Contactless conductivity detector as a tool for improving universality and sensitivity of capillary electrophoresis-frontal analysis: Proof of concept

. 2024 Jan ; 47 (1) : e2300667.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38234025

Grantová podpora
GA19-08358S Grantová Agentura České Republiky
NU23-08-00229 the Czech Health Research Council

Drug binding to plasma proteins influences processes such as liberation, adsorption, disposition, metabolism, and elimination of drugs, which are thus one of the key steps of a new drug development. As a result, the characterization of drug-protein interactions is an essential part of these time- and money-consuming processes. It is important to determine not only the binding strength and the stoichiometry of interaction, but also the binding site of a drug on a protein molecule, because two drugs with the same binding site can mutually affect free drug concentration. Capillary electrophoresis-frontal analysis with mobility shift affinity capillary electrophoresis is one of the most used affinity capillary electrophoresis methods for the characterization of these interactions. In this study, a well-known sensitivity problem of most capillary electrophoresis-frontal analyses using ultraviolet detection is solved by its combination with contactless conductivity detection, which provided sixfold lower limits of quantitation and detection. Binding parameters of the human serum albumin-salicylic acid model affinity pair were evaluated by this newly developed approach and by the classical approach with ultraviolet detection primarily used for their mutual comparison. The results of both approaches agreed well and are also in agreement with literature data obtained using different techniques.

Zobrazit více v PubMed

Voeten RLC, Ventouri IK, Haselberg R, Somsen GW. Capillary electrophoresis: trends and recent advances. Anal Chem. 2018;90:1464-1481.

Wang MY, Gong Q, Liu WF, Tan SW, Xiao J, Chen CP. Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical, and food analysis (2019-2021). J Sep Sci. 2022;45:1918-1941.

Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: A review. Electrophoresis. 2022;43:2302-2323.

Olabi M, Stein M, Watzig H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods. 2018;146:76-92.

Tillement JP, Urien S, Chaumetriffaud P, Riant P, Bree F, Morin D, et al. Blood binding and tissue uptake of drugs-recent advances and perspectives. Fundam Clin Pharmacol. 1988;2:223-238.

Yamasaki K, Chuang VTG, Maruyama T, Otagiri M. Albumin-drug interaction and its clinical implication. Biochim Biophys Acta-Gen Subj. 2013;1830:5435-5443.

Vuignier K, Schappler J, Veuthey JL, Carrupt PA, Martel S. Improvement of a capillary electrophoresis/frontal analysis (CE/FA) method for determining binding constants: discussion on relevant parameters. J Pharm Biomed Anal. 2010;53:1288-1297.

Asmari M, Michalcová L, Ibrahim AE, Glatz Z, Watzig H, El Deeb S. Studying molecular interactions via capillary electrophoresis and microscale thermophoresis: a review. Electrophoresis. 2023;44:1114-1142.

Romano EF, Quirino JP. Frontal analysis capillary electrophoresis: recent advances and future perspectives. Bioanalysis. 2018;10:1143-1159.

Mlčochová H, Ratih R, Michalcová L, Wätzig H, Glatz Z, Stein M. Comparison of mobility shift affinity capillary electrophoresis and capillary electrophoresis frontal analysis for binding constant determination between human serum albumin and small drugs. Electrophoresis. 2022;43:1724-1734.

Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis. 2019;40:625-642.

Asmari M, Abdel-Megied AM, Michalcová L, Glatz Z, El Deeb S. Analytical approaches for the determination of deferiprone and its iron (III) complex: investigation of binding affinity based on liquid chromatography-mass spectrometry (LC-ESI/MS) and capillary electrophoresis-frontal analysis (CE/FA). Microchem J. 2020;154:104556.

Qian C, Wang S, Fu HQ, Turner RFB, Li HH, Chen DDY. Pressure-assisted capillary electrophoresis frontal analysis for faster binding constant determination. Electrophoresis. 2018;39:1786-1793.

Michalcová L, Glatz Z. Comparison of various capillary electrophoretic approaches for the study of drug-protein interaction with emphasis on minimal consumption of protein sample and possibility of automation. J Sep Sci. 2015;38:325-331.

Yang Y, Fu H, Qian C, Li H, Chen DDY. Characterization of interaction between Bcl-2 oncogene promoter I-Motif DNA and flavonoids using electrospray ionization mass spectrometry and pressure-assisted capillary electrophoresis frontal analysis. Talanta. 2020;215:120885.

Michalcová L, Nevídalová H, Glatz Z. Toward an automated workflow for the study of plasma protein-drug interactions based on capillary electrophoresis-frontal analysis combined with in-capillary mixing of interacting partners. J Chromatogr A. 2021;1635:461734.

Mlčochová H, Michalcová L, Glatz Z. Extending the application potential of capillary electrophoresis/frontal analysis for drug-plasma protein studies by combining it with mass spectrometry detection. Electrophoresis. 2022;43:955-963.

Bržezická T, Glatz Z, Kohútová L. Sensitivity enhancement of capillary electrophoresis-frontal analysis-based method for characterization of drug-protein interactions using on-line sample preconcentration. J Sep Sci. 2023;46:e2300152.

Nevídalová H, Michalcová L, Glatz Z. Applicability of capillary electrophoresis-frontal analysis for displacement studies: effect of several drugs on ltryptophan and lidocaine binding to human serum albumin. J Sep Sci. 2020;43:42254233.

Suntornsuk L, Anurukvorakun O. Sensitivity enhancement in capillary electrophoresis and their applications for analyses of pharmaceutical and related biochemical substances. Electrophoresis. 2022;43:939-954.

Kubáň P, Hauser PC. 20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. Trac-Trends Anal Chem. 2018;102:311-321.

Huang XH, Pang TKJ, Gordon MJ, Zare RN. On-column conductivity detector for capillary zone electrophoresis. Anal Chem. 1987;59:2747-2749.

Huang XH, Zare RN. Improved end-column conductivity detector for capillary zone electrophoresis. Anal Chem. 1991;63:2193-2196.

Gaš B, Demjanenko M, Vacík J. High-frequency contactless conductivity detection in isotachophoresis. J Chromatogr. 1980;192:253-257.

Zemann AJ, Schnell E, Volgger D, Bonn GK. Contactless conductivity detection for capillary electrophoresis. Anal Chem. 1998;70:563-567.

da Silva JAF, do Lago CL. An oscillometric detector for capillary electrophoresis. Anal Chem. 1998;70:4339-4343.

Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques: developments from 2014 to 2016. Electrophoresis. 2017;38:95-114.

Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques: developments from 2016 to 2018. Electrophoresis. 2019;40:124-139.

Hauser PC, Kubáň P. Capacitively coupled contactless conductivity detection for analytical techniques-developments from 2018 to 2020. J Chromatogr A. 2020;1632:461616.

Hu CQ, Xie B, Li HM, Xiao D. A five-electrode capacitively coupled contactless conductivity detector with a low limit of detection. Anal Methods. 2023;15:2253-2261.

Vuignier K, Veuthey JL, Carrupt PA, Schappler J. Characterization of drug-protein interactions by capillary electrophoresis hyphenated to mass spectrometry. Electrophoresis. 2012;33:3306-3315.

Xu M, Liu C, Zhou M, Li Q, Wang RX, Kang JW. Screening of small molecule inhibitors of protein-protein interaction with capillary electrophoresis frontal analysis. Anal Chem. 2016;88:8050-8057.

Jensen H, Østergaard J, Hansen SH. CE frontal analysis employing contactless conductivity detection for determination of CMCs of non-UV absorbing charged surfactants. Electrophoresis. 2007;28:2975-2980.

Jensen H, Østergaard J, Thomsen AE, Hansen SH. CE frontal analysis based on simultaneous UV and contactless conductivity detection: a general setup for studying noncovalent interactions. Electrophoresis. 2007;28:322-327.

Gaš B, Zuska J, Coufal P, van de Goor T. Optimization of the high-frequency contactless conductivity detector for capillary electrophoresis. Electrophoresis. 2002;23:3520-3527.

Shen YF, Smith RD. High-resolution capillary isoelectric focusing of proteins using highly hydrophilic-substituted cellulose-coated capillaries. J Microcolumn Sep. 2000;12:135-141.

Glatz Z. Application of short-end injection procedure in CE. Electrophoresis. 2013;34:631-642.

Østergaard J, Heegaard NHH. Capillary electrophoresis frontal analysis: principles and applications for the study of drug-plasma protein binding. Electrophoresis. 2003;24:2903-2913.

Jaroš M, Soga T, van de Goor T, Gaš B. Conductivity detection in capillary zone electrophoresis: inspection by PeakMaster. Electrophoresis. 2005;26:1948-1953.

Gaš B. PeakMaster and Simul-software tools for mastering electrophoresis. Trac-Trends Anal Chem. 2023;165:117-134.

Zhang B, Li YX, Gao HN, Bian J, Bao JJ. Rapid determination of protein binding constant by a pressure-mediated affinity capillary electrophoresis method. Electrophoresis. 2011;32:3589-3596.

Li ZM, Wei CW, Zhang YT, Wang DS, Liu YN. Investigation of competitive binding of ibuprofen and salicylic acid with serum albumin by affinity capillary electrophoresis. J Chromatogr B. 2011;879:1934-1938.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...