Glyoxal-Linked Nucleotides and DNA for Bioconjugations and Crosslinking with Arginine-Containing Peptides and Proteins

. 2022 Mar 07 ; 28 (14) : e202104208. [epub] 20220209

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35076143

Grantová podpora
18-03305S Grantová Agentura České Republiky
Praemium Academiae Akademie Věd České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund

Glyoxal-linked 2'-deoxyuridine 5'-O-mono- and triphosphates were synthesized through a CuAAC click reaction of 4-azidophenylglyoxal or a Sonogashira reaction of 4-bromophenylglyoxal with 5-ethynyl-dUMP or -dUTP. The triphosphates were used as substrates for enzymatic synthesis of modified DNA probes with KOD XL DNA polymerase. The glyoxal-linked nucleotides reacted with arginine-containing peptides to form stable imizadolone-linked conjugates. This reactive glyoxal modification in DNA was used for efficient bioconjugations and crosslinking with Arg-containing peptides or proteins (e. g., histones) and was found to be more reactive than previously reported 1,3-diketone-linked DNA probes.

Zobrazit více v PubMed

R. Rohs, X. Jin, S. M. West, R. Joshi, B. Honig, R. S. Mann, Annu. Rev. Biochem. 2010, 79, 233-269.

S. A. Lambert, A. Jolma, L. F. Campitelli, P. K. Das, Y. Yin, M. Albu, X. Chen, J. Taipale, T. R. Hughes, M. T. Weirauch, Cell 2018, 172, 650-665.

T. S. Furey, Nat. Rev. Genet. 2012, 13, 840-852.

I. Dovgan, O. Koniev, S. Kolodych, A. Wagner, Bioconjugate Chem. 2019, 30, 2483-2501;

T. B. Nielsen, R. P. Thomsen, M. R. Mortensen, J. Kjems, P. F. Nielsen, T. E. Nielsen, A. L. B. Kodal, E. Cló, K. V. Gothelf, Angew. Chem. Int. Ed. 2019, 58, 9068-9072;

Angew. Chem. 2019, 131, 9166-9170;

J. Balintová, M. Welter, A. Marx, Chem. Sci. 2018, 9, 7122-7125.

J. B. Trads, T. Tørring, K. V. Gothelf, Acc. Chem. Res. 2017, 50, 1367-1374;

N. Y. Tretyakova, A. Groehler, S. Ji, Acc. Chem. Res. 2015, 48, 1631-1644;

J. L. Vinkenborg, G. Mayer, M. Famulok, Angew. Chem. Int. Ed. 2012, 51, 9176-9180;

Angew. Chem. 2012, 124, 9311-9315;

C. B. Rosen, A. L. B. Kodal, J. S. Nielsen, D. H. Schaffert, C. Scavenius, A. H. Okholm, N. V. Voigt, J. J. Enghild, J. Kjems, T. Tørring, K. V. Gothelf, Nat. Chem. 2014, 6, 804-809.

P. Shi, Y. Wang, Angew. Chem. Int. Ed. 2021, 60, 11580-11591.

C. M. Niemeyer, Angew. Chem. Int. Ed. 2010, 49, 1200-1216;

Angew. Chem. 2010, 122, 1220-1238.

M. Winnacker, S. Breeger, R. Strasser, T. Carell, ChemBioChem 2009, 10, 109-118;

L. Lercher, J. F. McGouran, B. M. Kessler, C. J. Schofield, B. G. Davis, Angew. Chem. Int. Ed. 2013, 52, 10553-10558;

Angew. Chem. 2013, 125, 10747-10752;

C. L. Norris, P. L. Meisenheimer, T. H. Koch, J. Am. Chem. Soc. 1996, 118, 5796-5803.

I. Ivancová, D.-L. Leone, M. Hocek, Curr. Opin. Chem. Biol. 2019, 52, 136-144;

N. Klöcker, F. P. Weissenboeck, A. Rentmeister, Chem. Soc. Rev. 2020, 49, 8749-8773;

K. Krell, D. Harijan, D. Ganz, L. Doll, H.-A. Wagenknecht, Bioconjugate Chem. 2020, 31, 990-1011;

D. Ganz, D. Harijan, H.-A. Wagenknecht, RSC Chem. Biol. 2020, 1, 86-97;

M. Jbara, J. Rodriguez, H. H. Dhanjee, A. Loas, S. L. Buchwald, B. L. Pentelute, Angew. Chem. Int. Ed. 2021, 60, 12109-12115;

J. Konč, L. Brown, D. R. Whiten, Y. Zuo, P. Ravn, D. Klenerman, G. J. L. Bernardes, Angew. Chem. Int. Ed. 2021, 60, 25905-25913.

Examples:

P. M. E. Gramlich, S. Warncke, J. Gierlich, T. Carell, Angew. Chem. Int. Ed. 2008, 47, 3442-3444;

Angew. Chem. 2008, 120, 3491-3493;

H. Busskamp, E. Batroff, A. Niederwieser, O. S. Abdel-Rahman, R. F. Winter, V. Wittmann, A. Marx, Chem. Commun. 2014, 50, 10827-10829;

U. Rieder, N. W. Luedtke, Angew. Chem. Int. Ed. 2014, 53, 9168-9172;

Angew. Chem. 2014, 126, 9322-9326;

S. Arndt, H.-A. Wagenknecht, Angew. Chem. Int. Ed. Engl. 2014, 53, 14580-14582;

K. Wang, D. Wang, K. Ji, W. Chen, Y. Zheng, C. Dai, B. Wang, Org. Biomol. Chem. 2015, 13, 909-915;

X. Ren, A. H. El-Sagheer, T. Brown, Nucleic Acids Res. 2016, 44, e79;

U. Reisacher, D. Ploschik, F. Rönicke, G. B. Cserép, P. Kele, H.-A. Wagenknecht, Chem. Sci. 2019, 10, 4032-4037;

K. Krell, B. Pfeuffer, F. Rönicke, Z. S. Chinoy, C. Favre, F. Friscourt, H.-A. Wagenknecht, Chem. Eur. J. 2021, 27, 16093-16097.

S. Ji, J. Thomforde, C. Rogers, I. Fu, S. Broyde, N. Y. Tretyakova, ACS Chem. Biol. 2019, 14, 2564-2575;

S. Ji, I. Fu, S. Naldiga, H. Shao, A. K. Basu, S. Broyde, N. Y. Tretyakova, Nucleic Acids Res. 2018, 46, 6455-6469;

P. Pande, S. Ji, S. Mukherjee, O. D. Schärer, N. Y. Tretyakova, A. K. Basu, Chem. Res. Toxicol. 2017, 30, 669-677;

S. Wickramaratne, S. Mukherjee, P. W. Villalta, O. D. Schärer, N. Y. Tretyakova, Bioconjugate Chem. 2013, 24, 1496-1506.

M. Krömer, K. Bártová, V. Raindlová, M. Hocek, Chem. Eur. J. 2018, 24, 11890-11894;

M. Krömer, M. Brunderová, I. Ivancová, L. Poštová Slavětínská, M. Hocek, ChemPlusChem 2020, 85, 1164-1170.

I. Ivancová, R. Pohl, M. Hubálek, M. Hocek, Angew. Chem. Int. Ed. 2019, 58, 13345-13348;

Angew. Chem. 2019, 131, 13479-13482.

J. Dadová, P. Orság, R. Pohl, M. Brázdová, M. Fojta, M. Hocek, Angew. Chem. Int. Ed. 2013, 52, 10515-10518;

Angew. Chem. 2013, 125, 10709-10712;

K. Odaira, K. Yamada, S. Ishiyama, H. Okamura, F. Nagatsugi, Appl. Sci. 2020, 10, 7709.

A. Olszewska, R. Pohl, M. Brázdová, M. Fojta, M. Hocek, Bioconjugate Chem. 2016, 27, 2089-2094.

A. Hottin, A. Marx, Acc. Chem. Res. 2016, 49, 418-427;

M. Hocek, Acc. Chem. Res. 2019, 52, 1730-1737;

H. Cahová, A. Panattoni, P. Kielkowski, J. Fanfrlík, M. Hocek, ACS Chem. Biol. 2016, 11, 3165-3171.

J. F. Riordan, Mol. Cell. Biochem. 1979, 26, 71-92;

D. A. Thompson, R. Ng, P. E. Dawson, J. Pept. Sci. 2016, 22, 311-319.

D.-L. Leone, M. Hubálek, R. Pohl, V. Sýkorová, M. Hocek, Angew. Chem. Int. Ed. 2021, 60, 17383-17387.

C. Sibbersen, J. Palmfeldt, J. Hansen, N. Gregersen, K. A. Jørgensen, M. Johannsen, Chem. Commun. 2013, 49, 4012-4014;

I. Dovgan, S. Erb, S. Hessmann, S. Ursuegui, C. Michel, C. Muller, G. Chaubet, S. Cianférani, A. Wagner, Org. Biomol. Chem. 2018, 16, 1305-1311;

C. Sibbersen, A.-M. Schou Oxvig, S. Bisgaard Olesen, C. B. Nielsen, J. J. Galligan, K. A. Jørgensen, J. Palmfeldt, M. Johannsen, ACS Chem. Biol. 2018, 13, 3294-3305;

A. X. Jones, Y. Cao, Y.-L. Tang, J.-H. Wang, Y.-H. Ding, H. Tan, Z.-L. Chen, R.-Q. Fang, J. Yin, R.-C. Chen, et al., Nat. Commun. 2019, 10, 3911;

Q. Zheng, I. Maksimovic, A. Upad, D. Guber, Y. David, J. Org. Chem. 2020, 85, 1691-1697.

X. Weng, J. Gong, Y. Chen, T. Wu, F. Wang, S. Yang, Y. Yuan, G. Luo, K. Chen, L. Hu, et al., Nat. Chem. Biol. 2020, 16, 489-492;

T. Wu, R. Lyu, Q. You, C. He, Nat. Methods 2020, 17, 515-523;

S. D. Knutson, A. A. Sanford, C. S. Swenson, M. M. Korn, B. A. Manuel, J. M. Heemstra, J. Am. Chem. Soc. 2020, 142, 17766-17781.

M. Slavíčková, M. Janoušková, A. Šimonová, H. Cahová, M. Kambová, H. Šanderová, L. Krásný, M. Hocek, Chem. Eur. J. 2018, 24, 8311-8314.

C. Amatore, E. Blart, J.-P. Genet, A. Jutand, S. Lemaire-Audoire, M. Savignac, J. Org. Chem. 1995, 60, 6829-6839.

J. Hine, G. Koser, J. Org. Chem. 1971, 36, 3591-3593.

S. Pujari, M. Wu, J. Thomforde, Z. A. Wang, C. Chao, N. M. Olson, L. Erber, W. C. K. Pomerantz, P. Cole, N. Y. Tretyakova, Angew. Chem. Int. Ed. 2021, 60, 26693-26698.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace