-
Je něco špatně v tomto záznamu ?
Microfluidic device for concentration and SERS-based detection of bacteria in drinking water
B. Krafft, A. Tycova, RD. Urban, C. Dusny, D. Belder
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32391575
DOI
10.1002/elps.202000048
Knihovny.cz E-zdroje
- MeSH
- design vybavení MeSH
- kovové nanočástice chemie MeSH
- laboratoř na čipu * MeSH
- mikrofluidní analytické techniky přístrojové vybavení MeSH
- pitná voda mikrobiologie MeSH
- Ramanova spektroskopie přístrojové vybavení MeSH
- stříbro chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
There is a constant need for the development of easy-to-operate systems for the rapid and unambiguous identification of bacterial pathogens in drinking water without the requirement for time-consuming culture processes. In this study, we present a disposable and low-cost lab-on-a-chip device utilizing a nanoporous membrane, which connects two stacked perpendicular microfluidic channels. Whereas one of the channels supplies the sample, the second one attracts it by potential-driven forces. Surface-enhanced Raman spectrometry (SERS) is employed as a reliable detection method for bacteria identification. To gain the effect of surface enhancement, silver nanoparticles were added to the sample. The pores of the membrane act as a filter trapping the bodies of microorganisms as well as clusters of nanoparticles creating suitable conditions for sensitive SERS detection. Therein, we focused on the construction and characterization of the device performance. To demonstrate the functionality of the microfluidic chip, we analyzed common pathogens (Escherichia coli DH5α and Pseudomonas taiwanensis VLB120) from spiked tap water using the optimized experimental parameters. The obtained results confirmed our system to be promising for the construction of a disposable optical platform for reliable and rapid pathogen detection which couples their electrokinetic concentration on the integrated nanoporous membrane with SERS detection.
Department Solar Materials Helmholtz Centre for Environmental Research GmbH Leipzig Germany
Institute of Analytical Chemistry Czech Academy of Sciences Brno Czech Republic
Institute of Analytical Chemistry Leipzig University Leipzig Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026240
- 003
- CZ-PrNML
- 005
- 20211026133102.0
- 007
- ta
- 008
- 211013s2021 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/elps.202000048 $2 doi
- 035 __
- $a (PubMed)32391575
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Krafft, Benjamin $u Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
- 245 10
- $a Microfluidic device for concentration and SERS-based detection of bacteria in drinking water / $c B. Krafft, A. Tycova, RD. Urban, C. Dusny, D. Belder
- 520 9_
- $a There is a constant need for the development of easy-to-operate systems for the rapid and unambiguous identification of bacterial pathogens in drinking water without the requirement for time-consuming culture processes. In this study, we present a disposable and low-cost lab-on-a-chip device utilizing a nanoporous membrane, which connects two stacked perpendicular microfluidic channels. Whereas one of the channels supplies the sample, the second one attracts it by potential-driven forces. Surface-enhanced Raman spectrometry (SERS) is employed as a reliable detection method for bacteria identification. To gain the effect of surface enhancement, silver nanoparticles were added to the sample. The pores of the membrane act as a filter trapping the bodies of microorganisms as well as clusters of nanoparticles creating suitable conditions for sensitive SERS detection. Therein, we focused on the construction and characterization of the device performance. To demonstrate the functionality of the microfluidic chip, we analyzed common pathogens (Escherichia coli DH5α and Pseudomonas taiwanensis VLB120) from spiked tap water using the optimized experimental parameters. The obtained results confirmed our system to be promising for the construction of a disposable optical platform for reliable and rapid pathogen detection which couples their electrokinetic concentration on the integrated nanoporous membrane with SERS detection.
- 650 _2
- $a pitná voda $x mikrobiologie $7 D060766
- 650 _2
- $a design vybavení $7 D004867
- 650 12
- $a laboratoř na čipu $7 D056656
- 650 _2
- $a kovové nanočástice $x chemie $7 D053768
- 650 _2
- $a mikrofluidní analytické techniky $x přístrojové vybavení $7 D046210
- 650 _2
- $a stříbro $x chemie $7 D012834
- 650 _2
- $a Ramanova spektroskopie $x přístrojové vybavení $7 D013059
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Tycova, Anna $u Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
- 700 1_
- $a Urban, Raphael D $u Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
- 700 1_
- $a Dusny, Christian $u Department Solar Materials, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
- 700 1_
- $a Belder, Detlev $u Institute of Analytical Chemistry, Leipzig University, Leipzig, Germany
- 773 0_
- $w MED00001508 $t Electrophoresis $x 1522-2683 $g Roč. 42, č. 1-2 (2021), s. 86-94
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32391575 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133108 $b ABA008
- 999 __
- $a ok $b bmc $g 1715067 $s 1146747
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 42 $c 1-2 $d 86-94 $e 20200525 $i 1522-2683 $m Electrophoresis $n Electrophoresis $x MED00001508
- LZP __
- $a Pubmed-20211013