Update on Therapeutic Drug Monitoring of Beta-Lactam Antibiotics in Critically Ill Patients-A Narrative Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LM2023049
CZECRIN project, national budget through MEYS
FNBr, 65269705
Ministry of Health, Czech Republic - conceptual development of research organization
PubMed
36978435
PubMed Central
PMC10044408
DOI
10.3390/antibiotics12030568
PII: antibiotics12030568
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial susceptibility, beta-lactam antibiotics, critically ill, high-performance liquid chromatography, pharmacokinetics–pharmacodynamics, therapeutic drug monitoring,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Beta-lactam antibiotics remain one of the most preferred groups of antibiotics in critical care due to their excellent safety profiles and their activity against a wide spectrum of pathogens. The cornerstone of appropriate therapy with beta-lactams is to achieve an adequate plasmatic concentration of a given antibiotic, which is derived primarily from the minimum inhibitory concentration (MIC) of the specific pathogen. In a critically ill patient, the plasmatic levels of drugs could be affected by many significant changes in the patient's physiology, such as hypoalbuminemia, endothelial dysfunction with the leakage of intravascular fluid into interstitial space and acute kidney injury. Predicting antibiotic concentration from models based on non-critically ill populations may be misleading. Therapeutic drug monitoring (TDM) has been shown to be effective in achieving adequate concentrations of many drugs, including beta-lactam antibiotics. Reliable methods, such as high-performance liquid chromatography, provide the accurate testing of a wide range of beta-lactam antibiotics. Long turnaround times remain the main drawback limiting their widespread use, although progress has been made recently in the implementation of different novel methods of antibiotic testing. However, whether the TDM approach can effectively improve clinically relevant patient outcomes must be proved in future clinical trials.
2nd Department of Anaesthesiology University Hospital Brno 620 00 Brno Czech Republic
Department of Laboratory Methods Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Department of Pharmacology Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Department of Simulation Medicine Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Vincent J.L., Sakr Y., Sprung C.L., Ranieri V.M., Reinhart K., Gerlach H., Moreno R., Carlet J., Le Gall J.-R., Payen D., et al. Sepsis in European intensive care units: Results of the SOAP study. Crit. Care Med. 2006;34:344–353. doi: 10.1097/01.CCM.0000194725.48928.3A. PubMed DOI
Goulden R., Hoyle M.-C., Monis J., Railton D., Riley V., Martin P., Martina R., Nsutebu E. QSOFA, SIRS and NEWS for predicting inhospital mortality and ICU admission in emergency admissions treated as sepsis. Emerg. Med. J. 2018;35:345–349. doi: 10.1136/emermed-2017-207120. PubMed DOI
Liu V.X., Fielding-Singh V., Greene J.D., Baker J.M., Iwashyna T.J., Bhattacharya J., Escobar G.J. The timing of early antibiotics and hospital mortality in sepsis. Am. J. Respir. Crit. Care Med. 2017;196:856–863. doi: 10.1164/rccm.201609-1848OC. PubMed DOI PMC
Camargo M.S., Mistro S., Oliveira M.G., Passos L.C.S. Association between increased mortality rate and antibiotic dose adjustment in intensive care unit patients with renal impairment. Eur. J. Clin. Pharmacol. 2019;75:119–126. doi: 10.1007/s00228-018-2565-7. PubMed DOI
Evans L., Rhodes A., Alhazzani W., Antonelli M., Coopersmith C.M., French C., Machado F., Mcintyre L., Ostermann M., Prescott H.L., et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47:1181–1247. doi: 10.1007/s00134-021-06506-y. PubMed DOI PMC
Klein E.Y., Van Boeckel T.P., Martinez E.M., Pant S., Gandra S., Levin S.A., Goossens H., Laxminarayan R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA. 2018;115:E3463–E3470. doi: 10.1073/pnas.1717295115. PubMed DOI PMC
De Angelis G., del Giacomo P., Posteraro B., Sanguinetti M., Tumbarello M. Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in enterobacteriaceae. Int. J. Mol. Sci. 2020;21:5090. doi: 10.3390/ijms21145090. PubMed DOI PMC
Bush K., Bradford P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016;6:a025247. doi: 10.1101/cshperspect.a025247. PubMed DOI PMC
Roberts J.A., Paul S.K., Akova M., Bassetti M., De Waele J.J., Dimopoulos G., Kaukonen K.-M., Koulenti D., Martin C., Montravers P., et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current ß-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014;58:1072–1083. doi: 10.1093/cid/ciu027. PubMed DOI
Dhaese S.A.M., Thooft A.D.J., Farkas A., Lipman J., Verstraete A.G., Stove V., Roberts J.A., De Waele J.J. Early target attainment of continuous infusion piperacillin/tazobactam and meropenem in critically ill patients: A prospective observational study. J. Crit. Care. 2019;52:75–79. doi: 10.1016/j.jcrc.2019.04.013. PubMed DOI
Abdulla A., Dijkstra A., Hunfeld N.G.M., Endeman H., Bahmany S., Ewoldt T.M.J., Muller A.E., Van Gelder T., Gommers D., Koch B.C.P. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: A two-center prospective study (EXPAT) Crit. Care. 2020;24:558. doi: 10.1186/s13054-020-03272-z. PubMed DOI PMC
Lamoth F., Buclin T., Pascual A., Vora S., Bolay S., Decosterd L.A., Calandra T., Marchetti O. High cefepime plasma concentrations and neurological toxicity in febrile neutropenic patients with mild impairment of renal function. Antimicrob. Agents Chemother. 2010;54:4360–4367. doi: 10.1128/AAC.01595-08. PubMed DOI PMC
Imani S., Buscher H., Marriott D., Gentili S., Sandaradura I. Too much of a good thing: A retrospective study of β-lactam concentration-toxicity relationships. J. Antimicrob. Chemother. 2017;72:2891–2897. doi: 10.1093/jac/dkx209. PubMed DOI
Abdul-Aziz M.-H., Alffenaar J.-W.C., Bassetti M., Bracht H., Dimopoulos G., Marriott D., Neely M.N., Paiva J.-A., Pea F., Sjovall F., et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper#. Intensive Care Med. 2020;46:1127–1153. doi: 10.1007/s00134-020-06050-1. PubMed DOI PMC
Guilhaumou R., Benaboud S., Bennis Y., Dahyot-Fizelier C., Dailly E., Gandia P., Goutelle S., Lefeuvre S., Mongardon N., Roger C., et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-Guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia. Crit. Care. 2019;23:1–21. doi: 10.1186/s13054-019-2378-9. PubMed DOI PMC
Mouton J.W., Dudley M.N., Cars O., Derendorf H., Drusano G.L. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: An update. J. Antimicrob. Chemother. 2005;55:601–607. doi: 10.1093/jac/dki079. PubMed DOI
Roberts J.A., Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med. 2009;37:840–851. doi: 10.1097/CCM.0b013e3181961bff. PubMed DOI
Roberts J.A., Abdul-Aziz M.-H., Lipman J., Mouton J.W., Vinks A.A., Felton T.W., Hope W.W., Farkas A., Neely M.N., Schentag J.J., et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014;14:498–509. doi: 10.1016/S1473-3099(14)70036-2. PubMed DOI PMC
Masich A.M., Heavner M.S., Gonzales J.P., Claeys K.C. Pharmacokinetic/Pharmacodynamic Considerations of Beta-Lactam Antibiotics in Adult Critically Ill Patients. Curr. Infect. Dis. Rep. 2018;20:9. doi: 10.1007/s11908-018-0613-1. PubMed DOI
Craig W.A., Gerber A.U. Pharmacokinetics of cefoperazone: A review. Drugs. 1981;22((Suppl. S1)):35–45. doi: 10.2165/00003495-198100221-00010. PubMed DOI
Bilbao-Meseguer I., Rodríguez-Gascón A., Barrasa H., Isla A., Solinís M.Á. Augmented Renal Clearance in Critically Ill Patients: A Systematic Review. Clin. Pharmacokinet. 2018;57:1107–1121. doi: 10.1007/s40262-018-0636-7. PubMed DOI
Udy A.A., Dulhunty J.M., Roberts J.A., Davis J.S., Webb S.A.R., Bellomo R., Gomersall C., Shirwadkar C., Eastwood G.M., Myburgh J., et al. Association between augmented renal clearance and clinical outcomes in patients receiving β-lactam antibiotic therapy by continuous or intermittent infusion: A nested cohort study of the BLING-II randomised, placebo-controlled, clinical trial. Int. J. Antimicrob. Agents. 2017;49:624–630. doi: 10.1016/j.ijantimicag.2016.12.022. PubMed DOI
Mahmoud S.H., Shen C. Augmented renal clearance in critical illness: An important consideration in drug dosing. Pharmaceutics. 2017;9:36. doi: 10.3390/pharmaceutics9030036. PubMed DOI PMC
Dolmatova E.V., Wang K., Mandavilli R., Griendling K.K. The effects of sepsis on endothelium and clinical implications. Cardiovasc. Res. 2021;117:60–73. doi: 10.1093/cvr/cvaa070. PubMed DOI PMC
García M.I.M., Gonzalez P.G., Romero M.G., Cano A.G., Oscier C., Rhodes A., Grounds R.M., Cecconi M. Effects of fluid administration on arterial load in septic shock patients. Intensive Care Med. 2015;41:1247–1255. doi: 10.1007/s00134-015-3898-7. PubMed DOI
Marik P.E., Byrne L., van Haren F. Fluid resuscitation in sepsis: The great 30 mL per kg hoax. J. Thorac. Dis. 2020;12:S37–S47. doi: 10.21037/jtd.2019.12.84. PubMed DOI PMC
Roberts J.A., Pea F., Lipman J. The clinical relevance of plasma protein binding changes. Clin. Pharmacokinet. 2013;52:1–8. doi: 10.1007/s40262-012-0018-5. PubMed DOI
Póvoa P., Moniz P., Pereira J.G., Coelho L. Optimizing antimicrobial drug dosing in critically ill patients. Microorganisms. 2021;9:1401. doi: 10.3390/microorganisms9071401. PubMed DOI PMC
Veiga R.P., Paiva J.A. Pharmacokinetics–pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit. Care. 2018;22:1–34. doi: 10.1186/s13054-018-2155-1. PubMed DOI PMC
Joukhadar C., Frossard M., Mayer B.X., Brunner M., Klein N., Siostrozonek P., Eichler H.G., Muller M. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit. Care Med. 2001;29:385–391. doi: 10.1097/00003246-200102000-00030. PubMed DOI
Fratoni A.J., Nicolau D.P., Kuti J.L. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy. 2021;41:220–233. doi: 10.1002/phar.2505. PubMed DOI
Pea F., Viale P., Furlanut M. Antimicrobial Therapy in Critically Ill Patients. Clin. Pharmacokinet. 2005;44:1009–1034. doi: 10.2165/00003088-200544100-00002. PubMed DOI
Smith B.S., Yogaratnam D., Levasseur-Franklin K.E., Forni A., Fong J. Introduction to drug pharmacokinetics in the critically ill patient. Chest. 2012;141:1327–1336. doi: 10.1378/chest.11-1396. PubMed DOI
Venet F., Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat. Rev. Nephrol. 2018;14:121–137. doi: 10.1038/nrneph.2017.165. PubMed DOI
Jongmans C., Muller A.E., Broek P.V.D., Almeida B.D.M.C.D., Berg C.V.D., Van Oldenrijk J., Bos P.K., Koch B.C.P. An Overview of the Protein Binding of Cephalosporins in Human Body Fluids: A Systematic Review. Front. Pharmacol. 2022;13:900551. doi: 10.3389/fphar.2022.900551. PubMed DOI PMC
Breilh D., Fleureau C., Gordien J.B., Joanes-Boyau O., Texier-Maugein J., Rapaport S., Boselli E., Janvier G., Saux M.C. Pharmacokinetics of free ertapenem in critically ill septic patients: Intermittent versus continuous infusion. Minerva Anestesiol. 2011;77:1058–1062. PubMed
Erstad B.L. Serum Albumin Levels: Who Needs Them? Ann. Pharmacother. 2021;55:798–804. doi: 10.1177/1060028020959348. PubMed DOI
Ulldemolins M., Roberts J.A., Rello J., Paterson D.L., Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin. Pharmacokinet. 2011;50:99–110. doi: 10.2165/11539220-000000000-00000. PubMed DOI
Schießer S., Hitzenbichler F., Kees M.G., Kratzer A., Lubnow M., Salzberger B., Kees F., Dorn C. Measurement of Free Plasma Concentrations of Beta-Lactam Antibiotics: An Applicability Study in Intensive Care Unit Patients. Ther. Drug Monit. 2021;43:264–270. doi: 10.1097/FTD.0000000000000827. PubMed DOI
Wong G., Briscoe S., McWhinney B., Ally M., Ungerer J., Lipman J., Roberts J.A. Therapeutic drug monitoring of b-lactam antibiotics in the critically ill: Direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J. Antimicrob. Chemother. 2018;73:3087–3094. doi: 10.1093/jac/dky314. PubMed DOI
Bird I.M. High performance liquid chromatography: Principles and clinical applications. BMJ. 1989;299:783–787. doi: 10.1136/bmj.299.6702.783. PubMed DOI PMC
Udy A.A., Baptista J.P., Lim N.L., Joynt G.M., Jarrett P., Wockner L., Boots R.J., Lipman J. Augmented renal clearance in the ICU: Results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit. Care Med. 2014;42:520–527. doi: 10.1097/CCM.0000000000000029. PubMed DOI
Matzke G.R., Aronoff G.R., Atkinson A.J., Bennett W.M., Decker B.S., Eckardt K.-U., Golper T., Grabe D.W., Kasiske B., Keller F., et al. Drug dosing consideration in patients with acute and chronic kidney diseasea clinical update from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int. 2011;80:1122–1137. doi: 10.1038/ki.2011.322. PubMed DOI
Hoste E.A.J., Kellum J.A., Selby N.M., Zarbock A., Palevsky P.M., Bagshaw S.M., Goldstein S.L., Cerdá J., Chawla L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018;14:607–625. doi: 10.1038/s41581-018-0052-0. PubMed DOI
Pickkers P., Darmon M., Hoste E., Joannidis M., Legrand M., Ostermann M., Prowle J.R., Schneider A., Schetz M. Acute kidney injury in the critically ill: An updated review on pathophysiology and management. Intensive Care Med. 2021;47:835–850. doi: 10.1007/s00134-021-06454-7. PubMed DOI PMC
Bragadottir G., Redfors B., Ricksten S.E. Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury—True GFR versus urinary creatinine clearance and estimating equations. Crit. Care. 2013;17:R108. doi: 10.1186/cc12777. PubMed DOI PMC
Ravn B., Rimes-Stigare C., Bell M., Hansson M., Hansson L.-O., Martling C.-R., Larsson A., Mårtensson J. Creatinine versus cystatin C based glomerular filtration rate in critically ill patients. J. Crit. Care. 2019;52:136–140. doi: 10.1016/j.jcrc.2019.04.007. PubMed DOI
Herrera-Gutiérrez M.E., Seller-Pérez G., Banderas-Bravo E., Muñoz-Bono J., Lebrón-Gallardo M., Fernandez-Ortega J.F. Replacement of 24-h creatinine clearance by 2-h creatinine clearance in intensive care unit patients: A single-center study. Intensive Care Med. 2007;33:1900–1906. doi: 10.1007/s00134-007-0745-5. PubMed DOI
Hoste E.A.J., Bagshaw S.M., Bellomo R., Cely C.M., Colman R., Cruz D.N., Edipidis K., Forni L.G., Gomersall C.D., Govil D., et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–1423. doi: 10.1007/s00134-015-3934-7. PubMed DOI
Valley T.S., Nallamothu B.K., Heung M., Iwashyna T.J., Cooke C.R. Hospital Variation in Renal Replacement Therapy for Sepsis in the United States. Crit. Care Med. 2018;46:e158–e165. doi: 10.1097/CCM.0000000000002878. PubMed DOI PMC
Hoff B.M., Maker J.H., Dager W.E., Heintz B.H. Antibiotic Dosing for Critically Ill Adult Patients Receiving Intermittent Hemodialysis, Prolonged Intermittent Renal Replacement Therapy, and Continuous Renal Replacement Therapy: An Update. Ann. Pharmacother. 2020;54:43–55. doi: 10.1177/1060028019865873. PubMed DOI
Eyler R.F., Vilay A.M., Nader A.M., Heung M., Pleva M., Sowinski K.M., DePestel D.D., Sörgel F., Kinzig M., Mueller B.A. Pharmacokinetics of ertapenem in critically ill patients receiving continuous venovenous hemodialysis or hemodiafiltration. Antimicrob. Agents Chemother. 2014;58:1320–1326. doi: 10.1128/AAC.02090-12. PubMed DOI PMC
Arzuaga A., Maynar J., Gascón A.R., Isla A., Corral E., Fonseca F., Sánchez-Izquierdo J., Rello J., Canut A., Pedraz J.L. Influence of renal function on the pharmacokinetics of piperacillin/tazobactam in intensive care unit patients during continuous venovenous hemofiltration. J. Clin. Pharmacol. 2005;45:168–176. doi: 10.1177/0091270004269796. PubMed DOI
Ulldemolins M., Soy D., Llaurado-Serra M., Vaquer S., Castro P., Rodriguez A.H., Pontes C., Calvo G., Martin-Loeches I. Meropenem population pharmacokinetics in critically Ill patients with septic shock and continuous renal replacement therapy: Influence of residual diuresis on dose requirements. Antimicrob. Agents Chemother. 2015;59:5520–5528. doi: 10.1128/AAC.00712-15. PubMed DOI PMC
Collet M., Hijazi D., Sevrain P., Romain B., Labeyrie M.-A., Prie D., Tabibzadeh N., Mebazaa A., Chousterman B.G. Evaluation of glomerular filtration rate using iohexol plasma clearance in critically ill patients with augmented renal creatinine clearance: A single-centre retrospective study. Eur. J. Anaesthesiol. 2021;38:652–658. doi: 10.1097/EJA.0000000000001501. PubMed DOI
Udy A.A., Varghese J.M., Altukroni M., Briscoe S., McWhinney B.C., Unegerer J.P., Lipman J., Roberts J.A. Subtherapeutic initial β-lactam concentrations in select critically ill patients: Association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142:30–39. doi: 10.1378/chest.11-1671. PubMed DOI
Baptista J.P., Udy A.A., Sousa E., Pimentel J., Wang L., Roberts J.A., Lipman J. A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit. Care. 2011;15:R139. doi: 10.1186/cc10262. PubMed DOI PMC
Matusik E., Lemtiri J., Wabont G., Lambiotte F. Beta-lactam dosing during continuous renal replacement therapy: A survey of practices in french intensive care units. BMC Nephrol. 2022;23:1–10. doi: 10.1186/s12882-022-02678-x. PubMed DOI PMC
Milewski R.C., Chatterjee S., Merritt-Genore H., Hayanga J.A., Grant M.C., Roy N., Hirose H., Moosdorf R., Whitman G.J., Haft J.W., et al. ECMO During COVID-19: A Society of Thoracic Surgeons/Extracorporeal Life Support Organization Survey. Ann. Thorac. Surg. Short Rep. 2022;1:168–173. doi: 10.1016/j.atssr.2022.10.017. PubMed DOI PMC
Gomez F., Veita J., Laudanski K. Antibiotics and ECMO in the Adult Population-Persistent Challenges and Practical Guides. Antibiotics. 2022;11:338. doi: 10.3390/antibiotics11030338. PubMed DOI PMC
Kühn D., Metz C., Seiler F., Wehrfritz H., Roth S., Alqudrah M., Becker A., Bracht H., Wagenpfeil S., Hoffmann M., et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: A prospective, observational single-center study. Crit. Care. 2020;24:1–11. doi: 10.1186/s13054-020-03397-1. PubMed DOI PMC
Wilson J.F., Davis A.C., Tobin C.M. Evaluation of commercial assays for vancomycin and aminoglycosides in serum: A comparison of accuracy and precision based on external quality assessment. J. Antimicrob. Chemother. 2003;52:78–82. doi: 10.1093/jac/dkg296. PubMed DOI
Dubois N., Sqalli G., Gilson M., Charlier C. Analytical validation of a quantitative method for therapeutic drug monitoring on the Alinity(®)c Abbott. Ann. Biol. Clin. 2020;78:147–155. doi: 10.1684/abc.2020.1535. PubMed DOI
Leung K.S.-Y., Fong B.M.-W. LC-MS/MS in the routine clinical laboratory: Has its time come? Anal. Bioanal. Chem. 2014;406:2289–2301. doi: 10.1007/s00216-013-7542-5. PubMed DOI
Paal M., Heilmann M., Koch S., Bertsch T., Steinmann J., Höhl R., Liebchen U., Schuster C., Kleine F.M., Vogeser M. Comparative LC-MS/MS and HPLC-UV Analyses of Meropenem and Piperacillin in Critically Ill Patients. Clin. Lab. 2019;65 doi: 10.7754/Clin.Lab.2019.190210. PubMed DOI
Magréault S., Jaureguy F., Zahar J.-R., Mechai F., Toion D., Cohen Y., Carbonnelle E., Jullien V. Automated HPLC-MS/MS assay for the simultaneous determination of ten plasma antibiotic concentrations. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2022;1211:123496. doi: 10.1016/j.jchromb.2022.123496. PubMed DOI
Fage D., Deprez G., Fontaine B., Wolff F., Cotton F. Simultaneous determination of 8 beta-lactams and linezolid by an ultra-performance liquid chromatography method with UV detection and cross-validation with a commercial immunoassay for the quantification of linezolid. Talanta. 2021;221:121641. doi: 10.1016/j.talanta.2020.121641. PubMed DOI
Radovanovic M., Day R.O., Jones G.D.R., Galettis P., Norris R.L.G. LC-MS/MS method for simultaneous quantification of ten antibiotics in human plasma for routine therapeutic drug monitoring. J. Mass Spectrom. Adv. Clin. Lab. 2022;26:48–59. doi: 10.1016/j.jmsacl.2022.11.001. PubMed DOI PMC
Carlier M., Stove V., Wallis S.C., De Waele J.J., Verstraete A., Lipman J., Roberts J. Assays for therapeutic drug monitoring of β-lactam antibiotics: A structured review. Int. J. Antimicrob. Agents. 2015;46:367–375. doi: 10.1016/j.ijantimicag.2015.06.016. PubMed DOI
Mathieu E., Duterme C., Fage D., Cotton F. CascadionTM SM Clinical Analyzer: Evaluation of the whole blood immunosuppressants quantification and routine usability. Clin. Chim. Acta. 2022;539:97–104. doi: 10.1016/j.cca.2022.11.029. PubMed DOI
EUCAST Definitive Document E DEF 3.1, June 2000: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 2000;6:509–515. doi: 10.1046/j.1469-0691.2000.00142.x. PubMed DOI
Leclercq R., Cantón R., Brown D.F.J., Giske C.G., Heisig P., MacGowan A.P., Mouton J.W., Nordmann P., Rodloff A.C., Rossolini G.M., et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2013;19:141–160. doi: 10.1111/j.1469-0691.2011.03703.x. PubMed DOI
Timsit J.-F., Bassetti M., Cremer O., Daikos G., de Waele J., Kallil A., Kipnis E., Kollef M., Laupland K., Paiva J.-A., et al. Rationalizing antimicrobial therapy in the ICU: A narrative review. Intensive Care Med. 2019;45:172–189. doi: 10.1007/s00134-019-05520-5. PubMed DOI
Giske C.G., Turnidge J., Cantón R., Kahlmeter G. Update from the European Committee on Antimicrobial Susceptibility Test-ing (EUCAST) J. Clin. Microbiol. 2022;60:e0027621. doi: 10.1128/jcm.00276-21. PubMed DOI PMC
Mouton J.W., Meletiadis J., Voss A., Turnidge J. Variation of MIC measurements: The contribution of strain and laboratory variability to measurement precision. J. Antimicrob. Chemother. 2018;73:2374–2379. doi: 10.1093/jac/dky232. PubMed DOI
Mouton J.W., Muller A.E., Canton R., Giske C.G., Kahlmeter G., Turnidge J. MIC-based dose adjustment: Facts and fables. J. Antimicrob. Chemother. 2018;73:564–568. doi: 10.1093/jac/dkx427. PubMed DOI
Cendejas-Bueno E., Cuenca-Estrella M., Gomez-Lopez A. Determination of voriconazole serum concentration by bioassay, a valid method for therapeutic drug monitoring for clinical laboratories. Antimicrob. Agents Chemother. 2013;57:3437–3440. doi: 10.1128/AAC.00323-13. PubMed DOI PMC
Fridlund J., Woksepp H., Schön T. A microbiological method for determining serum levels of broad spectrum β-lactam antibiotics in critically ill patients. J. Microbiol. Methods. 2016;129:23–27. doi: 10.1016/j.mimet.2016.07.020. PubMed DOI
Roger C., Louart B. Beta-Lactams Toxicity in the Intensive Care Unit: An Underestimated Collateral Damage? Microorganisms. 2021;9:1505. doi: 10.3390/microorganisms9071505. PubMed DOI PMC
Haddad N.A., Schreier D.J., Fugate J.E., Gajic O., Hocker S.E., Ice C.J., Leung S.B., Mara K.C., Rabinstein A.A., Rule A.D., et al. Incidence and Predictive Factors Associated with Beta-Lactam Neurotoxicity in the Critically Ill: A Retrospective Cohort Study. Neurocrit. Care. 2022;37:73–80. doi: 10.1007/s12028-022-01442-1. PubMed DOI PMC
Payne L.E., Gagnon D.J., Riker R.R., Seder D.B., Glisic E.K., Morris J.G., Fraser G.L. Cefepime-induced neurotoxicity: A systematic review. Crit. Care. 2017;21:1–8. doi: 10.1186/s13054-017-1856-1. PubMed DOI PMC
Beumier M., Casu G.S., Hites M., Wolff F., Cotton F., Vincent J.L., Jacobs F., Taccone F.S. Elevated β-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol. 2015;81:497–506. PubMed
Quinton M.-C., Bodeau S., Kontar L., Zerbib Y., Maizel J., Slama M., Masmoudi K., Lemaire-Hurtel A.-S., Bennis Y. Neurotoxic Concentration of Piperacillin during Continuous Infusion in Critically Ill Patients. Antimicrob. Agents Chemother. 2017;61:e00654-17. doi: 10.1128/AAC.00654-17. PubMed DOI PMC
Marti C., Stirnemann J., Lescuyer P., Tonoli D., von Dach E., Huttner A. Therapeutic drug monitoring and clinical outcomes in severely ill patients receiving amoxicillin: A single-centre prospective cohort study. Int. J. Antimicrob. Agents. 2022;59:106601. doi: 10.1016/j.ijantimicag.2022.106601. PubMed DOI
Blair M., Côté J.M., Cotter A., Lynch B., Redahan L., Murray P.T. Nephrotoxicity from vancomycin combined with piperacillin-tazobactam: A comprehensive review. Am. J. Nephrol. 2021;52:85–97. doi: 10.1159/000513742. PubMed DOI
Miano T.A., Hennessey S., Yang W., Dunn T.G., Weisman A.R., Oniyide O., Agyekum R.S., Turner A.P., Ittner C.A.G., Anderson B.J., et al. Association of vancomycin plus piperacillin-tazobactam with early changes in creatinine versus cystatin C in critically ill adults: A prospective cohort study. Intensive Care Med. 2022;48:1144–1155. doi: 10.1007/s00134-022-06811-0. PubMed DOI PMC
Chang J., Pais G.M., Valdez K., Marianski S., Barreto E.F., Scheetz M.H. Glomerular Function and Urinary Biomarker Changes between Vancomycin and Vancomycin plus Piperacillin-Tazobactam in a Translational Rat Model. Antimicrob. Agents Chemother. 2022;66:e0213221. doi: 10.1128/aac.02132-21. PubMed DOI PMC
He M., Souza E., Matvekas A., Crass R.L., Pai M.P. Alteration in Acute Kidney Injury Potential with the Combination of Vancomycin and Imipenem-Cilastatin/Relebactam or Piperacillin/Tazobactam in a Preclinical Model. Antimicrob. Agents Chemother. 2021;65:e02141-20. doi: 10.1128/AAC.02141-20. PubMed DOI PMC
Avedissian S.N., Pais G.M., Liu J., Rhodes N.J., Scheetz M.H. Piperacillin-Tazobactam Added to Vancomycin Increases Risk for Acute Kidney Injury: Fact or Fiction? Clin. Infect. Dis. 2020;71:426–432. doi: 10.1093/cid/ciz1189. PubMed DOI
Pickering J.W., Frampton C.M., Walker R.J., Shaw G.M., Endre Z.H. Four hour creatinine clearance is better than plasma creatinine for monitoring renal function in critically ill patients. Crit. Care. 2012;16:R107. doi: 10.1186/cc11391. PubMed DOI PMC
Bagshaw S.M., Bellomo R. Cystatin C in acute kidney injury. Curr. Opin. Crit. Care. 2010;16:533–539. doi: 10.1097/MCC.0b013e32833e8412. PubMed DOI
Vardakas K.Z., Kalimeris G.D., Triarides N.A., Falagas M.E. An update on adverse drug reactions related to β-lactam antibiotics. Expert Opin. Drug Saf. 2018;17:499–508. doi: 10.1080/14740338.2018.1462334. PubMed DOI
Moledina D.G., Perazella M.A. Drug-induced acute interstitial nephritis. Clin. J. Am. Soc. Nephrol. 2017;12:2046–2049. doi: 10.2215/CJN.07630717. PubMed DOI PMC
Vial T., Bailly H., Perault-Pochat M.-C., Default A., Boulay C., Chouchana L., Kassai B., Centres T.F.N.O.P. Beta-lactam-induced severe neutropaenia: A descriptive study. Fundam. Clin. Pharmacol. 1019;33:225–231. doi: 10.1111/fcp.12419. PubMed DOI
Levison M.E., Levison J.H. Pharmacokinetics and Pharmacodynamics of Antibacterial Agents. Infect. Dis. Clin. N. Am. 2009;23:791–815. doi: 10.1016/j.idc.2009.06.008. PubMed DOI PMC
McKinnon P.S., Paladino J.A., Schentag J.J. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int. J. Antimicrob. Agents. 2008;31:345–351. doi: 10.1016/j.ijantimicag.2007.12.009. PubMed DOI
Sime F.B., Roberts M.S., Peake S.L., Lipman J., Roberts J.A. Does beta-lactam pharmacokinetic variability in critically III patients justify therapeutic drug monitoring? A systematic review. Ann. Intensive Care. 2012;2:1–11. doi: 10.1186/2110-5820-2-35. PubMed DOI PMC
Leegwater E., Kraaijenbrink B.V.C., Moes D.J.A.R., Purmer I.M., Wilms E.B. Population pharmacokinetics of ceftriaxone administered as continuous or intermittent infusion in critically ill patients. J. Antimicrob. Chemother. 2020;75:1554–1558. doi: 10.1093/jac/dkaa067. PubMed DOI
O’Jeanson A., Larcher R., le Souder C., Djebli N., Khier S. Population Pharmacokinetics and Pharmacodynamics of Meropenem in Critically Ill Patients: How to Achieve Best Dosage Regimen According to the Clinical Situation. Eur. J. Drug Metab. Pharmacokinet. 2021;46:695–705. doi: 10.1007/s13318-021-00709-w. PubMed DOI
Cojutti P.G., Morandin E., Baraldo M., Pea F. Population pharmacokinetics of continuous infusion of piperacillin/tazobactam in very elderly hospitalized patients and considerations for target attainment against Enterobacterales and Pseudomonas aeruginosa. Int. J. Antimicrob. Agents. 2021;58:106408. doi: 10.1016/j.ijantimicag.2021.106408. PubMed DOI
Abdul-Aziz M.H., Sulaiman H., Mat-Nor M.-B., Rai V., Wong K.K., Hasan M.S., Rahman A.N.A., Jamal J.A., Wallis S.C., Lipman J., et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): A prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42:1535–1545. doi: 10.1007/s00134-015-4188-0. PubMed DOI
Dulhunty J.M., Roberts J.A., Davis J.S., Webb S.A.R., Bellomo R., Gomersall C., Shirwadkar C., Eastwood G.M., Myburgh J., Paterson D.L., et al. A multicenter randomized trial of continuous versus intermittent β-lactam infusion in severe sepsis. Am. J. Respir. Crit. Care Med. 2015;192:1298–1305. doi: 10.1164/rccm.201505-0857OC. PubMed DOI
Lee Y.R., Miller P.D., Alzghari S.K., Blanco D.D., Hager J.D., Kuntz K.S. Continuous Infusion Versus Intermittent Bolus of Beta-Lactams in Critically Ill Patients with Respiratory Infections: A Systematic Review and Meta-analysis. Eur. J. Drug Metab. Pharmacokinet. 2018;43:155–170. doi: 10.1007/s13318-017-0439-5. PubMed DOI
Rhodes N.J., Liu J., O’Donnell J.N., Dulhunty J.M., Abdul-Aziz M.H., Berko P.Y., Nadler B., Lipman J., Roberts J.A. Prolonged Infusion Piperacillin-Tazobactam Decreases Mortality and Improves Outcomes in Severely Ill Patients: Results of a Systematic Review and Meta-Analysis. Crit. Care Med. 2018;46:236–243. doi: 10.1097/CCM.0000000000002836. PubMed DOI
Teo J., Liew Y., Lee W., Kwa A.L.-H. Prolonged infusion versus intermittent boluses of β-lactam antibiotics for treatment of acute infections: A meta-analysis. Int. J. Antimicrob. Agents. 2014;43:403–411. doi: 10.1016/j.ijantimicag.2014.01.027. PubMed DOI
Vardakas K.Z., Voulgaris G.L., Maliaros A., Samonis G., Falagas M.E. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: A systematic review and meta-analysis of randomised trials. Lancet Infect. Dis. 2018;18:108–120. doi: 10.1016/S1473-3099(17)30615-1. PubMed DOI
Abdul-Aziz M.H., Portunato F., Roberts J.A. Prolonged infusion of beta-lactam antibiotics for Gram-negative infections: Rationale and evidence base. Curr. Opin. Infect. Dis. 2020;33:501–510. doi: 10.1097/QCO.0000000000000681. PubMed DOI
Fan S.Y., Shum H.P., Cheng W.Y., Chan Y.H., Leung S.Y.M.S., Yan W.W. Clinical Outcomes of Extended Versus Intermittent Infusion of Piperacillin/Tazobactam in Critically Ill Patients: A Prospective Clinical Trial. Pharmacotherapy. 2017;37:109–119. doi: 10.1002/phar.1875. PubMed DOI
Longuet P., Lecapitaine A., Cassard B., Batista R., Gauzit R., Lesprit P., Haddad R., Vanjak D., Diamantis S. Préparation et administration des antibiotiques par voie injectable: Comment éviter de jouer à l’apprenti sorcier. Med. Mal. Infect. 2016;46:242–268. doi: 10.1016/j.medmal.2016.01.010. PubMed DOI
Lima L.M., da Silva B.N.M., Barbosa G., Barreiro E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020;208:112829. doi: 10.1016/j.ejmech.2020.112829. PubMed DOI
Gijsen M., Vlasselaers D., Spriet I., Allegaert K. Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics. 2021;10:1182. doi: 10.3390/antibiotics10101182. PubMed DOI PMC
Versporten A., Sharland M., Bielicki J., Drapier N., Vankerckhoven V., Goossens H. The antibiotic resistance and prescribing in European Children project: A neonatal and pediatric antimicrobial web-based point prevalence survey in 73 hospitals worldwide. Pediatr. Infect. Dis. J. 2013;32:e242–e253. doi: 10.1097/INF.0b013e318286c612. PubMed DOI
Gerber J.S., Newland J.G., Coffin S.E., Hall M., Thurm C., Prasad P.A., Feudtner C., Zaoutis T.E. Variability in antibiotic use at children’s hospitals. Pediatrics. 2010;126:1067–1073. doi: 10.1542/peds.2010-1275. PubMed DOI PMC
Brogan T.V., Thurm C., Hersh A.L., Gerber J.S., Smith M.J., Shah S.S., Courter J.D., Patel S.J., Parker S.K., Kronman M.P., et al. Variability in Antibiotic Use Across PICUs. Pediatr. Crit. Care Med. 2018;19:519–527. doi: 10.1097/PCC.0000000000001535. PubMed DOI
Poole N.M., Shapiro D.J., Fleming-Dutra K.E., Hicks L.A., Hersh A.L., Kronman M.P. Antibiotic Prescribing for Children in United States Emergency Departments: 2009–2014. Pediatrics. 2019;143:e20181056. doi: 10.1542/peds.2018-1056. PubMed DOI PMC
Willems J., Hermans E., Schelstraete P., Depuydt P., de Cock P. Optimizing the Use of Antibiotic Agents in the Pediatric Intensive Care Unit: A Narrative Review. Paediatr. Drugs. 2021;23:39–53. doi: 10.1007/s40272-020-00426-y. PubMed DOI PMC
Blinova E., Lau E., Bitnun A., Cox P., Schwartz S., Atenafu E., Yau Y., Streitenberger L., Parshuram C.S., Marshall J., et al. Point prevalence survey of antimicrobial utilization in the cardiac and pediatric critical care unit. Pediatr. Crit. Care Med. 2013;14:e280–e288. doi: 10.1097/PCC.0b013e31828a846d. PubMed DOI
Bruns N., Dohna-Schwake C. Antibiotics in critically ill children-a narrative review on different aspects of a rational approach. Pediatr. Res. 2022;91:440–446. doi: 10.1038/s41390-021-01878-9. PubMed DOI PMC
Hufnagel M., Versporten A., Bielicki J., Drapier N., Sharland M., Goossens H. High Rates of Prescribing Antimicrobials for Prophylaxis in Children and Neonates: Results From the Antibiotic Resistance and Prescribing in European Children Point Prevalence Survey. J. Pediatr. Infect. Dis. Soc. 2019;8:143–151. doi: 10.1093/jpids/piy019. PubMed DOI
Versporten A., Bielicki J., Drapier N., Sharland M., Goossens H. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: Developing hospital-quality indicators of antibiotic prescribing for children. J. Antimicrob. Chemother. 2016;71:1106–1117. doi: 10.1093/jac/dkv418. PubMed DOI
Czaja A.S., Reiter P.D., Schultz M.L., Valuck R.J. Patterns of Off-Label Prescribing in the Pediatric Intensive Care Unit and Prioritizing Future Research. J. Pediatr. Pharmacol. Ther. 2015;20:186–196. doi: 10.5863/1551-6776-20.3.186. PubMed DOI PMC
Van den Anker J.N., Schwab M., Kearns G.L. Developmental pharmacokinetics. Handb. Exp. Pharmacol. 2011;205:51–75. doi: 10.1007/978-3-642-20195-0_2. PubMed DOI
Van Donge T., Bielicki J.A., van den Anker J., Pfister M. Key Components for Antibiotic Dose Optimization of Sepsis in Neonates and Infants. Front. Pediatr. 2018;6:325. doi: 10.3389/fped.2018.00325. PubMed DOI PMC
Bartelink I.H., Rademaker C.M.A., Schobben A.F.A.M., van den Anker J.N. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin. Pharmacokinet. 2006;45:1077–1097. doi: 10.2165/00003088-200645110-00003. PubMed DOI
Cies J.J., Moore W.S., 2nd, Enache A., Chopra A. β-lactam Therapeutic Drug Management in the PICU. Crit. Care Med. 2018;46:272–279. doi: 10.1097/CCM.0000000000002817. PubMed DOI
Cella M., Knibbe C., Danhof M., della Pasqua O. What is the right dose for children? Br. J. Clin. Pharmacol. 2010;70:597–603. doi: 10.1111/j.1365-2125.2009.03591.x. PubMed DOI PMC
Anderson B.J., Holford N.H.G. Tips and traps analyzing pediatric PK data. Paediatr. Anaesth. 2011;21:222–237. doi: 10.1111/j.1460-9592.2011.03536.x. PubMed DOI
Downes K.J., Hahn A., Wiles J., Courter J.D., Vinks A.A. Dose optimisation of antibiotics in children: Application of pharmacokinetics/pharmacodynamics in paediatrics. Int. J. Antimicrob. Agents. 2014;43:223–230. doi: 10.1016/j.ijantimicag.2013.11.006. PubMed DOI PMC
Le J., Bradley J.S. Optimizing Antibiotic Drug Therapy in Pediatrics: Current State and Future Needs. J. Clin. Pharmacol. 2018;58((Suppl. S1)):S108–S122. doi: 10.1002/jcph.1128. PubMed DOI
MacArthur R.D., Miller M., Albertson T., Panacek E., Johnson D., Teoh L., Barchuk W. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: Experience from the MONARCS trial. Clin. Infect. Dis. 2004;38:284–288. doi: 10.1086/379825. PubMed DOI
Weiss S.L., Fitzgerald J., Balamuth F., Alpern E., Lavelle J., Chilutti M., Grundmeier R., Nadkarni V.M., Thomas N. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit. Care Med. 2014;42:2409–2417. doi: 10.1097/CCM.0000000000000509. PubMed DOI PMC
Scaglione F., Esposito S., Leone S., Lucini V., Pannacci M., Ma L., Drusano G.L. Feedback dose alteration significantly affects probability of pathogen eradication in nosocomial pneumonia. Eur. Respir. J. 2009;34:394–400. doi: 10.1183/09031936.00149508. PubMed DOI
Gugel J., Pereira A.S., Pignatari A.C.C., Gales A.C. beta-Lactam MICs correlate poorly with mutant prevention concentrations for clinical isolates of Acinetobacter spp. and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006;50:2276–2277. doi: 10.1128/AAC.00144-06. PubMed DOI PMC
Barrett J.S., Barrett R.F., Vinks A.A. Status Toward the Implementation of Precision Dosing in Children. J. Clin. Pharmacol. 2021;61((Suppl. S1)):S36–S51. doi: 10.1002/jcph.1830. PubMed DOI
De Waele J.J., Carrette S., Carlier M., Stove V., Boelens J., Claeys G., Leroux-Roels I., Hoste E., Depuydt P., Decruyenaere J., et al. Therapeutic drug monitoring-based dose optimisation of piperacillin and meropenem: A randomised controlled trial. Intensive Care Med. 2014;40:380–387. doi: 10.1007/s00134-013-3187-2. PubMed DOI
Richter D.C., Frey O., Röhr A., Roberts J.A., Köberer A., Fuchs T., Papadimas N., Heinzel-Gutenbrunner M., Brenner T., Lichtenstern C., et al. Therapeutic drug monitoring-guided continuous infusion of piperacillin/tazobactam significantly improves pharmacokinetic target attainment in critically ill patients: A retrospective analysis of four years of clinical experience. Infection. 2019;47:1001–1011. doi: 10.1007/s15010-019-01352-z. PubMed DOI
Machado A.S., Oliveira M.S., Sanches C., Junior C.V.D.S., Gomez D.S., Gemperli R., Santos S.R.C.J., Levin A.S. Clinical Outcome and Antimicrobial Therapeutic Drug Monitoring for the Treatment of Infections in Acute Burn Patients. Clin. Ther. 2017;39:1649–1657.e3. doi: 10.1016/j.clinthera.2017.06.008. PubMed DOI
Hagel S., Bach F., Brenner T., Bracht H., Brinkmann A., Annecke T., Hohn A., Weigand M., Michels G., Kluge S., et al. Effect of therapeutic drug monitoring-based dose optimization of piperacillin/tazobactam on sepsis-related organ dysfunction in patients with sepsis: A randomized controlled trial. Intensive Care Med. 2022;48:311–321. doi: 10.1007/s00134-021-06609-6. PubMed DOI PMC
Ewoldt T.M.J., Abdulla A., Rietdijk W.J.R., Muller A.E., de Winter B.C.M., Hunfeld N.G.M., Purmer I.M., van Vliet P., Wils E.-J., Haringman J., et al. Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: A multicentre randomised clinical trial. Intensive Care Med. 2022;48:1760–1771. doi: 10.1007/s00134-022-06921-9. PubMed DOI PMC
Roggeveen L.F., Guo T., Fleuren L.M., Driessen R., Thoral P., van Hest R.M., Mathot R.A.A., Swart E.L., de Grooth H.-J., Bogaard B.V.D., et al. Right dose, right now: Bedside, real-time, data-driven, and personalised antibiotic dosing in critically ill patients with sepsis or septic shock—A two-centre randomised clinical trial. Crit. Care. 2022;26:1–11. doi: 10.1186/s13054-022-04098-7. PubMed DOI PMC
Cotta M.O., Lipman J., de Waele J. Advancing precision-based antimicrobial dosing in critically ill patients. Intensive Care Med. 2023;49:324–326. doi: 10.1007/s00134-022-06969-7. PubMed DOI
Taccone F.S., Laterre P.-F., Dugernier T., Spapen H., Delattre I., Witebolle X., De Backer D., Layeux B., Wallemacq P., Vincent J.-L., et al. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit. Care. 2010;14:R126. doi: 10.1186/cc9091. PubMed DOI PMC
Roger C., Sasso M., Lefrant J.Y., Muller L. Antifungal Dosing Considerations in Patients Undergoing Continuous Renal Replacement Therapy. Curr. Fungal Infect. Rep. 2018;12:1–11. doi: 10.1007/s12281-018-0305-1. DOI
Pistolesi V., Morabito S., di Mario F., Regolisti G., Cantarelli C., Fiaccadori E. A guide to understanding antimicrobial drug dosing in critically ill patients on renal replacement therapy. Antimicrob. Agents Chemother. 2019;63:e00583-19. doi: 10.1128/AAC.00583-19. PubMed DOI PMC
Ulldemolins M., Roberts J.A., Wallis S.C., Rello J., Lipman J. Flucloxacillin dosing in critically ill patients with hypoalbuminaemia: Special emphasis on unbound pharmacokinetics. J. Antimicrob. Chemother. 2010;65:1771–1778. doi: 10.1093/jac/dkq184. PubMed DOI
Bauer M., Gerlach H., Vogelmann T., Preissing F., Stiefel J., Adam D. Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019-results from a systematic review and meta-analysis. Crit. Care. 2020;24:1–9. doi: 10.1186/s13054-020-02950-2. PubMed DOI PMC