/j.jchromb.2008.01.037. PubMed DOI
Pinder N., Brenner T., Swoboda S., Weigand M.A., Hoppe-Tichy T. Therapeutic Drug Monitoring of Beta-Lactam Antibiotics—Influence of Sample Stability on the Analysis of Piperacillin, Meropenem, Ceftazidime and Flucloxacillin by HPLC-UV. J. Pharm. Biomed. Anal. 2017;143:86–93. doi: 10.1016/j.jpba.2017.05.037. PubMed DOI
Verhoven S.M., Groszek J.J., Fissell W.H., Seegmiller A., Colby J., Patel P., Verstraete A., Shotwell M. Therapeutic Drug Monitoring of Piperacillin and Tazobactam by RP-HPLC of Residual Blood Specimens. Clin. Chim. Acta. 2018;482:60–64. doi: 10.1016/j.cca.2018.03.021. PubMed DOI PMC
Gaikwad A., Gavali S., Narendiran, Katale D., Bonde S., Bhadane R.P. An LC–MS–MS Method for the Simultaneous Quantification of Amoxicillin and Clavulanic Acid in Human Plasma and Its Pharmacokinetic Application. J. Pharm. Res. 2013;6:804–812. doi: 10.1016/j.jopr.2013.07.019. DOI
Piestansky J., Cizmarova I., Mikus P., Parrak V., Babiak P., Secnik P., Secnik P., Kovac A. An Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Determination of 4 β-Lactam Antibiotics, Tazobactam, and Linezolid in Human Plasma Samples. Ther. Drug Monit. 2022;44:784–790. doi: 10.1097/FTD.0000000000001017. PubMed DOI
Colin P., De Bock L., T’jollyn H., Boussery K., Van Bocxlaer J. Development and Validation of a Fast and Uniform Approach to Quantify β-Lactam Antibiotics in Human Plasma by Solid Phase Extraction-Liquid Chromatography–Electrospray-Tandem Mass Spectrometry. Talanta. 2013;103:285–293. doi: 10.1016/j.talanta.2012.10.046. PubMed DOI
Paal M., Zoller M., Schuster C., Vogeser M., Schütze G. Simultaneous Quantification of Cefepime, Meropenem, Ciprofloxacin, Moxifloxacin, Linezolid and Piperacillin in Human Serum Using an Isotope-Dilution HPLC–MS/MS Method. J. Pharm. Biomed. Anal. 2018;152:102–110. doi: 10.1016/j.jpba.2018.01.031. PubMed DOI
Farid N.F., Abdelwahab N.S. New ecological method for determination of different β-lactams: Application to real human plasma samples. RSC Adv. 2019;9:19539–19548. doi: 10.1039/C9RA02671A. PubMed DOI PMC
Nishi H., Fukuyama T., Matsuo M. Separation and Determination of Aspoxicillin in Human Plasma by Micellar Electrokinetic Chromatography with Direct Sample Injection. J. Chromatogr. A. 1990;515:245–255. doi: 10.1016/S0021-9673(01)89319-5. PubMed DOI
Mrestani Y., Neubert R., Schiewe J., Härtl A. Application of Capillary Zone Electrophoresis in Cephalosporin Analysis. J. Chromatogr. B Biomed. Sci. Appl. 1997;690:321–326. doi: 10.1016/S0378-4347(96)00425-2. PubMed DOI
Castaneda Penalvo G., Kelly M., Maillols H., Fabre H. Evaluation of Capillary Zone Electrophoresis and Micellar Electrokinetic Capillary Chromatography with Direct Injection of Plasma for the Determination of Cefotaxime and Its Metabolite. Anal. Chem. 1997;69:1364–1369. doi: 10.1021/ac9605049. PubMed DOI
Mrestani Y., Neubert R., Nagel F. Capillary Zone Electrophoresis Determination of Meropenem in Biological Media Using a High Sensitivity Cell. J. Pharm. Biomed. Anal. 1999;20:899–903. doi: 10.1016/S0731-7085(99)00100-4. PubMed DOI
Mayer B.X., Hollenstein U., Brunner M., Eichler H.-G., Müller M. Micellar Electrokinetic Chromatography for the Analysis of Cefpirome in Microdialysis and Plasma Samples Obtainedin Vivo from Human Volunteers. Electrophoresis. 2000;21:1558–1564. doi: 10.1002/(SICI)1522-2683(20000501)21:8<1558::AID-ELPS1558>3.0.CO;2-N. PubMed DOI
Gáspár A., Kardos S., Andrási M., Klekner Á. Capillary Electrophoresis for the Direct Determination of Cephalosporins in Clinical Samples. Chromatographia. 2002;56:S109–S114. doi: 10.1007/BF02494122. DOI
Mayer B.X., Petsch M., Tschernko E.M., Müller M. Strategies for the Determination of Cefazolin in Plasma and Microdialysis Samples by Short-End Capillary Zone Electrophoresis. Electrophoresis. 2003;24:1215–1220. doi: 10.1002/elps.200390156. PubMed DOI
Kitahashi T., Furuta I. Determination of Meropenem by Capillary Electrophoresis Using Direct Injection of Serum. J. Chromatogr. Sci. 2005;43:430–433. doi: 10.1093/chromsci/43.8.430. PubMed DOI
Chou Y.-W., Yang Y.-H., Chen J.-H., Kuo C.-C., Chen S.-H. Quantification of Meropenem in Plasma and Cerebrospinal Fluid by Micellar Electrokinetic Capillary Chromatography and Application in Bacterial Meningitis Patients. J. Chromatogr. B. 2007;856:294–301. doi: 10.1016/j.jchromb.2007.06.015. PubMed DOI
Andrási M., Gáspár A., Klekner Á. Analysis of Cephalosporins in Bronchial Secretions by Capillary Electrophoresis after Simple Pretreatment. J. Chromatogr. B. 2007;846:355–358. doi: 10.1016/j.jchromb.2006.08.025. PubMed DOI
Solangi A., Mallah A., Memon S. Determination of Ceftriaxone, Ceftizoxime, Paracetamol, and Diclofenac Sodium by Capillary Zone Electrophoresis in Pharmaceutical Formulations and in Human Blood Serum. Turk. J. Chem. 2010;34:921–933. doi: 10.3906/kim-1005-628. DOI
Tůma P., Jaček M., Fejfarová V., Polák J. Electrophoretic Stacking for Sensitive Determination of Antibiotic Ceftazidime in Human Blood and Microdialysates from Diabetic Foot. Anal. Chim. Acta. 2016;942:139–145. doi: 10.1016/j.aca.2016.09.008. PubMed DOI
Šlampová A., Kubáň P. Micro-Electromembrane Extraction through Volatile Free Liquid Membrane for the Determination of β-Lactam Antibiotics in Biological and Environmental Samples. Talanta. 2023;252:123831. doi: 10.1016/j.talanta.2022.123831. PubMed DOI
Liang H.-H., Lin Y.-C., Hung C.-C., Hou Y.-C., Lin Y.-H. Method Development for Determination of Doripenem in Human Plasma via Capillary Electrophoresis Coupled with Field-Enhanced Sample Stacking and Sweeping. Int. J. Mol. Sci. 2023;24:13751. doi: 10.3390/ijms241813751. PubMed DOI PMC
Al-Attas A., Nasr J.J., El-Enany N., Belal F. A green capillary zone electrophoresis method for the simultaneous determination of piperacillin, tazobactam and cefepime in pharmaceutical formulations and human plasma. Biomed. Chromatogr. 2015;29:1811–1818. doi: 10.1002/bmc.3500. PubMed DOI
Hancu G., Neacsu A., Papp L.A., Ciurba A. Simultaneous determination of amoxicillin and clavulanic acid in pharmaceutical preparations by capillary zone electrophoresis. Bras. J. Pharm. Sci. 2016;52:281–286. doi: 10.1590/S1984-82502016000200006. DOI
Pham T.N.M., Le T.B., Le D.D., Ha T.H., Nguyen N.S., Pham T.D., Hauser P.C., Nguyen T.A.H., Mai T.D. Determination of Carbapenem Antibiotics Using a Purpose-Made Capillary Electrophoresis Instrument with Contactless Conductivity Detection. J. Pharm. Biomed. Anal. 2020;178:112906. doi: 10.1016/j.jpba.2019.112906. PubMed DOI
Tůma P., Jaček M., Sommerová B., Dlouhý P., Jarošíková R., Husáková J., Wosková V., Fejfarová V. Monitoring of Amoxicilline and Ceftazidime in the Microdialysate of Diabetic Foot and Serum by Capillary Electrophoresis with Contactless Conductivity Detection. Electrophoresis. 2022;43:1129–1139. doi: 10.1002/elps.202100366. PubMed DOI
Nguyen T.A.H., Pham T.N.M., Le T.B., Le D.C., Tran T.T.P., Nguyen T.Q.H., Nguyen T.K.T., Hauser P.C., Mai T.D. Cost-effective capillary electrophoresis with contactless conductivity detection for quality control of beta-lactam antibiotics. J. Chromatogr. A. 2019;1605:360356. doi: 10.1016/j.chroma.2019.07.010. PubMed DOI
Kanchi S., Sagrado S., Sabela M., Bisetty K., editors. Capillary Electrophoresis: Trends and Developments in Pharmaceutical Research. Routledge; Abingdon, UK: 2017.
Lefeuvre S., Bois-Maublanc J., Hocqueloux L., Bret L., Francia T., Eleout-Da Violante C., Billaud E.M., Barbier F., Got L. A Simple Ultra-High-Performance Liquid Chromatography-High Resolution Mass Spectrometry Assay for the Simultaneous Quantification of 15 Antibiotics in Plasma. J. Chromatogr. B. 2017;1065–1066:50–58. doi: 10.1016/j.jchromb.2017.09.014. PubMed DOI
Radovanovic M., Day R.O., Jones G.D.R., Galettis P., Norris R.L.G. LC–MS/MS Method for Simultaneous Quantification of Ten Antibiotics in Human Plasma for Routine Therapeutic Drug Monitoring. J. Mass. Spectrom. Adv. Clin. Lab. 2022;26:48–59. doi: 10.1016/j.jmsacl.2022.11.001. PubMed DOI PMC
Straub R.F., Voyksner R.D. Determination of Penicillin G, Ampicillin, Amoxicillin, Cloxacillin and Cephapirin by High-Performance Liquid Chromatography—Electrospray Mass Spectrometry. J. Chromatogr. A. 1993;647:167–181. doi: 10.1016/0021-9673(93)83336-Q. PubMed DOI
Zaikin V.G., Borisov R.S. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Crit. Rev. Anal. Chem. 2022;52:1287–1342. doi: 10.1080/10408347.2021.1873100. PubMed DOI
Klampfl C.W., Himmelsbach M. Sheath Liquids in CE-MS: Role, Parameters, and Optimization. In: de Jong G., editor. Capillary Electrophoresis-Mass Spectrometry (CE-MS): Principles and Applications. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2016. pp. 41–65.
Carlier M., Stove V., Roberts J.A., Van De Velde E., De Waele J.J., Verstraete A.G. Quantification of Seven β-Lactam Antibiotics and Two β-Lactamase Inhibitors in Human Plasma Using a Validated UPLC-MS/MS Method. Int. J. Antimicrob. Agents. 2012;40:416–422. doi: 10.1016/j.ijantimicag.2012.06.022. PubMed DOI
Mandell G.L., Bennett J.E., Dolin R. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 7th ed. Churchill Livingstone, Elsevier; Philadelphia, PA, USA: 2010.
Enna S.J., Bylund D.B. xPharm: The Comprehensive Pharmacology Reference. Elsevier; Amsterdam, The Netherlands: 2008.
Dasgupta A., editor. Handbook of Drug Monitoring Methods: Therapeutics and Drugs of Abuse. Humana Press; Totowa, NJ, USA: 2008.
Sillén H., Mitchell R., Sleigh R., Mainwaring G., Catton K., Houghton R., Glendining K. Determination of Avibactam and Ceftazidime in Human Plasma Samples by LC–MS. Bioanalysis. 2015;7:1423–1434. doi: 10.4155/bio.15.76. PubMed DOI
Popowicz N.D., O’Halloran S.J., Fitzgerald D., Lee Y.C.G., Joyce D.A. A Rapid, LC-MS/MS Assay for Quantification of Piperacillin and Tazobactam in Human Plasma and Pleural Fluid; Application to a Clinical Pharmacokinetic Study. J. Chromatogr. B. 2018;1081–1082:58–66. doi: 10.1016/j.jchromb.2018.02.027. PubMed DOI
US Department of Health and Human Services Food and Drug Administration, Center for Drug; Evaluation and Research (CDER) Center for Veterinary Medicine (CVM). Bioanalytical Method Validation, Guidance for Industry. [(accessed on 28 February 2024)];2018 Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf.
Schulz M., Schmoldt A., Andresen-Streichert H., Iwersen-Bergmann S. Revisited: Therapeutic and Toxic Blood Concentrations of More than 1100 Drugs and Other Xenobiotics. Crit Care. 2020;24:195. doi: 10.1186/s13054-020-02915-5. PubMed DOI PMC
Manousi N., Wojnowski W., Płotka-Wasylka J., Samanidou V. Blue Applicability Grade Index (BAGI) and Software: A New Tool for the Evaluation of Method Practicality. Green Chem. 2023;25:7598–7604. doi: 10.1039/D3GC02347H. DOI
Pena-Pereira F., Wojnowski W., Tobiszewski M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020;92:10076–10082. doi: 10.1021/acs.analchem.0c01887. PubMed DOI PMC
Plotka-Wasylka J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta. 2018;181:204–209. doi: 10.1016/j.talanta.2018.01.013. PubMed DOI