Contactless impedance sensors and their application to flow measurements
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
23447011
PubMed Central
PMC3658714
DOI
10.3390/s130302786
PII: s130302786
Knihovny.cz E-resources
- MeSH
- Biosensing Techniques * MeSH
- Cells MeSH
- Electric Impedance * MeSH
- Electric Conductivity MeSH
- Models, Theoretical MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The paper provides a critical discussion of the present state of the theory of high-frequency impedance sensors (now mostly called contactless impedance or conductivity sensors), the principal approaches employed in designing impedance flow-through cells and their operational parameters. In addition to characterization of traditional types of impedance sensors, the article is concerned with the use of less common sensors, such as cells with wire electrodes or planar cells. There is a detailed discussion of the effect of the individual operational parameters (width and shape of the electrodes, detection gap, frequency and amplitude of the input signal) on the response of the detector. The most important problems to be resolved in coupling these devices with flow-through measurements in the liquid phase are also discussed. Examples are given of cell designs for continuous flow and flow-injection analyses and of detection systems for miniaturized liquid chromatography and capillary electrophoresis. New directions for the use of these sensors in molecular biology and chemical reactors and some directions for future development are outlined.
See more in PubMed
Reilley C.N. High frequency methods. In: Delahay P., editor. New Instrumental Methods in Electrochemistry. Interscience; New York, NY, USA: 1954.
Pungor E. Oscillometry and Conductometry. Pergamon Press; Oxford, UK: 1965.
Kuban P., Timerbaev A.R. Ce of inorganic species—A review of methodological advancements over 2009–2010. Electrophoresis. 2012;33:196–210. PubMed
Kuban P., Hauser P.C. Capacitively coupled contactless conductivity detection for microseparation techniques—Recent developments. Electrophoresis. 2011;32:30–42. PubMed
Solinova V., Kasicka V. Recent applications of conductivity detection in capillary and chip electrophoresis. J. Sep. Sci. 2006;29:1743–1762. PubMed
Kuban P., Hauser P.C. A review of the recent achievements in capacitively coupled contactless conductivity detection. Anal. Chim. Acta. 2008;607:15–29. PubMed
Wang J. Electrochemical detection for capillary electrophoresis microchips: A review. Electroanalysis. 2005;17:1133–1140.
Pumera M. Contactless conductivity detection for microfluidics: Designs and applications. Talanta. 2007;74:358–364. PubMed
Gas B., Zuska J., Coufal P., van de Goor T. Optimization of the high-frequency contactless conductivity detector for capillary electrophoresis. Electrophoresis. 2002;23:3520–3527. PubMed
Brito-Neto J.G.A., da Silva J.A.F., Blanes L., do Lago C.L. Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 2. Peak shape, stray capacitance, noise, and actual electronics. Electroanalysis. 2005;17:1207–1214.
da Silva J.A.F., do Lago C.L. An oscillometric detector for capillary electrophoresis. Anal. Chem. 1998;70:4339–4343.
Francisco K.J.M., do Lago C.L. A compact and high-resolution version of a capacitively coupled contactless conductivity detector. Electrophoresis. 2009;30:3458–3464. PubMed
Opekar F., Stulik K., Fenclova K. A simple contactless conductivity detector employing a medium wave radio integrated circuit for the signal treatment. Electroanalysis. 2010;22:161–167.
Tuma P., Opekar F., Jelinek I. A contactless conductometric detector with easily exchangeable capillary for capillary electrophoresis. Electroanalysis. 2001;13:989–992.
Novotny M., Opekar F.E., Stulik K. The effects of the electrode system geometry on the properties of contactless conductivity detectors for capillary electrophoresis. Electroanalysis. 2005;17:1181–1186.
Zemann A.J., Schnell E., Volgger D., Bonn G.K. Contactless conductivity detection for capillary electrophoresis. Anal. Chem. 1998;70:563–567. PubMed
Pumera M., Wang J., Opekar F., Jelinek I., Feldman J., Lowe H., Hardt S. Contactless conductivity detector for microchip capillary electrophoresis. Anal. Chem. 2002;74:1968–1971. PubMed
Wang J., Pumera M., Collins G., Opekar F., Jelinek I. A chip-based capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components. Analyst. 2002;127:719–723. PubMed
da Silva J.A.F., Guzman N., do Lago C.L. Contactless conductivity detection for capillary electrophoresis—Hardware improvements and optimization of the input-signal amplitude and frequency. J. Chromatogr. A. 2002;942:249–258. PubMed
Mayrhofer K., Zemann A.J., Schnell E., Bonn G.K. Capillary electrophoresis and contactless conductivity detection of ions in narrow inner diameter capillaries. Anal. Chem. 1999;71:3828–3833. PubMed
Tuma P., Opekar F., Stulik K. A contactless conductivity detector for capillary electrophoresis: Effects of the detection cell geometry on the detector performance. Electrophoresis. 2002;23:3718–3724. PubMed
Kuban P., Hauser P.C. Fundamental aspects of contactless conductivity detection for capillary electrophoresis. Part I: Frequency behavior and cell geometry. Electrophoresis. 2004;25:3387–3397. PubMed
Tanyanyiwa J., Hauser P.C. High-voltage capacitively coupled contactless conductivity detection for microchip capillary electrophoresis. Anal. Chem. 2002;74:6378–6382. PubMed
Mika J., Opekar F., Coufal P., Stulik K. A thin-layer contactless conductivity cell for detection in flowing liquids. Anal. Chim. Acta. 2009;650:189–194. PubMed
Mark J.J.P., Coufal P., Opekar F., Matysik F.M. Comparison of the performance characteristics of two tubular contactless conductivity detectors with different dimensions and application in conjunction with hplc. Anal. Bioanal. Chem. 2011;401:1669–1676. PubMed
Hohercakova Z., Opekar F.E., Stulik K. Thinly insulated wire cells—A new device for sensitive contactless conductivity detection in flow analyses. Electroanalysis. 2005;17:1924–1930.
Pavlicek V., Opekar F., Stulik K. Application of contactless impedance detection to determination of substances in gaseous phase. Electroanalysis. 2011;23:1325–1328.
Tanyanyiwa J., Hauser P.C. High-voltage contactless conductivity detection of metal ions in capillary electrophoresis. Electrophoresis. 2002;23:3781–3786. PubMed
Brito-Neto J.G.A., da Silva J.A.F., Blanes L., do Lago C.L. Understanding capacitively coupled contactless conductivity detection in capillary and microchip electrophoresis. Part 1. Fundamentals. Electroanalysis. 2005;17:1198–1206.
Hohercakova Z., Opekar F. A contactless conductivity detection cell for flow injection analysis: Determination of total inorganic carbon. Anal. Chim. Acta. 2005;551:132–136.
Tanyanyiwa J., Schweizer K., Hauser P.C. High-voltage contactless conductivity detection of underivatized amino acids in capillary electrophoresis. Electrophoresis. 2003;24:2119–2124. PubMed
Emaminejad S., Javanmard M., Dutton R.W., Davis R.W. Microfluidic diagnostic tool for the developing world: Contactless impedance flow cytometry. Lab A Chip. 2012;12:4499–4507. PubMed PMC
Cahill B.P., Land R., Nacke T., Min M., Beckmann D. Contactless sensing of the conductivity of aqueous droplets in segmented flow. Sens. Actuator B Chem. 2011;159:286–293.
Nadherna M., Opekar F., Stulik K. Properties of the contactless impedance detector with insulated wire electrodes placed inside the flowing liquid stream. Electroanalysis. 2007;19:2413–2418.
Opekar F., Stulik K., Fisarova M. A contactless impedance probe for simple and rapid determination of the ratio of liquids with different permittivities in binary mixtures. Electroanalysis. 2009;21:96–100.
Opekar F., Stulik K., Fisarova M. Some possibilities and limitations of contactless impedimetric determinations of organic liquids in aqueous solutions. The interference from ionic compounds. Electroanalysis. 2010;22:2353–2358.
Opekar F., Cabala R., Kadlecova T. A simple contactless impedance probe for determination of ethanol in gasoline. Anal. Chim. Acta. 2011;694:57–60. PubMed
Separation Science: C4D Introduction page. [(accessed on 4 February 2013)]. Available online: http://www.edaq.com/C4D_intro.php/
Capillary Electrophoresis. [(accessed on 4 February 2013)]. Available online: http://www.istech.at/capillary_electrophoresis.htm/
Fercher G., Haller A., Smetana W., Vellekoopt M.J. End-to-end differential contact less conductivity sensor for microchip capillary electrophoresis. Anal. Chem. 2010;82:3270–3275. PubMed
Opekar F., Stulik K. Some important combinations of detection techniques for electrophoresis in capillaries and on chips with emphasis on electrochemical principles. Electrophoresis. 2011;32:795–810. PubMed
Novotny M., Opekar F., Jelinek I., Stulik K. Improved dual photometric-contactless conductometric detector for capillary electrophoresis. Anal. Chim. Acta. 2004;525:17–21.
Zikmundova J., Tuma P., Opekar F. A dual spectrophotometric/contactless conductivity detector for ce determination of incompletely separated amino acids. J. Sep. Sci. 2008;31:353–355. PubMed
Ryvolova M., Preisler J., Foret F., Hauser P.C., Krasensky P., Paull B., Macka M. Combined contactless conductometric, photometric, and fluorimetric single point detector for capillary separation methods. Anal. Chem. 2010;82:129–135. PubMed
Lederer T., Clara S., Jakoby B., Hilber W. Integration of impedance spectroscopy sensors in a digital microfluidic platform. Microsyst. Technol. 2012;18:1163–1180.
Hrdina R., Opekar F., Roithova J., Kotora M. Neutral and ionic reaction mechanisms for the allylation of aldehydes by bipyridine n,n'-dioxides. Chem. Commun. 2009:2314–2316. PubMed