A new green approach to L-histidine and β-alanine analysis in dietary supplements using rapid and simple contactless conductivity detection integrated with high-resolution glass-microchip electrophoresis
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
#KK.01.1.1.01.0010
European Structural and Investment Funds
PubMed
38713223
DOI
10.1007/s00216-024-05314-9
PII: 10.1007/s00216-024-05314-9
Knihovny.cz E-zdroje
- Klíčová slova
- l-Histidine, Amino acids, Capacitively coupled contactless conductivity detection, Dietary supplements, Microchip electrophoresis, β-Alanine,
- MeSH
- beta-alanin * analýza chemie MeSH
- elektrická vodivost * MeSH
- elektroforéza mikročipová * metody MeSH
- histidin * analýza chemie MeSH
- limita detekce MeSH
- potravní doplňky * analýza MeSH
- sklo chemie MeSH
- technologie zelené chemie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-alanin * MeSH
- histidin * MeSH
The analysis of dietary supplements is far less regulated than pharmaceuticals, leading to potential quality issues. Considering their positive effect, many athletes consume supplements containing L-histidine and β-alanine. A new microfluidic method for the determination of L-histidine and β-alanine in dietary supplement formulations has been developed. For the first time, capacitively coupled contactless conductivity detection was employed for the microchip electrophoresis of amino acids in real samples. A linear relationship between detector response and concentration was observed in the range of 10-100 µmol L-1 for L-histidine (R2 = 0.9968) and β-alanine (R2 = 0.9954), while achieved limits of detection (3 × S/N ratio) were 4.2 µmol L-1 and 5.2 µmol L-1, respectively. The accuracy of the method was confirmed using recovery experiments as well as CE-UV-VIS and HPLC-UV-VIS techniques. The developed method allows unambiguous identification of amino acids in native form without chemical derivatization and with the possibility of simultaneous analysis of amino acids with metal cations.
Department of Biotechnology University of Rijeka Radmile Matejčić 2 HR 51000 Rijeka Croatia
Department of Food Technology University North Trg dr Žarka Dolinara 1 HR 48000 Koprivnica Croatia
Doctoral School of Chemistry University of Pécs Ifjúság útja Pécs 7624 Hungary
Faculty of Geotechnical Engineering University of Zagreb Hallerova 7 HR 42000 Varaždin Croatia
Institute of Bioanalysis Medical School Szentágothai Research Center University of Pécs Pécs Hungary
Pirelli Deutschland GmbH Höchster Straße 48 60 64747 Breuberg Germany
Zobrazit více v PubMed
Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the Member States relating to food supplements. pp. 51–57.
Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93(4):1803–45. https://doi.org/10.1152/physrev.00039.2012 . PubMed DOI
Dutka TL, Lamboley CR, McKenna MJ, Murphy RM, Lamb GD. Effects of carnosine on contractile apparatus Ca PubMed DOI
Hoffman JR, Ratamess NA, Faigenbaum AD, Ross R, Kang J, Stout JR, Wise JA. Short-duration β-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr Res. 2008;28(1):31–5. https://doi.org/10.1016/j.nutres.2007.11.004 . PubMed DOI
Hoffman JR, Ostfeld, Stout JR, Harris RC, Kaplan Z, Cohen H. β-Alanine supplemented diets enhance behavioral resilience to stress exposure in an animal model of PTSD. Amino Acids. 2015;47(6):1247–1257. https://doi.org/10.1007/s00726-015-1952-y .
Thalacker-Mercer AE, Gheller ME. Benefits and adverse effects of histidine supplementation. J Nutr. 2020;150(Issue Supplement_1):2588S–2592S. https://doi.org/10.1093/jn/nxaa229 .
Di Matteo P, Bortolami M, Curulli A, Feroci M, Gullifa G, Materazzi S, Risoluti R, Petrucci R. Phytochemical characterization of malt spent grain by tandem mass spectrometry also coupled with liquid chromatography: bioactive compounds from brewery by-products. Front Biosci (Landmark Ed). 2023; 28(1):3. https://doi.org/10.31083/j.fbl2801003 .
Dai Z, Wu Z, Jia S, Wu G. J Chromatogr B. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. 2014;964(1):116-127. https://doi.org/10.1016/j.jchromb.2014.03.025 .
Aviram LY, McCooeye M, Mester Z. Determination of underivatized amino acids in microsamples of a yeast nutritional supplement by LC-MS following microwave assisted acid hydrolysis. Anal Methods. 2016;8(22):4497–503. https://doi.org/10.1039/C6AY00407E . DOI
Wang LW, Su SF, Zha J, He XL, Fu SY, Wang B, Wang YF, Wang DQ, Yun NN, Chen X, Belobrajdic DP, Terigele, Li XD, Jiang LL, He JF, Liu YB. Effects of dietary oat supplementation on carcass traits, muscle metabolites, amino acid profiles, and its association with meat quality of small-tail Han sheep. Food Chem. 2023;411(15):135456. https://doi.org/10.1016/j.foodchem.2023.135456 .
Raimbault A, Dorebska M, West C. A chiral unified chromatography–mass spectrometry method to analyze free amino acids. Anal Bioanal Chem. 2019;411:4909–17. https://doi.org/10.1007/s00216-019-01783-5 . PubMed DOI
Wang Y, Zhao Z, Qin J, Liu H, Liu A, Xu M. Rapid in situ analysis of L-histidine and α-lactose in dietary supplements by fingerprint peaks using terahertz frequency-domain spectroscopy. Talanta. 2020;208: 120469. https://doi.org/10.1016/j.talanta.2019.120469 . PubMed DOI
De Silva M, Opallage PM, Dunn RC. Direct detection of inorganic ions and underivatized amino acids in seconds using high-speed capillary electrophoresis coupled with back-scatter interferometry. Anal Methods. 2021;13(11):1311–434. https://doi.org/10.1039/D0AY02218G . DOI
Tůma P, Sommerová B, Koval D, Šiklová M, Koc M. Plasma levels of creatine, 2-aminobutyric acid, acetyl-carnitine and amino acids during fasting measured by counter-current electrophoresis in PAMAPTAC capillary. Microchem J. 2023;1878: 108426. https://doi.org/10.1016/j.microc.2023.108426 . DOI
Yu YL, Shi MZ, Zhu SC, Cao J. Rapid stacking of amino acids in soybean and Dendrobium officinale by on-capillary sandwich derivatization in capillary electrophoresis. Food Res Int. 2022;162(Part B);11207. https://doi.org/10.1016/j.foodres.2022.112071 .
Costa BMC, Prado AA, Oliveira TC, Bressan LP, Munoz RAA, Batista AD, Silva JAF, Richter EM. Fast methods for simultaneous determination of arginine, ascorbic acid and aspartic acid by capillary electrophoresis. Talanta. 2019;204(June):353–8. https://doi.org/10.1016/j.talanta.2019.06.017 . PubMed DOI
Duong HA, Vu MT, Nguyen TD, Nguyen MH, Mai TD. Determination of 10-hydroxy-2-decenoic acid and free amino acids in royal jelly supplements with purpose-made capillary electrophoresis coupled with contactless conductivity detection. J Food Compost Anal. 2020;87: 103422. https://doi.org/10.1016/j.jfca.2020.103422 . DOI
Piestansky J, Matuskova M, Cizmarova I, Olesova D, Mikus P. Determination of branched-chain amino acids in food supplements and human plasma by a CE-MS/MS method with enhanced resolution. Int J Mol Sci. 2021;22(15):8261. https://doi.org/10.1016/j.jfca.2020.103422 . PubMed DOI PMC
Pormsila W, Krähenbühl S, Hauser PC. Determination of carnitine in food and food supplements by capillary electrophoresis with contactless conductivity detection. Electrophoresis. 2010;31(13):2186–91. https://doi.org/10.1002/elps.200900692 . PubMed DOI
Ribeiro da Silva M, Zaborowska I, Carillo S, Bones J. A rapid, Simple and sensitive microfluidic chip electrophoresis mass spectrometry method for monitoring amino acids in cell culture media. J Chromatogr A. 2021;11651:462336. https://doi.org/10.1016/j.chroma.2021.462336 .
Li X, Xiao D, Ou XM, McCullm C, Liu YM. A microchip electrophoresis-mass spectrometric platform for fast separation and identification of enantiomers employing the partial filling technique. J Chromatogr A. 2013;1318:251–6. https://doi.org/10.1016/j.chroma.2013.10.020 . PubMed DOI PMC
Li X, Xiao D, Sanders T, Tchounwou PB, Liu YM. Fast quantification of amino acids by microchip electrophoresis-mass spectrometry Amino Acid Analysis. Anal Bioanal Chem. 2013;405(25):8131–6. https://doi.org/10.1007/s00216-013-7260-z . PubMed DOI PMC
Tůma P. Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: a review. Anal Chim Acta. 2022;1225: 340161. https://doi.org/10.1016/j.aca.2022.340161 . PubMed DOI
Tanyanyiwa J, Abad-Villar EM, Fernández-Abedul MT, Costa-García A, Hoffmann W, Guber AE, Herrmann D, Gerlach A, Gottschlich N, Hauser PC. High-voltage contactless conductivity-detection for lab-on-chip devices using external electrodes on the holder. Analyst. 2003;128(8):1019–22. https://doi.org/10.1039/b304469f . DOI
J. Tanyanyiwa, Abad-Villar EM, Hauser PC. Contactless conductivity detection of selected organic ions in on-chip electrophoresis. Electrophoresis. 2004;25(6):903–908. https://doi.org/10.1002/elps.200305732 .
Abad-Villar EM, Hauser PC. Determination of biochemical species on electrophoresis chips with an external contactless. Electrophoresis. 2005;26(19):3609–14. https://doi.org/10.1002/elps.200500149 . PubMed DOI
Li O, Tong Y, Chen Z, Liu C, Zhao S, Mo J. A glass / PDMS hybrid microfluidic chip embedded with integrated electrodes for contactless conductivity detection. Chromatographia. 2008;68(11):1039–44. https://doi.org/10.1365/s10337-008-0808-y . DOI
Xu Y, Liang J, Liu H, Hu X, Wen Z, Wu Y, Cao M. Characterization of a capacitance-coupled contactless conductivity detection system with sidewall electrodes on a low-voltage-driven electrophoresis microchip. Anal Bioanal Chem. 2010;397(4):1583–93. https://doi.org/10.1007/s00216-010-3675-y . PubMed DOI
Tu P, Samcová E. Determination of 1-methylhistidine and 3-methylhistidine by capillary and chip electrophoresis with contactless. Electrophoresis. 2007;28(13):2174–80. https://doi.org/10.1002/elps.200600697 . DOI
Sydes D, Kler PA, Zipfl P, Lutz D, Bouwes H, Huhn C. Chemical on-chip intermediate potential measurements for the control of electromigration in multi-channel networks in case of time-dependent potential changes. Sens Actuators B Chem. 2017;240:330–7. https://doi.org/10.1002/elps.200500149 . DOI
Pukleš I, Páger C, Sakač N, Šarkanj B, Matasović, Samardžić M, Budetić M, Marković D, Jozanović M. Electrophoretic determination of L-carnosine in health supplements using an integrated lab-on-a-chip platform with contactless conductivity detection. Int J Mol Sci. 2023;24:14705. https://doi.org/10.3390/ijms241914705 .
Jiang X, Xia Z, Wei W, Gou Q. Direct UV detection of underivatized amino acids using capillary electrophoresis with online sweeping enrichment. J Sep Sci. 2009;32(11):1927–33. https://doi.org/10.1002/jssc.200900013 . PubMed DOI
Rita Steed – Manual of analysis of amino acids by HPLC. Agilent Technologies. 2010; Inc 800–227–9770.
Tůma P, Opekar F, Dlouhý P. Capillary and microchip electrophoresis with contactless conductivity detection for analysis of foodstuffs and beverages. Food Chem. 2022;375: 131858. https://doi.org/10.1016/j.foodchem.2021.131858 . PubMed DOI
Adımcılar V, Öztekin N, Erim FB. A direct and sensitive analysis method for biogenic amines in dairy products by capillary electrophoresis coupled with contactless conductivity detection. Food Anal Methods. 2018;11(4):374–1379. https://doi.org/10.1007/s12161-017-1122-9 . DOI
Hirokawa T, Okamoto H, Gosyo Y, Tsuda T, Timerbaev AR. Simultaneous monitoring of inorganic cations, amines and amino acids in human sweat by capillary electrophoresis. Anal Chim Acta. 2007;581(1):83–8. https://doi.org/10.1016/j.aca.2006.07.077 . PubMed DOI
Gag B, Sttidrf M, Kenndle E. Peak broadening in capillary zone electrophoresis. Elecrrophoresis. 1997;18:2123–33. https://doi.org/10.1002/elps.1150181203 . DOI
Gong M, Wehmeyer KR, Stalcup AM, Limbach PA, Heineman WR. Study of injection bias in a simple hydrodynamic injection in microchip capillary electrophoresis. Electrophoresis. 2007;28(10):1564–71. https://doi.org/10.1002/elps.200600616 . PubMed DOI PMC
Gratzfeld-Huesgen A. Sensitive and reliable amino acid analysis in protein hydrolysates using the Agilent 1100 Series HPLC. Technical Note by Agilent Technologies. 1999; Publication Number 5968–5658E.
Syad AN, Shunmugiah KP, Kasi PD. Seaweeds as nutritional supplements: analysis of nutritional profile, physicochemical properties and proximate composition of G. acerosa and S. wightii. Biomedicine & Preventive Nutrition. 2013;3(2):139–144.
Baxter JH, Johns PW. Determination of free arginine, glutamine, and β-alanine in nutritional products and dietary supplements. Food Anal Methods. 2012;5:821–7. DOI
Raimbault A, Dorebska M, West C. A chiral unified chromatography-mass spectrometry method to analyze free amino acids. Anal Bioanal Chem. 2019;411(19):4909–17. PubMed DOI
Duong HA, Vu MT, Nguyen TD, Nguyen MH, Mai TD. Determination of 10-hydroxy-2-decenoic acid and free amino acids in royal jelly supplements with purpose-made capillary electrophoresis coupled with contactless conductivity detection. J Food Compos Anal. 2020;87(3): 103422. DOI