Analysis of the Ibotenic Acid, Muscimol, and Ergosterol Content of an Amanita Muscaria Hydroalcoholic Extract with an Evaluation of Its Cytotoxic Effect against a Panel of Lung Cell Lines In Vitro

. 2023 Sep 27 ; 28 (19) : . [epub] 20230927

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37836667

Grantová podpora
Grant DO1-217/30.11.2018 Bulgarian Ministry of Education and Science

The fungus Amanita muscaria is universally recognizable for its iconic appearance; it is also widely regarded as poisonous, inedible, and even deadly. In spite of that, there have been documented cases of use of A. muscaria-containing preparations against various diseases, including cancer, to no apparent ill effect. The search for compounds that can be used to treat cancer among various plants and fungi has been intensifying in recent years. In light of this, we describe an HPLC HILIC analytical method for the evaluation of the content of the anticancer compound ergosterol (ERG) and the neuroactive alkaloids ibotenic acid (IBO) and muscimol (MUS) that contribute significantly to the unpleasant physiological syndrome associated with A. muscaria consumption. A 'homemade' A. muscaria tincture made using 80-proof rye vodka as the solvent, an A. muscaria extract made with a standardized water-ethanol solution as the solvent, and fractions obtained from the second extract via liquid-liquid extraction with nonpolar solvents were analyzed. The study also presents the results of capillary zone electrophoresis with contactless conductivity detection and UHPLC-MS/MS analyses of the IBO and MUS content of the two native A. muscaria extracts and an evaluation of the standardized extract's cytotoxic effect against a small panel of lung cell cultures in vitro. Our results show that the standardized extract has a significant cytotoxic effect and does not contain the compounds of interest in any significant quantity.

Zobrazit více v PubMed

Bosman C.K., Berman L., Isaacson M., Wolfowitz B., Parkes J. Mushroom poisoning caused by Amanita pantherina. Report of 4 cases. S. Afr. Med. J. 1965;39:983–986. PubMed

Medical Toxicology of Natural Substances. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2008. Isoxazole-Containing Mushrooms and Pantherina Syndrome (Amanita muscaria, Amanita pantherina) pp. 298–302.

Hatfield G.M. Toxic Plants. Columbia University Press; New York, NY, USA: 1979. Toxic mushrooms; pp. 7–58.

Waser P.G. The pharmacology of Amanita muscaria. Psychopharmacol. Bull. 1967;4:19–20. PubMed

Lampe K.F. Toxic fungi. Annu. Rev. Pharmacol. 1979;19:85–104. doi: 10.1146/annurev.pa.19.040179.000505. PubMed DOI

Gelfand M., Harris C. Poisoning by Amanita pantherina: A description of two cases. Cent. Afr. J. Med. 1982;28:159–163. PubMed

Moss M.J., Hendrickson R.G. Toxicity of muscimol and ibotenic acid containing mushrooms reported to a regional poison control center from 2002–2016. Clin. Toxicol. 2019;57:99–103. doi: 10.1080/15563650.2018.1497169. PubMed DOI

Satora L., Pach D., Butryn B., Hydzik P., Balicka-Ślusarczyk B. Fly agaric (Amanita muscaria) poisoning, case report and review. Toxicon. 2005;45:941–943. doi: 10.1016/j.toxicon.2005.01.005. PubMed DOI

Yamaura Y., Komiyama S., Fukuhara M., Takabatake E., Hashimoto T. Biochemical effects of Amanita muscaria extract in mice. Shokuhin Eiseigaku Zasshi. 1983;24:459–464_1. doi: 10.3358/shokueishi.24.459. PubMed DOI

Faulstich H., Cochet-Meilhac M. Amatoxins in edible mushrooms. FEBS lett. 1976;64:73–75. doi: 10.1016/0014-5793(76)80252-9. PubMed DOI

Vargas N., Bernal A., Sarria V., Franco-Molano A., Restrepo S. Amatoxin and phallotoxin composition in species of the genus Amanita in Colombia: A taxonomic perspective. Toxicon. 2011;58:583–590. doi: 10.1016/j.toxicon.2011.09.005. PubMed DOI

Cochet-Meilhac M., Chambon P. Animal DNA-dependent RNA polymerases 11. Mechanism of the inhibition of RNA polymerases B by amatoxins. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 1974;353:160–184. doi: 10.1016/0005-2787(74)90182-8. PubMed DOI

Faulstich H. Progress in Molecular and Subcellular Biology. Springer; Berlin/Heidelberg, Germany: 1980. The amatoxins; pp. 88–134.

Santi L., Maggioli C., Mastroroberto M., Tufoni M., Napoli L., Caraceni P. Acute liver failure caused by Amanita phalloides poisoning. Int. J. Hepatol. 2012;2012:1–6. doi: 10.1155/2012/487480. PubMed DOI PMC

Taylor J., Holzbauer S., Wanduragala D., Ivaskovic A., Spinosa R., Smith K., Corcoran J., Jensen A. Notes from the Field: Acute Intoxications from Consumption of Amanita muscaria Mushrooms—Minnesota, 2018. MMWR Morb. Mortal. Wkly. Rep. 2019;68:483–484. doi: 10.15585/mmwr.mm6821a4. PubMed DOI PMC

Bowden K., Drysdale A., Mogey G. Constituents of Amanita muscaria. Nature. 1965;206:1359–1360. doi: 10.1038/2061359a0. PubMed DOI

Bowden K., Drysdale A.C. A novel constituent of Amanita muscaria. Tetrahedron Lett. 1965;12:727–728. doi: 10.1016/S0040-4039(01)83973-3. PubMed DOI

Takemoto T., Nakajima T., Yokobe T. Structure of ibotenic acid. Yakugaku Zasshi. 1964;84:1232–1233. PubMed

Takemoto T., Nakajima T., Sakuma R. Isolation of a flycidal constituent “ibotenic acid” from Amanita muscaria and A. pantherina. Yakugaku Zasshi. 1964;84:1233–1234. PubMed

Müller G., Eugster C. Muscimol, ein pharmakodynamisch wirksamer Stoff aus Amanita muscaria. Helv. Chim. Acta. 1965;48:910–926. doi: 10.1002/hlca.19650480427. PubMed DOI

Patocka J., Kocandrlova B. Pharmacologically and toxicologically relevant components of Amanita muscaria. Mil. Med. Sci. Lett. 2017;86:122–134. doi: 10.31482/mmsl.2017.020. DOI

APExBIO Technology LLC Ibotenic Acid Product Page. [(accessed on 1 July 2023)]. Available online: https://www.apexbt.com/ibotenic-acid.html.

Stromgaard K., Krogsgaard-Larsen P., Madsen U. Textbook of Drug Design and Discovery. 3rd ed. CRC Press; Hoboken, NJ, USA: 2002.

Johnston G., Curtis D., De Groat W., Duggan A. Central actions of ibotenic acid and muscimol. Biochem. Pharmacol. 1968;17:2488–2489. doi: 10.1016/0006-2952(68)90141-X. PubMed DOI

Krogsgaard-Larsen P., Honore T., Hansen J., Curtis D., Lodge D. New class of glutamate agonist structurally related to ibotenic acid. Nature. 1980;284:64–66. doi: 10.1038/284064a0. PubMed DOI

Ji C., Li Q., Aisa H., Yang N., Dong Y.-L., Liu Y.-Y., Wang T., Hao Q., Zhu H.-B., Zuo P.-P. Gossypium herbaceam extracts attenuate ibotenic acid-induced excitotoxicity in rat hippocampus. J. Alzheimer’s Dis. 2009;16:331–339. doi: 10.3233/JAD-2009-0979. PubMed DOI

Michelot D., Melendez-Howell L.M. Amanita muscaria: Chemistry, biology, toxicology, and ethnomycology. Mycol. Res. 2003;107:131–146. doi: 10.1017/S0953756203007305. PubMed DOI

Beaumont K., Chilton W.S., Yamamura H.I., Enna S.J. Muscimol binding in rat brain: Association with synaptic GABA receptors. Brain Res. 1978;148:153–162. doi: 10.1016/0006-8993(78)90385-2. PubMed DOI

Snodgrass S.R. Use of 3H-muscimol for GABA receptor studies. Nature. 1978;273:392–394. doi: 10.1038/273392a0. PubMed DOI

Johnston G.A.R. Muscimol as an Ionotropic GABA Receptor Agonist. Neurochem. Res. 2014;39:1942–1947. doi: 10.1007/s11064-014-1245-y. PubMed DOI

Maciejczyk E. Amanita muscaria chemistry: The mystery demystified? In: Feeney K.M., editor. Fly Agaric: A Compendium of History, Pharmacology, Mythology and Exploration. Fly Agaric Press; Washington, DC, USA: 2020. pp. 351–365.

Johnston G.A. Muscimol and the uptake of gamma-aminobutyric acid by rat brain slices. Psychopharmacologia. 1971;22:230–233. doi: 10.1007/BF00401785. PubMed DOI

Schmied A., Amalric M., Dormont J.F., Farin D. GABAergic mechanisms in the cat red nucleus: Effects of intracerebral microinjections of muscimol or bicuculline on a conditioned motor task. Exp. Brain Res. 1990;81:523–532. doi: 10.1007/BF02423501. PubMed DOI

Chilton W.S., Ott J. Toxic metabolites of Amanita pantherina, A. cothurnata, A. muscaria and other Amanita species. Lloydia. 1976;39:150–157. PubMed

König-Bersin P., Waser P.G., Langemann H., Lichtensteiger W. Monoamines in the brain under the influence of muscimol and ibotenic acid, two psychoactive principles of amanita muscaria. Psychopharmacologia. 1970;18:1–10. doi: 10.1007/BF00402378. PubMed DOI

Catalfomo P., Eugster C. L’Amanita muscaria: Connaissance actuelle de ses principes actifs. Bull. Stupef. 1970;22:35–43.

Ott J., Wheaton P.S., Chilton W.S. Fate of muscimol in the mouse. Physiol. Chem. Phys. 1975;7:381–384. PubMed

Vazharov V. Medicinal Fungi of Bulgaria. 3rd ed. Biana; Sofia, Bulgaria: 2021.

Dushkov A., Petrova M., Todorova J., Gospodinov A., Ugrinova I. Natural medicine: An evaluation of the in vitro cytotoxic effect of several Bulgarian fungal species on two panels of cancer cell lines. Bulg. Chem. Commun. 2021;53:35–41.

Yoshida I., Kiho T., Usui S., Sakushima M., Ukai S. Polysaccharides in Fungi. XXXVII. Immunomodulating Activities of Carboxymethylated Derivatives of Linear (1→3)-α-D-Glucans Extracted from the Fruiting Bodies of Agrocybe cylindracea and Amanita muscaria. Biol. Pharm. Bull. 1996;19:114–121. doi: 10.1248/bpb.19.114. PubMed DOI

Zavadinack M., de Lima Bellan D., da Rocha Bertage J.L., da Silva Milhorini S., da Silva Trindade E., Simas F.F., Sassaki G.L., Cordeiro L.M.C., Iacomini M. An α-D-galactan and a β-D-glucan from the mushroom Amanita muscaria: Structural characterization and antitumor activity against melanoma. Carbohydr. Polym. 2021;274:118647. doi: 10.1016/j.carbpol.2021.118647. PubMed DOI

Zaidman B.-Z., Yassin M., Mahajna J., Wasser S.P. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl. Microbiol. Biotechnol. 2005;67:453–468. doi: 10.1007/s00253-004-1787-z. PubMed DOI

Li X., Wu Q., Xie Y., Ding Y., Du W.W., Sdiri M., Yang B.B. Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors. Oncotarget. 2015;6:17832. doi: 10.18632/oncotarget.4026. PubMed DOI PMC

Kang J.-H., Jang J.-E., Mishra S.K., Lee H.-J., Nho C.W., Shin D., Jin M., Kim M.K., Choi C., Oh S.H. Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer. J. Ethnopharmacol. 2015;173:303–312. doi: 10.1016/j.jep.2015.07.030. PubMed DOI

Pustovalova M., Alhaddad L., Smetanina N., Chigasova A., Blokhina T., Chuprov-Netochin R., Osipov A.N., Leonov S. The p53-53BP1-Related Survival of A549 and H1299 Human Lung Cancer Cells after Multifractionated Radiotherapy Demonstrated Different Response to Additional Acute X-ray Exposure. Int. J. Mol. Sci. 2020;21:3342. doi: 10.3390/ijms21093342. PubMed DOI PMC

Wagner A., Pehar M., Yan Z., Kulka M. Amanita muscaria extract potentiates production of proinflammatory cytokines by dsRNA-activated human microglia. Front. Pharmacol. 2023;14:1102465. doi: 10.3389/fphar.2023.1102465. PubMed DOI PMC

Nakamura H., Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021;112:3945–3952. doi: 10.1111/cas.15068. PubMed DOI PMC

Geml J., Laursen G.A., O’Neill K., Nusbaum H.C., Taylor D.L. Beringian origins and cryptic speciation events in the fly agaric (Amanita muscaria) Mol. Ecol. 2006;15:225–239. doi: 10.1111/j.1365-294X.2005.02799.x. PubMed DOI

Van Meerloo J., Kaspers G.J., Cloos J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011;731:237–245. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...