microchip electrophoresis
Dotaz
Zobrazit nápovědu
Capillary and microchip electrophoresis plays an important role in the analysis of the chemical composition of plants and nutrient soils, which finds applications in plant physiology, agrochemistry, medicine, toxicology and food science. Electrophoretic methods are used to determine minerals such as nutrients, heavy metal ions, primary and secondary metabolites, herbicides, phytohormones, peptides, proteins and extracellular vesicles. Progress is particularly evident in the following topics: i) development of mobile electrophoretic analysers for field-based monitoring of soil mineral supply, ii) direct analysis of xylem sap without sample treatment, iii) coupling of capillary and microchip electrophoresis with mass spectrometry for comprehensive metabolome and proteome characterization, iv) determination of secondary metabolites as biologically active compounds with a range of therapeutic and toxicological effects, v) monitoring of herbicides and their degradation dynamics, vi) research on plant exudates, extracellular vesicles and specific protein interactions.
The review presents an evaluation of the development of on-line, at-line and in-line sample treatment coupled with capillary and microchip electrophoresis over the last 10 years. In the first part, it describes different types of flow-gating interfaces (FGI) such as cross-FGI, coaxial-FGI, sheet-flow-FGI, and air-assisted-FGI and their fabrication using molding into polydimethylsiloxane and commercially available fittings. The second part deals with the coupling of capillary and microchip electrophoresis with microdialysis, solid-phase, liquid-phase, and membrane based extraction techniques. It mainly focuses on modern techniques such as extraction across supported liquid membrane, electroextraction, single drop microextraction, head space microextraction, and microdialysis with high spatial and temporal resolution. Finally, the design of sequential electrophoretic analysers and fabrication of SPE microcartridges with monolithic and molecularly imprinted polymeric sorbents are discussed. Applications include the monitoring of metabolites, neurotransmitters, peptides and proteins in body fluids and tissues to study processes in living organisms, as well as the monitoring of nutrients, minerals and waste compounds in food, natural and wastewater.
- MeSH
- elektroforéza kapilární metody MeSH
- elektroforéza mikročipová * metody MeSH
- mikrodialýza MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review article summarises aspects of the determination of amino acids using capillary and chip electrophoresis in combination with contactless conductivity detection from their historical beginnings to the present time. Discussion is included of the theory of conductivity detection in electromigration techniques, the design of contactless conductivity cells for detection in capillaries and on microchips, including the use of computer programs for simulation of the conductivity response and the process of the electrophoretic separation of amino acids. Emphasis is placed on optimisation of the background electrolyte composition, chiral separation, multidimensional separation, stacking techniques and the use of multidetection systems. There is also a description of clinical applications, the determination of amino acids in foodstuffs, waters, soils and composts with emphasis on modern techniques of sample treatment, such as microdialysis, liquid membrane extraction and many other techniques.
There is a constant need for the development of easy-to-operate systems for the rapid and unambiguous identification of bacterial pathogens in drinking water without the requirement for time-consuming culture processes. In this study, we present a disposable and low-cost lab-on-a-chip device utilizing a nanoporous membrane, which connects two stacked perpendicular microfluidic channels. Whereas one of the channels supplies the sample, the second one attracts it by potential-driven forces. Surface-enhanced Raman spectrometry (SERS) is employed as a reliable detection method for bacteria identification. To gain the effect of surface enhancement, silver nanoparticles were added to the sample. The pores of the membrane act as a filter trapping the bodies of microorganisms as well as clusters of nanoparticles creating suitable conditions for sensitive SERS detection. Therein, we focused on the construction and characterization of the device performance. To demonstrate the functionality of the microfluidic chip, we analyzed common pathogens (Escherichia coli DH5α and Pseudomonas taiwanensis VLB120) from spiked tap water using the optimized experimental parameters. The obtained results confirmed our system to be promising for the construction of a disposable optical platform for reliable and rapid pathogen detection which couples their electrokinetic concentration on the integrated nanoporous membrane with SERS detection.
- MeSH
- design vybavení MeSH
- kovové nanočástice chemie MeSH
- laboratoř na čipu * MeSH
- mikrofluidní analytické techniky přístrojové vybavení MeSH
- pitná voda mikrobiologie MeSH
- Ramanova spektroskopie přístrojové vybavení MeSH
- stříbro chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The review presents a comprehensive survey of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical and biochemical characterization of peptides since 2017 up to about the middle of 2019. Progress in the study of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression, EOF control, and detection) are described. Advances in CE and CEC methods are demonstrated and their applications in the following areas are presented: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. In addition, micropreparative separations and determinations of important physicochemical characteristics of peptides by CE and CEC methods are reported.
Amino acids are essential compounds for living organisms, and their determination in biological fluids is crucial for the clinical analysis and diagnosis of many diseases. However, the detection of most amino acids is hindered by the lack of a strong chromophore/fluorophore or electrochemically active group in their chemical structures. The highly sensitive determination of amino acids often requires derivatization. Capillary electrophoresis is a separation technique with excellent characteristics for the analysis of amino acids in biological fluids. Moreover, it offers the possibility of precapillary, on-capillary, or postcapillary derivatization. Each derivatization approach has specific demands in terms of the chemistry involved in the derivatization, which is discussed in this review. The family of homocyclic o-dicarboxaldehyde compounds, namely o-phthalaldehyde, naphthalene-2,3-dicarboxaldehyde, and anthracene-2,3-dicarboxaldehyde, are powerful derivatization reagents for the determination of amino acids and related compounds. In the presence of suitable nucleophiles they react with the primary amino group to form both fluorescent and electroactive derivatives. Moreover, the reaction rate enables all of the derivatization approaches mentioned above. This review focuses on articles that deal with using these reagents for the derivatization of amino acids and related compounds for ultraviolet-visible spectrometry, fluorescence, or electrochemical detection. Applications in capillary and microchip electrophoresis are summarized and discussed.
Over the last two decades, the group of techniques called affinity probe CE has been widely used for the detection and the determination of several types of biomolecules with high sensitivity. These techniques combine the low sample consumption and high separation power of CE with the selectivity of the probe to the target molecule. The assays can be defined according to the type of probe used: CE immunoassays, with an antibody as the probe, or aptamer-based CE, with an aptamer as the probe. Immunoassays are generally divided into homogeneous and heterogeneous groups, and homogeneous variant can be further performed in competitive or noncompetitive formats. Interacting partners are free in solution at homogeneous assay, as opposed to heterogeneous analyses, where one of them is immobilized onto a solid support. Highly sensitive fluorescence, chemiluminescence or electrochemical detections were typically used in this type of study. The use of the aptamers as probes has several advantages over antibodies such as shorter generation time, higher thermal stability, lower price, and lower variability. The aptamer-based CE technique was in practice utilized for the determination of proteins in biological fluids and environmentally or clinically important small molecules. Both techniques were also transferred to microchip. This review is focused on theoretical principles of these techniques and a summary of their applications in research.
Point-of-care systems based on microchip capillary electrophoresis require single-use, disposable microchips prefilled with all necessary solutions so an untrained operator only needs to apply the sample and perform the analysis. While microchip fabrication can be (and has been) standardized, some manufacturing differences between microchips are unavoidable. To improve analyte precision without increasing device costs or introducing additional error sources, we recently proposed the use of integrated internal standards (ISTDs): ions added to the BGE in small concentrations which form system peaks in the electropherogram that can be used as a measurement reference. Here, we further expand this initial proof-of-principle test to study a clinically-relevant application of K ion concentrations in human blood; however, using a mock blood solution instead of real samples to avoid interference from other obstacles (e.g. cell lysis). Cs as an integrated ISTD improves repeatability of K ion migration times from 6.97% to 0.89% and the linear calibration correlation coefficient (R2 ) for K quantification from 0.851 to 0.967. Peak area repeatability improves from 11.6-13.3% to 4.75-5.04% at each K concentration above the LOQ. These results further validate the feasibility of using integrated ISTDs to improve imprecision in disposable microchip CE devices by demonstrating their application for physiological samples.
This review summarizes recent developments and applications of capillary and microchip electroseparation methods in proteomic and peptidomic analyses since the year 2015 to ca. mid 2018. Sample preparation procedures for the removal of interfering components or for pre-fractionation and preconcentration of proteins and peptides of interest are discussed. The innovations in coupling of capillary or microchip electroseparation methods with different modes of mass spectrometry detection are covered. In addition, significant recent applications of capillary electromigration methods in both bottom-up and top-down proteomics as well as in determinations of post-translational modifications of proteins are presented. Moreover, several examples of the utilization of capillary electromigration methods coupled with mass spectrometry detection for clinical proteomics and peptidomics are described.
The publications concerning capacitively coupled contactless conductivity detection for the 2-year period from mid-2016 to mid-2018 are covered in this update to the earlier reviews of the series. Relatively few reports on fundamental investigations or new designs have appeared in the literature in this time interval, but the development of new applications with the detection method has continued strongly. Most often, contactless conductivity measurements have been employed for the detection of inorganic or small organic ions in conventional capillary electrophoresis, less often in microchip electrophoresis. A number of other uses, such as detection in chromatography or the gauging of bubbles in streams have also been reported.