Sensitivity enhancement of capillary electrophoresis-frontal analysis-based method for characterization of drug-protein interactions using on-line sample preconcentration
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37386816
DOI
10.1002/jssc.202300152
Knihovny.cz E-zdroje
- Klíčová slova
- binding constant, capillary electrophoresis-frontal analysis, human serum albumin, on-line preconcentration,
- MeSH
- elektroforéza kapilární * metody MeSH
- krevní proteiny * MeSH
- lékové interakce MeSH
- lidé MeSH
- lidský sérový albumin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- krevní proteiny * MeSH
- lidský sérový albumin MeSH
Capillary electrophoresis-frontal analysis is one of the most frequently used approaches for the study of plasma protein-drug interactions as a substantial part of new drug development. However, the capillary electrophoresis-frontal analysis typically combined with ultraviolet-visible detection suffers from insufficient concentration sensitivity, particularly for substances with limited solubility and low molar absorption coefficient. The sensitivity problem has been solved in this work by its combination with an on-line sample preconcentration. According to the knowledge of the authors this combination has never been used to characterize plasma protein-drug binding. It resulted in a fully automated and versatile methodology for the characterization of binding interactions. Further, the validated method minimalizes the experimental errors due to a reduction in the manipulation of samples. Moreover, employing an on-line preconcentration strategy with capillary electrophoresis-frontal analysis using human serum albumin-salicylic acid as a model system improves the drug concentration sensitivity 17-fold compared to the conventional method. The value of binding constant (1.51 ± 0.63) · 104 L/mol obtained by this new capillary electrophoresis-frontal analysis modification is in agreement with the value (1.13 ± 0.28) ·104 L/mol estimated by a conventional variant of capillary electrophoresis-frontal analysis without the preconcentration step, as well as with literature data obtained using different techniques.
Zobrazit více v PubMed
Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: a review. Electrophoresis 2022;43:2302-23.
Olabi M, Stein M, Watzig H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods 2018;146:76-92.
Romano EF, Quirino JP. Frontal analysis capillary electrophoresis: recent advances and future perspectives. Bioanalysis 2018;10:1143-59.
Michalcová L, Nevidalová H, Glatz Z. Toward an automated workflow for the study of plasma protein-drug interactions based on capillary electrophoresis-frontal analysis combined with in-capillary mixing of interacting partners. J Chromatogr A. 2021;1635:461734.
Vuignier K, Schappler J, Veuthey JL, Carrupt PA, Martel S. Improvement of a capillary electrophoresis/frontal analysis (CE/FA) method for determining binding constants: discussion on relevant parameters. J Pharm Biomed Anal. 2010;53:1288-97.
Asmari M, Michalcová L, Ibrahim AE, Glatz Z, Watzig H, El Deeb S, Studying molecular interactions via capillary electrophoresis and microscale thermophoresis: A review. Electrophoresis. 2023:1-29. https://doi.org/10.1002/elps.202200275
Nevidalová H, Michalcová L, Glatz Z, Applicability of capillary electrophoresis frontal analysis for displacement studies: Effect of several drugs on l-tryptophan and lidocaine binding to human serum albumin. J Sep Sci. 2020;43:4225-33.
Qian C, Wang S, Fu H, Turner RFB, Li H, Chen DDY, Pressure-assisted capillary electrophoresis frontal analysis for faster binding constant determination. Electrophoresis 2018;39:1786-93.
Yang Y, Fu H, Qian C, Li H, Chen DDY, Characterization of interaction between Bcl-2 oncogene promoter I-Motif DNA and flavonoids using electrospray ionization mass spectrometry and pressure-assisted capillary electrophoresis frontal analysis. Talanta 2020;215:120885.
Mlčochová H, Michalcová L, Glatz Z, Extending the application potential of capillary electrophoresis/frontal analysis for drug-plasma protein studies by combining it with mass spectrometry detection. Electrophoresis 2022;43:955-63.
Yamasaki K, Chuang VTG, Maruyama T, Otagiri M, Albumin-drug interaction and its clinical implication. Biochim Biophys Acta Gen Subj. 2013;1830:5435-43.
Nevidalová H, Michalcová L, Glatz Z, Capillary electrophoresis-based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis 2019;40:625-42.
Suntornsuk L, Anurukvorakun O, Sensitivity enhancement in capillary electrophoresis and their applications for analyses of pharmaceutical and related biochemical substances. Electrophoresis 2022;43:939-54.
Lopez Guerrero MdM, Hernandez-Mesa M, Cruces-Blanco C, Garcia-Campana AM, On-line preconcentration strategy for the simultaneous quantification of three local anesthetics in human urine using CZE. Electrophoresis 2015;36:2961-7.
See HH, Hauser PC, Ibrahim WAW, Sanagi MM, Rapid and direct determination of glyphosate, glufosinate, and aminophosphonic acid by online preconcentration CE with contactless conductivity detection. Electrophoresis 2010;31:575-82.
Xu L, Meng W, Lu J, Cui F, Gao L, Chen L, et al. Hyphenation of field amplified sample injection and transient isotachophoresis in CE for the determination of sotalol and metoprolol in human urine samples. J Sep Sci. 2020;43:2193-200.
Šlampová A, Malá Z, Gebauer P, Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis 2019;40:40-54.
Kitagawa F, Soma Y, Recent applications of dynamic on-line sample preconcentration techniques in capillary electrophoresis. Chromatography 2022;43:93-9.
John AS, Sidek MM, Thang LY, Sami S, Tey HY, See HH, Online sample preconcentration techniques in nonaqueous capillary and microchip electrophoresis. J Chromatogr. A.. 2021;1638:461868.
Malak M, Ebrahim H, Sonbol H, Ali A, Aboulella Y, Hadad G, et al. Highly sensitive in-capillary derivatization and field amplified sample stacking to analyze narcotic drugs in human serum by capillary zone electrophoresis. Separations. 2023;10:58.
Yasuno K, Fukushi K, CZE determination of submicromolar level of phenol in seawater using improved dynamic pH junction. Electrophoresis. 2016;37:2496-501.
Zhu GJ, Sun LL, Dovichi NJ, Dynamic pH junction preconcentration in capillary electrophoresis-electrospray ionization-mass spectrometry for proteomics analysis. Analyst. 2016;141:5216-20.
Kitagawa F, Ishiguro T, Tateyama M, Nukatsuka I, Sueyoshi K, Kawai T, et al. Combination of large-volume sample stacking with an electroosmotic flow pump with field-amplified sample injection on cross-channel chips. Electrophoresis. 2017;38:20752080.
Zabenský B, Bodor R, Makata D, Szucs R, Masar M, Trace determination of perchlorate in drinking water by capillary zone electrophoresis with isotachophoresis sample cleanup and conductivity detection. J Sep Sci. 2022;45:3339-47.
Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, et al. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis. 2019;40:17-39.
Yu RB, Quirino JP, Pseudophase-aided in-line sample concentration for capillary electrophoresis. Trac Trends Anal Chem.. 2023;161:339219.
Jensen H, Ostergaard J, Thomsen AE, Hansen SH, CE frontal analysis based on simultaneous UV and contactless conductivity detection: a general setup for studying noncovalent interactions. Electrophoresis. 2007;28:322-7.
Jensen H, Ostergaard J, Hansen SH, CE frontal analysis employing contactless conductivity detection for determination of CMCs of non-UV absorbing charged surfactants. Electrophoresis. 2007;28:2975-80.
Vuignier K, Veuthey JL, Carrupt PA, Schappler J, Characterization of drug protein interactions by capillary electrophoresis hyphenated to mass spectrometry. Electrophoresis. 2012;33:3306-15.
Xu M, Liu C, Zhou M, Li Q, Wang R, Kang J, Screening of small-molecule inhibitors of protein-protein interaction with capillary electrophoresis frontal analysis. Anal Chem. 2016;88:8050-7.
Fukushima E, Yagi Y, Yamamoto S, Nakatani Y, Kakehi K, Hayakawa T, et al. Partial filling affinity capillary electrophoresis using large-volume sample stacking with an electroosmotic flow pump for sensitive profiling of glycoprotein-derived oligosaccharides. J. Chromatogr. A.. 2012;1246:84-9.
Glatz Z, Application of short-end injection procedure in CE. Electrophoresis. 2013;34:631-42.
Ostergaard J, Heegaard NHH, Capillary electrophoresis frontal analysis: principles and applications for the study of drug-plasma protein binding. Electrophoresis. 2003;24:29032913.
Sedov I, Nikiforova A, Khaibrakhmanova D, binding constants of clinical drugs and other organic ligands with human and mammalian serum albumins. Biophysica. 2021;1:344-58.
Mlčochová H, Ratih R, Michalcová L, Watzig H, Glatz Z, Stein M, Comparison of mobility shift affinity capillary electrophoresis and capillary electrophoresis frontal analysis for binding constant determination between human serum albumin and small drugs. Electrophoresis. 2022;43:1724-34.
Asmari M, Abdel-Megied AM, Michalcová L, Glatz Z, El Deeb S, Analytical approaches for the determination of deferiprone and its iron (III) complex: Investigation of binding affinity based on liquid chromatography-mass spectrometry (LC-ESI/MS) and capillary electrophoresis-frontal analysis (CE/FA). Microchem J. 2020;154:104556.
Busch MHA, Carels LB, Boelens HFM, Kraak JC, Poppe H, Comparison of five methods for the study of drug-protein binding in affinity capillary electrophoresis. J. Chromatogr. A.. 1997;777:311-28.
Altria KD, Kelly MA, Clark BJ, The use of a short-end injection procedure to achieve improved performance in capillary electrophoresis. Chromatographia. 1996;43:153158.
Němec T, Glatz Z, Integration of short-end injection mode into electrophoretically mediated microanalysis. J. Chromatogr. A.. 2007;1155:206-13.
Li ZM, Wei CW, Zhang YT, Wang DS, Liu YN, Investigation of competitive binding of ibuprofen and salicylic acid with serum albumin by affinity capillary electrophoresis. J. Chromatogr. B. 2011;879:1934-8.
Nakano NI, Shimamori Y, Yamaguchi S, Effect of chloride-ions on the interaction between salicylic-acid and human-serum albumin studied by frontal affinity-chromatography. Chem Pharm Bull. 1985;33:778-83.
Yin TJ, Wei WZ, Yang L, Liu K, Gao XH, Kinetics parameter estimation for the binding process of salicylic acid to human serum albumin (HSA) with capacitive sensing technique. J. Biochem. Biophys. Methods. 2007;70:587-93.
Aki H, Yamamoto M, Thermodynamic characterization of drug-binding to human serum-albumin by isothermal titration microcalorimetry. J Pharm Sci. 1994;83:1712-6.