Determination of physicochemical parameters of (bio)molecules and (bio)particles by capillary electromigration methods
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
RVO 61388963
Czech Academy of Sciences
PubMed
38867483
DOI
10.1002/jssc.202400174
Knihovny.cz E-zdroje
- Klíčová slova
- acidity constant, binding constant, capillary electrophoresis, electrophoretic mobility, review,
- MeSH
- elektroforéza kapilární * MeSH
- isoelektrická fokusace metody MeSH
- lidé MeSH
- molekulová hmotnost MeSH
- proteiny analýza chemie MeSH
- termodynamika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- proteiny MeSH
The review provides an overview of recent developments and applications of capillary electromigration (CE) methods for the determination of important physicochemical parameters of various (bio)molecules and (bio)particles. These parameters include actual and limiting (absolute) ionic mobilities, effective electrophoretic mobilities, effective charges, isoelectric points, electrokinetic potentials, hydrodynamic radii, diffusion coefficients, relative molecular masses, acidity (ionization) constants, binding constants and stoichiometry of (bio)molecular complexes, changes of Gibbs free energy, enthalpy and entropy and rate constants of chemical reactions and interactions, retention factors and partition and distribution coefficients. For the determination of these parameters, the following CE methods are employed: zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography. In the individual sections, the procedures for the determination of the above parameters by the particular CE methods are described.
Zobrazit více v PubMed
Righetti PG. Determination of physicochemical parameters by capillary electrophoresis. in: Khaledi MG, editor. High‐performance capillary electrophoresis: theory, techniques, and applications. New York: John Willey & Sons Inc.; 1998:973–998.
Stepanova S, Kasicka V. Application of capillary electromigration methods for physicochemical measurements. in: Poole CF, editor. Capillary electromigration separation methods. Amsterdam: Elsevier; 2018:547–591.
Vcelakova K, Zuskova I, Kenndler E, Gas B. Determination of cationic mobilities and pK(a) values of 22 amino acids by capillary zone electrophoresis. Electrophoresis. 2004;25:309–317.
Koval D, Kasicka V, Zuskova I. Investigation of the effect of ionic strength of Tris‐acetate background electrolyte on electrophoretic mobilities of mono‐, di‐, and trivalent organic anions by capillary electrophoresis. Electrophoresis. 2005;26:3221–3231.
Zuskova I, Novotna A, Vcelakova K, Gas B. Determination of limiting mobilities and dissociation constants of 21 amino acids by capillary zone electrophoresis at very low pH. J. Chromatogr B Anal Technol Biomed Life Sci. 2006;841:129–134.
Porras SP, Riekkola ML, Kenndler E. The principles of migration and dispersion in capillary zone electrophoresis in nonaqueous solvents. Electrophoresis. 2003;24:1485–1498.
Survay MA, Goodall DM, Wren SAC, Rowe RC. Self‐consistent framework for standardising mobilities in free solution capillary electrophoresis: applications to oligoglycines and oligoalanines. J Chromatogr A. 1996;741:99–113.
Li DM, Fu SL, Lucy CA. Prediction of electrophoretic mobilities. 3. Effect of ionic strength in capillary zone electrophoresis. Anal Chem. 1999;71:687–699.
Offord RE. Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature. 1966;211:591–593.
Grossman PD. Free‐solution capillary electrophoresis. in: Grossman PD, Colburn JC, editors. Capillary electrophoresis: theory and practice. San Diego: Academic Press, Inc.; 1992:111–132.
Tanford C, editor. Physical chemistry of macromolecules. New York: Wiley; 1961.
Kim J, Zand R, Lubman DM. Electrophoretic mobility for peptides with post‐translational modifications in capillary electrophoresis. Electrophoresis. 2003;24:782–793.
Compton BJ. Electrophoretic mobility modeling of proteins in free zone capillary electrophoresis and its application to monoclonal antibody microheterogeneity analysis. J Chromatogr. 1991;559:357–366.
Grossman PD, Colburn JC, Lauer HH. A semiempirical model for the electrophoretic mobilities of peptides in free‐solution capillary electrophoresis. Anal Biochem. 1989;179:28–33.
Cifuentes A, Poppe H. Simulation and optimization of peptide separation by capillary electrophoresis. J Chromatogr A. 1994;680:321–340.
Adamson NJ, Reynolds EC. Rules relating electrophoretic mobility, charge and molecular size of peptides and proteins. J Chromatogr B. 1997;699:133–147.
Solinova V, Kasicka V, Koval D, Hlavacek J. Separation and investigation of structure‐mobility relationships of insect oostatic peptides by capillary zone electrophoresis. Electrophoresis. 2004;25:2299–2308.
Solinova V, Kasicka V, Sazelova P, Barth T, Miksik I. Separation and investigation of structure‐mobility relationship of gonadotropin‐releasing hormones by capillary zone electrophoresis in conventional and isoelectric acidic background electrolytes. J Chromatogr A. 2007;1155:146–153.
Mittermayr S, Olajos M, Chovan T, Bonn GK, Guttman A. Mobility modeling of peptides in capillary electrophoresis. Trends Anal Chem. 2008;27:407–417.
Janini GM, Metral CJ, Issaq HJ. Peptide mapping by capillary zone electrophoresis: how close is theoretical simulation to experimental determination. J Chromatogr A. 2001;924:291–306.
Ma WP, Luan F, Zhang HX, Zhang XY, Liu MC, Hu ZD, et al. Accurate quantitative structure‐property relationship model of mobilities of peptides in capillary zone electrophoresis. Analyst. 2006;131:1254–1260.
Jalali‐Heravi M, Shen Y, Hassanisadi M, Khaledi MG. Prediction of electrophoretic mobilities of peptides in capillary zone electrophoresis by quantitative structure‐mobility relationships using the offord model and artificial neural networks. Electrophoresis. 2005;26:1874–1885.
Yu K, Cheng YY. Machine learning techniques for the prediction of the peptide mobility in capillary zone electrophoresis. Talanta. 2007;71:676–682.
Krokhin OV, Anderson G, Spicer, V, Sun LL, Dovichi NJ. Predicting electrophoretic mobility of tryptic peptides for high‐throughput CZE‐MS analysis. Anal Chem. 2017;89:2000–2008.
Chen DY, Ludwig KR, Krokhin OV, Spicer V, Yang ZC, Shen XJ, et al. Capillary zone electrophoresis‐tandem mass spectrometry for large‐scale phosphoproteomics with the production of over 11,000 phosphopeptides from the colon carcinoma HCT116 cell line. Anal Chem. 2019;91:2201–2208.
Chen DY, Lubeckyj RA, Yang ZC, McCool EN, Shen XJ, Wang QJ, et al. Predicting electrophoretic mobility of proteoforms for large‐scale top‐down proteomics. Anal Chem. 2020;92:3503–3507.
Friedl W, Reijenga JC, Kenndler E. Ionic strength and charge number correction for mobilities of multivalent organic anions in capillary electrophoresis. J Chromatogr A. 1995;709:163–170.
Henry DC, The cataphoresis of suspended particles Part I—the equation of cataphoresis. Proc Royal Soc Lond Ser A Math Phys Sci. 1931;133:106–129.
Kim JY, Ahn SH, Kang ST, Yoon BJ, Electrophoretic mobility equation for protein with molecular shape and charge multipole effects. J Colloid Interface Sci. 2006;299:486–492.
Li SK, Liddell MR, Wen H. Effective electrophoretic mobilities and charges of anti‐VEGF proteins determined by capillary zone electrophoresis. J Pharm Biomed Anal. 2011;55:603–607.
Ohshima H. Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle. J Colloid Interface Sci. 2001;239;587–590.
Ibrahim A, Ohshima H, Allison SA, Cottet H. Determination of effective charge of small ions, polyelectrolytes and nanoparticles by capillary electrophoresis. J Chromatogr A. 2012;1247:154–164.
Ibrahim A, Cottet H. Characterization of hydrosoluble fraction and oligomers in poly(vinylidene chloride) latexes by capillary electrophoresis using electrophoretic mobility modeling. J Chromatogr A. 2019;1598:223–231.
Malburet C, Leclercq L, Cotte JF, Thiebaud J, Bazin E, Garinot M, et al. Size and Charge Characterization of Lipid Nanoparticles for mRNA Vaccines. Anal Chem. 2022;94:4677–4685.
Messana I, Rossetti DV, Cassiano L, Misiti F, Giardina B, Castagnola M. Peptide analysis by capillary (zone) electrophoresis. J Chromatogr B. 1997;699:149–171.
Ibrahim A, Meyrueix R, Pouliquen G, Chan YP, Cottet H. Size and charge characterization of polymeric drug delivery systems by Taylor dispersion analysis and capillary electrophoresis. Anal Bioanal Chem. 2013;405:5369–5379.
Yoon BJ, Kim S. Electrophoresis of spheroidal particles. J Colloid Interface Sci. 1989;128:275–288.
Allison SA, Pei HX, Baek S, Brown J, Lee MY, Nguyen V, et al. The dependence of the electrophoretic mobility of small organic ions on ionic strength and complex formation. Electrophoresis. 2010;31:920–932.
O'Brien RW, White LR. Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2. 1978;74:1607–1626.
Doble P, Haddad PR. Indirect photometric detection of anions in capillary electrophoresis. J Chromatogr A. 1999:834:189–212.
Johns C, Macka M, Haddad PR. Enhancement of detection sensitivity for indirect photometric detection of anions and cations in capillary electrophoresis. Electrophoresis. 2003;24:2150–2167.
Anik N, Airiau M, Labeau MP, Vuong CT, Reboul J, Lacroix‐Desmazes P, et al. Determination of polymer effective charge by indirect UV detection in capillary electrophoresis: toward the characterization of macromolecular architectures. Macromolecules. 2009;42:2767–2774.
Kohlrausch F. Über Concentrations‐Verschiebungen durch Electrolyse im Inneren von Lösungen und Lösungsgemischen. Ann Phys. 1897;298:209–239.
Pyell U, Bucking W, Huhn C, Herrmann B, Merkoulov A, Mannhardt J, et al. Calibration‐free concentration determination of charged colloidal nanoparticles and determination of effective charges by capillary isotachophoresis. Anal Bioanal Chem. 2009;395:1681–1691.
Ibrahim A, Koval D, Kasicka V, Faye C, Cottet H. Effective charge determination of dendrigraft poly‐L‐lysine by capillary isotachophoresis. Macromolecules. 2013;46:533–540.
Chamieh J, Koval D, Besson A, Kasicka V, Cottet H. Generalized polymer effective charge measurement by capillary isotachophoresis. J Chromatogr. A. 2014;1370:255–262.
Righetti PG, Candiano G. Recent advances in electrophoretic techniques for the characterization of protein biomolecules: a poker of aces. J Chromatogr A. 2011;1218:8727–8737.
Shimura K, Zhi W, Matsumoto H, Kasai K. Accuracy in the determination of isoelectric points of some proteins and a peptide by capillary isoelectric focusing: Utility of synthetic peptides as isoelectric point markers. Anal Chem. 2000;72:4747–4757.
Righetti PG. Determination of the isoelectric point of proteins by capillary isoelectric focusing. J Chromatogr A. 2004;1037:491–499.
Shimura K. Recent advances in IEF in capillary tubes and microchips. Electrophoresis. 2009;30:11–28.
Hjerten S, Zhu M‐D. Adaptation of the equipment for high‐performance electrophoresis to isoelectric focusing. J Chromatogr. 1985;346:265–270.
Hjerten S, Liao J‐L, Yao K. Theoretical and experimental study of high‐performance electrophoretic mobilization of isoelectrically focused protein zones. J Chromatogr. 1987;387:127–138.
Thormann W, Caslavska J, Molteni S, Chmelik J. Capillary isoelectric focusing with electroosmotic zone displacement and on‐column multichannel detection. J Chromatogr. 1992;589:321–327.
Liu Z, Lemma T, Pawliszyn J. Capillary isoelectric focusing coupled with dynamic imaging detection: a one‐dimensional separation for two‐dimensional protein characterization. J Proteome Res. 2006;5:1246–1251.
Wu JQ, McElroy W, Pawliszyn J, Heger CD. Imaged capillary isoelectric focusing: applications in the pharmaceutical industry and recent innovations of the technology. Trends Anal Chem. 2022;150:116567.
Slais K, Horka M, Novackova J, Friedl Z. Fluorescein‐based pl markers for capillary isoelectric focusing with laser‐induced fluorescence detection. Electrophoresis. 2002;23:1682–1688.
Shimura K, Wang Z, Matsumoto H, Kasai K. Synthetic oligopeptides as isoelectric point markers for capillary isoelectric focusing with ultraviolet absorption detection. Electrophoresis. 2000;21:603–610.
Shimura K, Kamiya K, Matsumoto H, Kasai K. Fluorescence‐labeled peptide pI markers for capillary isoelectric focusing. Anal. Chem. 2002;74:1046–1053.
Dusa F, Kubesova A, Salplachta J, Moravcova D. Capillary isoelectric focusing–the role of markers of isoelectric point and recent applications in the field. Trends Anal Chem. 2023;162:117018.
Solinova V, Poitevin M, Koval D, Busnel JM, Peltre G, Kasicka V. Capillary electrophoresis in classical and carrier ampholytes‐based background electrolytes applied to separation and characterization of gonadotropin‐releasing hormones. J Chromatogr A. 2012;1267:231–238.
Ohshima H. A simple expression for Henry's function for the retardation effect in electrophoresis of spherical colloidal particles. J Colloid Interface Sci. 1994;168:269–271.
Wiersema PH, Loeb AL, Overbeek JTG. Calculation of the electrophoretic mobility of a spherical colloid particle. J Colloid Interface Sci. 1966;22:78–99.
O'Brien RW, Hunter RJ. The electrophoretic mobility of large colloidal particles. Canadian J Chem. 1981;59:1878–1887.
Ohshima H, Healy TW, White LR. Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans 2. 1983;79:1613–1628.
Makino K, Ohshima H. Electrophoretic mobility of a colloidal particle with constant surface charge density. Langmuir. 2010;26:18016–18019.
Nhujak T, Goodall DM. Comparison of binding of tetraphenylborate and tetraphenylphosphonium ions to cyclodextrins studied by capillary electrophoresis. Electrophoresis. 2001;22:117–122.
Huang X, Coleman WF, Zare RN. Analysis of factors causing peak broadening in capillary zone electrophoresis. J Chromatogr. 1989;480:95–110.
Yao YJ, Li SFY. Determination of diffusion coefficients by capillary zone electrophoresis. J Chromatogr Sci. 1994;32:117–120.
Walbroehl Y, Jorgenson JW. Capillary zone electrophoresis for the determination of electrophoretic mobilities and diffusion coefficients of proteins. J Microcolumn. 1989;1:41–45.
Zhang HY, Song XR, Shi ZH, Yang GL, Hu ZD. Capillary zone electrophoresis for the determination of average hydrodynamic velocity and diffusion coefficient. Fresenius J Anal Chem. 1999;365:499–503.
Stellwagen E, Stellwagen NC. Electrostatic coupling between DNA and its counterions modulates the observed translational diffusion coefficients. Anal Chem. 2015;87:9042–9046.
Stellwagen NC. Using capillary electrophoresis to characterize the hydrodynamic and electrostatic properties of DNA in solutions containing various monovalent cations. Electrophoresis. 2022;43:309–326.
Taylor G. Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc Royal Soc Ser A Math Phys Sci. 1954;225:473–477.
Aris R. On the dispersion of a solute in a fluid flowing through a tube. Proc Royal Soc Lond Ser A Math Phys Sci. 1956;235:67–77.
Bello MS, Rezzonico R, Righetti PG. Use of Taylor‐Aris dispersion for measurement of a solute diffusion coefficient in thin capillaries. Science. 1994;266:773–776.
Moser MR, Baker CA. Taylor dispersion analysis in fused silica capillaries: a tutorial review. Anal Methods. 2021;13:2357–2373.
D'Orlye F, Varenne A, Gareil P. Determination of nanoparticle diffusion coefficients by Taylor dispersion analysis using a capillary electrophoresis instrument. J Chromatogr A. 2008;1204:226–232.
Cottet H, Biron JP, Martin M. On the optimization of operating conditions for Taylor dispersion analysis of mixtures. Analyst. 2014;139:3552–3562.
Sharma U, Gleason NJ, Carbeck JD. Diffusivity of solutes measured in glass capillaries using Taylor's analysis of dispersion and a commercial CE instrument. Anal Chem. 2005;77:806–813.
Alizadeh A, Nieto de Castro CA, Wakeham WA. The theory of the Taylor dispersion technique for liquid diffusivity measurements. Int J Thermophys. 1980;1:243–284.
Cottet H, Martin M, Papillaud A, Souaid E, Collet H, Commeyras A. Determination of dendrigraft poly‐L‐lysine diffusion coefficients by Taylor dispersion analysis. Biomacromolecules. 2007;8:3235–3243.
Chapman AJS, Goodall DM. A novel approach to measurement of hydrodynamic radius for a standard protein using UV area imaging detection. Chromatogr Today. 2008;1:22–24.
Wiesner R, Scheller C, Krebs F, Watzig H, Oltmann‐Norden I. A comparative study of CE‐SDS, SDS‐PAGE, and simple western: influences of sample preparation on molecular weight determination of proteins. Electrophoresis. 2021;42:206–218.
Sarkozy D, Guttman A. Analysis of peptides and proteins by native and SDS capillary gel electrophoresis coupled to electrospray ionization mass spectrometry via a closed‐circuit coaxial sheath flow reactor interface. Anal. Chem. 2023;95:7082–7086.
Bhimwal R, Rustandi RR, Payne A, Dawod M. Recent advances in capillary gel electrophoresis for the analysis of proteins. J Chromatogr A. 2022;1682:463453.
Hajba L, Jeong S, Chung DS, Guttman A. Capillary gel electrophoresis of proteins: historical overview and recent advances. Trends Anal Chem. 2023;162.
Sanger‐van de Griend C. CE‐SDS method development, validation, and best practice–an overview. Electrophoresis. 2019;40:2361–2374.
Lapizco‐Encinas BH, Zhang YV, Gqamana PP, Lavicka J, Foret F. Capillary electrophoresis as a sample separation step to mass spectrometry analysis: a primer. Trends Anal. Chem. 2023;164:117093.
Seyfinejad B, Jouyban A. Capillary electrophoresis‐mass spectrometry in pharmaceutical and biomedical analyses. J Pharm Biomed Anal. 2022;221:115059.
Marakova K, Opetova M, Tomasovsky R. Capillary electrophoresis‐mass spectrometry for intact protein analysis: pharmaceutical and biomedical applications (2018‐March 2023). J Sep Sci. 2023;46:2300244.
Babic S, Horvat AJM, Pavlovic DM, Kastelan‐Macan M. Determination of pK(a) values of active pharmaceutical ingredients. Trends Anal Chem. 2007;26:1043–1061.
Reijenga J, Van Hoof A, Van Loon A, Teunissen B. Development of methods for the determination of pKa values. Anal Chem Insights. 2013;8:53–71.
Han GE, Priefer R. A systematic review of various pKa determination techniques. Int J Pharmaceutics. 2023;635:122783.
Hirokawa T, Kiso Y. Isotachophoretic determination of mobility and pKa by means of computer‐simulation .1. Estimation of accuracy of the evaluated constants. J. Chromatogr. 1982;252:33–48.
Hirokawa T, Nishino M, Kiso Y. Isotachophoretic determination of mobility and pKa by means of computer simulation II. Evaluation of mo and pKa of 65 anions. J. Chromatogr. 1982;252:49–65.
Kasicka V, Vacik J, Prusik Z. Determination of dissociation‐constants of weak electrolytes by capillary isotachophoresis. J Chromatogr. 1985;320:33–43.
Hirokawa T, Nishino M, Aoki N, Kiso Y, Sawamoto Y, Yagi T, et al. Table of isotachophoretic indices. I. Simulated qualitative and quantitative indices of 287 anionic substances in the range pH 3‐10. J Chromatogr. 1983;271:D1–D106.
Hirokawa T, Kobayashi S, Kiso Y. Isotachophoretic determination of mobility and pKa by means of computer simulation III. Evaluation of mobility and pKa of fifteen nucleotides and seven phosphorus oxoacids and their isotachophoretic separation. J Chromatogr. 1985;318:195–210.
Hirokawa T, Gojo T, Kiso Y. Isotachophoretic determination of mobility and pKa by means of computer simulation IV. Evaluation of mo and pKa of twenty‐six amino acids and assessment of the separability. J Chromatogr. 1986;369:59–81.
Hirokawa T, Gojo T, Kiso Y. Isotachophoretic determination of mobility and pKa by means of computer simulation. V. Evaluation of mo and pKa of twenty‐eight dipeptides and assessment of separability. J Chromatogr. 1987;390:201–223.
Hirokawa T, Tsuyoshi T, Kiso Y. Isotachophoretic determination of mobility and pKa by means of computer simulation VI. Mobility and pKa of sixty anions in methanol. J Chromatogr. 1987;408:27–41.
Beckers JL, Everaerts FM, Ackermans MT. Determination of absolute mobilities, pK values and separation numbers by capillary zone electrophoresis—effective mobility as a parameter for screening. J Chromatogr. 1991;537:407–428.
Poole SK, Patel S, Dehring K, Workman H, Poole CF. Determination of acid dissociation constants by capillary electrophoresis. J Chromatogr. A. 2004;1037:445–454.
Nowak P, Wozniakiewicz M, Koscielniak P. Application of capillary electrophoresis in determination of acid dissociation constant values. J Chromatogr. A. 2015;1377:1–12.
Canals I, Portal JA, Bosch E, Roses M. Retention of ionizable compounds on HPLC. 4. Mobile‐phase pH measurement in methanol/water. Anal Chem. 2000;72:1802–1809.
Ehala S, Misek J, Stara IG, Stary I, Kasicka V. Determination of acid‐base dissociation constants of azahelicenes by capillary zone electrophoresis. J Sep Sci. 2008;31:2686–2693.
Solinova V, Stepanova S, Jancarik A, Klivar J, Samal M, Stara IG, et al. Nonaqueous capillary electrophoresis and quantum chemical calculations applied to investigation of acid‐base and electromigration properties of azahelicenes. Electrophoresis. 2022;43:696–707.
Koval D, Kasicka V, Jiracek J, Collinsova M. Physicochemical characterization of phosphinic pseudopeptides by capillary zone electrophoresis in highly acidic background electrolytes. Electrophoresis. 2003;24:774–781.
Henchoz Y, Schappler J, Geiser L, Prat J, Carrupt PA, Veuthey JL. Rapid determination of pK(a) values of 20 amino acids by CZE with UV and capacitively coupled contactless conductivity detections. Anal Bioanal Chem. 2007;389:1869–1878.
Chantooni MK, Kolthoff IM. Resolution of acid strength in tert‐butyl alcohol and isopropyl alcohol of substituted benzoic‐acids, phenols, and aliphatic carboxylic‐acids. Anal Chem. 1979;51:133–140.
Rived F, Roses M, Bosch E. Dissociation constants of neutral and charged acids in methyl alcohol. The acid strength resolution. Anal Chim Acta. 1998;374:309–324.
Maly M, Boublik M, Pocrnic M, Ansorge M, Lorincikova K, Svobodova J, et al. Determination of thermodynamic acidity constants and limiting ionic mobilities of weak electrolytes by capillary electrophoresis using a new free software AnglerFish. Electrophoresis. 2020;41:493–501.
Ansorge M, Gas B, Boublik M, Maly M, Steflova J, Hruska V, et al. CE determination of the thermodynamic pK(a) values and limiting ionic mobilities of 14 low molecular mass UV absorbing ampholytes for accurate characterization of the pH gradient in carrier ampholytes‐based IEF and its numeric simulation. Electrophoresis. 2020;41:514–522.
Solinova V, Brynda J, Sicha V, Holub J, Gruner B, Kasicka V. Determination of acidity constants, ionic mobilities, and hydrodynamic radii of carborane‐based inhibitors of carbonic anhydrases by capillary electrophoresis. Electrophoresis. 2021;42:910–919.
Stepanova S, Andris E, Gutten O, Budesinsky M, Dejmek M, Brehova P, et al. Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy. Electrophoresis. 2024;45:687–705.
Ehala S, Grishina AA, Sheshenev AE, Lyapkalo IM, Kasicka V. Determination of acid‐base dissociation constants of very weak zwitterionic heterocyclic bases by capillary zone electrophoresis. J Chromatogr A. 2010;1217:8048–8053.
Nowak PM, Biel I, Kozka G, Klag M, Wozniakiewicz M. Influence of pH measurement inaccuracy on the values of acidity constant determined on the basis of electrophoretic and thermophoretic data. Microchem J. 2022;181:107689.
Graf HG, Biebl SM, Muller L, Breitenstein C, Huhn C. Capillary electrophoresis applied for the determination of acidity constants and limiting electrophoretic mobilities of ionizable herbicides including glyphosate and its metabolites and for their simultaneous separation. J. Sep. Sci. 2022;45:1128–1139.
Glatz Z. Application of short‐end injection procedure in CE. Electrophoresis. 2013;34:631–642.
Jia ZJ, Ramstad T, Zhong M. Medium‐throughput pKa screening of pharmaceuticals by pressure‐assisted capillary electrophoresis. Electrophoresis. 2001;22:1112–1118.
Konasova R, Dytrtova JJ, Kasicka V. Determination of acid dissociation constants of triazole fungicides by pressure assisted capillary electrophoresis. J Chromatogr A. 2015;1408:243–249.
Geiser L, Henchoz Y, Galland A, Carrupt PA, Veuthey JL. Determination of pK(a) values by capillary zone electrophoresis with a dynamic coating procedure. J Sep Sci. 2005;28:2374–2380.
Aptisa G, Benavente F, Sanz‐Nebot V, Chirila E, Barbosa J. Evaluation of migration behaviour of therapeutic peptide hormones in capillary electrophoresis using polybrene‐coated capillaries. Anal Bioanal Chem. 2010;396:1571–1579.
Tumova T, Monincova L, Cerovsky V, Kasicka V. Estimation of acidity constants, ionic mobilities and charges of antimicrobial peptides by capillary electrophoresis. Electrophoresis. 2016;37:3186–3195.
Pang HM, Kenseth J, Coldiron S. High‐throughput multiplexed capillary electrophoresis in drug discovery. Drug Discov Today. 2004;9:1072–1080.
Shalaeva M, Kenseth J, Lombardo F, Bastinz A. Measurement of dissociation constants (pK(a) values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J Pharm Sci. 2008;97:2581–2606.
Fuguet E, Rafols C, Bosch E, Roses M. Fast high‐throughput method for the determination of acidity constants by capillary electrophoresis I. Monoprotic weak acids and bases. J Chromatogr A. 2009;1216:3646–3651.
Hajduk A, Ulrich N. Determination of acidity constants of pyridines, imidazoles, and oximes by capillary electrophoresis. Electrophoresis. 2023;44:1353–1360.
Lebanov L, Fuguet E, Melo JM, Roses M. Determination of acidity constants at 37 degrees C through the internal standard capillary electrophoresis (IS‐CE) method: internal standards and application to polyprotic drugs. Analyst. 2020;145:5897–5904.
Nytrova L, Odehnalova K, Pazourek J. Extension of the internal standard method for determination of thermodynamic acidity constants of compounds sparingly soluble in water by capillary zone electrophoresis. ACS Omega. 2022;7:1477–1482.
Albishri A, Cabot JM, Fuguet E, Roses M, Determination of the aqueous pKa of very insoluble drugs by capillary electrophoresis: Internal standards for methanol‐water extrapolation. J Chromatogr A. 2022;1665:462795.
Nilsson M, Fagerstrom A, Berg U, Isaksson R. Thermodynamics studies of designed ligands binding to Cel7A using partial‐filling capillary electrophoresis. Electrophoresis. 2008;29:358–362.
Michalcova L, Glatz Z. Comparison of various capillary electrophoretic approaches for the study of drug‐protein interaction with emphasis on minimal consumption of protein sample and possibility of automation. J Sep Sci. 2015;38:325–331.
Jiang CX, Armstrong DW. Use of CE for the determination of binding constants. Electrophoresis. 2010;31:17–27.
Rundlett KL, Armstrong DW. Examination of the origin, variation, and proper use of expressions for the estimation of association constants by capillary electrophoresis. J Chromatogr A. 1996;721:173–186.
Busch MHA, Carels LB, Boelens HFM, Kraak JC, Poppe H. Comparison of five methods for the study of drug‐protein binding in affinity capillary electrophoresis. J Chromatogr A. 1997;777:311–328.
Busch MHA, Kraak JC, Poppe H. Principles and limitations of methods available for the determination of binding constants with affinity capillary electrophoresis. J. Chromatogr. A. 1997;777:329–353.
Stepanova S, Kasicka V. Capillary electrophoretic methods applied to the investigation of peptide complexes. J. Sep. Sci. 2015;38:2708–2721.
Nevidalova H, Michalcova L, Glatz Z. Capillary electrophoresis‐based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis. 2019;40:625–642.
Yu FZ, Zhao Q, Zhang DP, Yuan Z, Wang HL. Affinity interactions by capillary electrophoresis: binding, separation, and detection. Anal. Chem. 2019;91:372–387.
Asmari M, Michalcova L, Ibrahim AE, Glatz Z, Watzig H, El Deeb S. Studying molecular interactions via capillary electrophoresis and microscale thermophoresis: a review. Electrophoresis. 2023;44:1114–1142.
Hirokawa T, Kiso Y. Complex‐forming equilibria in isotachophoresis I. Computer simulation of the calcium tartrate system in the steady state. J Chromatogr. 1982;242:227–243.
Hirokawa T, Kiso Y. Complex‐forming equilibria in isotachophoresis II. Evaluation of stability constants of tartrate and citrate complexes. J Chromatogr. 1982;248:341–362.
Avila LZ, Chu YH, Blossey EC, Whitesides GM. Use of affinity capillary electrophoresis to determine kinetic and equilibrium constants for binding of arylsulfonamides to bovine carbonic anhydrase. J Med Chem. 1993;36:126–133.
Gomez FA, Avila LZ, Chu YH, Whitesides GM. Determination of binding constants of ligands to proteins by affinity capillary electrophoresis: compensation for electroosmotic flow. Anal Chem. 1994;66:1785–1791.
Olabi M, Stein M, Watzig H. Affinity capillary electrophoresis for studying interactions in life sciences. Methods. 2018;146:76–92.
Wang Y, Adeoye DI, Ogunkunle EO, Wei IA, Filla RT, Roper MG. Affinity capillary electrophoresis: a critical review of the literature from 2018 to 2020. Anal Chem. 2021;93:295–310.
Chinchilla D, Zavaleta J, Martinez K, Gomez FA. Multiple‐injection affinity capillary electrophoresis to estimate binding constants of receptors to ligands. Anal Bioanal. Chem. 2005;383:625–631.
Amini A, Merclin N, Bastami S, Westerlund D. Determination of association constants between enantiomers of orciprenaline and methyl‐beta‐cyclodextrin as chiral selector by capillary zone electrophoresis using a partial filling technique. Electrophoresis. 1999;20:180–188.
Heintz J, Hernandez M, Gomez FA. Use of a partial‐filling technique in affinity capillary electrophoresis for determining binding constants of ligands to receptors. J Chromatogr A. 1999;840:261–268.
Villareal V, Kaddis J, Azad M, Zurita C, Silva I, Hernandez L, et al. Partial‐filling affinity capillary electrophoresis. Anal Bioanal Chem. 2003;376:822–831.
Ansorge M, Dubsky P, Uselova K. Into the theory of the partial‐filling affinity capillary electrophoresis and the determination of apparent stability constants of analyte‐ligand complexes. Electrophoresis. 2018;39:742–751.
Ostergaard J, Heegaard NHH. Bioanalytical interaction studies executed by preincubation affinity capillary electrophoresis. Electrophoresis. 2006;27:2590–2608.
Oravcova J, Sojkova D, Lindner W. Comparison of the Hummel‐Dreyer method in high‐performance liquid chromatography and capillary electrophoresis conditions for study of the interaction of (RS)‐, (R)‐ and (S)‐carvedilol with isolated plasma proteins. J Chromatogr B Bio Med Appl. 1996;682:349–357.
He XY, Ding YS, Li DZ, Lin BC. Recent advances in the study of biomolecular interactions by capillary electrophoresis. Electrophoresis. 2004;25:697–711.
Wang LJ, Zhang WM, Shao YL, Zhang DT, Guo GS, Wang XY. Analytical methods for obtaining binding parameters of drug‐protein interactions: a review. Anal Chim Acta. 2022;1219, 340012.
Shibukawa A, Kuroda Y, Nakagawa T. High‐performance frontal analysis for drug‐protein binding study. J Pharm Biomed Anal. 1999;18:1047–1055.
Ostergaard J, Heegaard NHH. Capillary electrophoresis frontal analysis: principles and applications for the study of drug‐plasma protein binding. Electrophoresis. 2003;24:2903–2913.
Romano EF, Quirino JP. Frontal analysis capillary electrophoresis: recent advances and future perspectives. Bioanalysis. 2018;10:1143–1159.
Rafols C, Amezqueta S, Fuguet E, Bosch E. Molecular interactions between warfarin and human (HSA) or bovine (BSA) serum albumin evaluated by isothermal titration calorimetry (ITC), fluorescence spectrometry (FS) and frontal analysis capillary electrophoresis (FA/CE). J Pharm Biomed Anal. 2018;150:452–459.
Gao JY, Dubin PL, Muhoberac BB. Measurement of the binding of proteins to polyelectrolytes by frontal analysis continuous capillary electrophoresis. Anal Chem. 1997;69:2945–2951.
Malburet C, Leclercq L, Cotte JF, Thiebaud J, Cottet H. Study of interactions between antigens and polymeric adjuvants in vaccines by frontal analysis continuous capillary electrophoresis. Biomacromolecules. 2020;21:3364–3373.
Krylov SN. Kinetic CE: foundation for homogeneous kinetic affinity methods. Electrophoresis. 2007;28:69–88.
Le ATH, Krylova SM, Krylov SN. Kinetic capillary electrophoresis in screening oligonucleotide libraries for protein binders. Trends Anal Chem. 2023;162:117061.
Deng L, Fu QF, Zhang YJ, Shui F, Tang J, Wu JM, et al. Study of molecular interactions by nonequilibrium capillary electrophoresis of equilibrium mixtures: Originations, developments, and applications. Electrophoresis. 2023;44:1664–1673.
Zhang CH, Woolfork AG, Suh K, Ovbude S, Bi C, Elzoeiry M, et al. Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: a review. J Pharm Biomed Anal. 2020;177:112882.
Sharmeen S, Kyei I, Hatch A, Hage DS. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: a review. Electrophoresis. 2022;43:2302–2323.
Nevidalova H, Michalcova L, Glatz Z. In‐depth insight into the methods of plasma protein‐drug interaction studies: comparison of capillary electrophoresis‐frontal analysis, isothermal titration calorimetry, circular dichroism and equilibrium dialysis. Electrophoresis. 2018;39:581–589.
Moser AC, Trenhaile S, Frankenberg K. Studies of antibody‐antigen interactions by capillary electrophoresis: a review. METHODS. 2018;146:66–75.
Li QQ, Li SY, Wang FQ, Chen H, Hu YJ, Xia ZN, et al. Evaluation of the interactions between platelets and alkaloids by frontal analysis capillary electrophoresis using polyvinyl alcohol‐coated capillary. Chromatographia. 2018;81:509–516.
Nevidalova H, Michalcova L, Glatz Z. Applicability of capillary electrophoresis‐frontal analysis for displacement studies: effect of several drugs on L‐tryptophan and lidocaine binding to human serum albumin. J Sep Sci. 2020;43:4225–4233.
Farcas E, Hanson J, Pochet L, Fillet M. Capillary electrophoretic mobility shift displacement assay for the assessment of weak drug‐protein interactions. Anal Chim. Acta. 2018;1034:214–222.
Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recogn. 2021;34:e2901.
Zhao Y, Grigoryan G. Multiplex measurement of protein‐peptide dissociation constants using dialysis and mass spectrometry. Protein Sci. 2023;32:e4607.
Becker W, Bhattiprolu KC, Gubensak N, Zangger K. Investigating protein‐ligand interactions by solution nuclear magnetic resonance spectroscopy. ChemPhysChem. 2018;19:895–906.
Fu HQ, Qian C, Tong WJ, Li HH, Chen DDY. Mass spectrometry and affinity capillary electrophoresis for characterization of host‐guest interactions. J Chromatogr A. 2019;1589:182–190.
Bennett JL, Nguyen GTH, Donald WA. Protein‐small molecule interactions in native mass spectrometry. Chem. Rev. 2022;122:7327–7385.
Rodriguez EL, Poddar S, Iftekhar S, Suh K, Woolfork AG, Ovbude S, et al. Affinity chromatography: a review of trends and developments over the past 50 years. J Chromatogr B Anal Technol Biomed Life Sci. 2020;1157:122332.
Asmari M, Ratih R, Alhazmi HA, El Deeb S. Thermophoresis for characterizing biomolecular interaction. Methods. 2018;146:107–119.
Krause F. Detection and analysis of protein‐protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (membrane) protein complexes and supercomplexes. Electrophoresis. 2006;27:2759–2781.
Ladig R, Sommer MS, Hahn A, Leisegang MS, Papasotiriou DG, Ibrahim M, et al. A high‐definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes. Plant J. 2011;67:181–194.
Sazelova P, Solinova V, Schimperkova T, Jiracek J, Kasicka V. Chiral analysis of beta‐alanyl‐D,L‐tyrosine and its derivatives and estimation of binding constants of their complexes with 2‐hydroxypropyl‐beta‐cyclodextrin by capillary electrophoresis. J Sep Sci. 2022;45:3328–3338.
Stepanova S, Brehova P, Kasicka V. The separation of cyclic diadenosine diphosphorothioate and the diastereomers of its difluorinated derivative and the estimation of the binding constants and ionic mobilities of their complexes with 2‐hydroxypropyl‐beta‐cyclodextrin by affinity capillary electrophoresis. Electrophoresis. Published online: Jan 9, 2024. https://doi.org/10.1002/elps.202300191
Ehala S, Dybal J, Makrlik E, Kasicka V. Capillary affinity electrophoresis and ab initio calculation studies of valinomycin complexation with Na+ ion. J Sep Sci. 2009;32:597–604.
Stepanova S, Prochazkova E, Cechova LT, Zurek J, Janeba Z, Dracinsky M, et al. Separation of rotamers of 5‐nitrosopyrimidines and estimation of binding constants of their complexes with beta‐cyclodextrin by capillary electrophoresis. J Chromatogr A. 2018;1570:164–171.
Stein M, Haselberg R, Mozafari‐Torshizi M, Watzig H. Experimental design and measurement uncertainty in ligand binding studies by affinity capillary electrophoresis. Electrophoresis. 2019;40:1041–1054.
Hruzikova A, Cechova LM, Stepanova S, Tuckova L, Tichotova M, Ruzicka A, et al. A study of azopyrimidine photoswitches and their interactions with cyclodextrins: When the guest governs the type of accommodation at the host. Dyes Pigm. 2023;212:111099.
Sazelova P, Koval D, Severa L, Teply F, Vigh G, Kasicka V. Determination of binding constants of multiple charged cyclodextrin complexes by ACE using uncorrected and ionic strength corrected actual mobilities of the species involved. Electrophoresis. 2020;40:523–535.
Konasova R, Koval D, Dytrtova JJ, Kasicka V. Comparison of two low flow interfaces for measurement of mobilities and stability constants by affinity capillary electrophoresis‐mass spectrometry. J Chromatogr A. 2018;1568:197–204.
Ratih R, Watzig H, Stein M, El Deeb S. Investigation of the enantioselective interaction between selected drug enantiomers and human serum albumin by mobility shift‐affinity capillary electrophoresis. J Sep Sci. 2020;43:3960–3968.
Almeda S, Salinas E, Arce C, Moreno A, Arce L, Valcarcel M. Use of multiple sequential injections of equal volumes to determine the apparent binding constant for antibody‐antigen complexes by capillary electrophoresis. Talanta. 2009;78:1446–1451.
Amini A, Westerlund D. Evaluation of association constants between drug enantiomers and human alpha(1)‐acid glycoprotein by applying a partial‐filling technique in affinity. Anal Chem. 1998;70:1425–1430.
Miyabe K. Moment equations for partial filling capillary electrophoresis. Electrophoresis. 2022;43:559–570.
Nilsson M, Harang V, Bergstrom M, Ohlson S, Isaksson R, Johansson G. Determination of protein‐ligand affinity constants from direct migration time in capillary electrophoresis. Electrophoresis. 2004;25:1829–1836.
Solinova V, Zakova L, Jiracek J, Kasicka V. Pressure assisted partial filling affinity capillary electrophoresis employed for determination of binding constants of human insulin hexamer complexes with serotonin, dopamine, arginine, and phenol. Anal Chim Acta. 2019;1052:170–178.
Ramirez‐Garcia G, D'Orlye F, Gutierrez‐Granados S, Martinez‐Alfaro M, Mignet N, Richard C, et al. Electrokinetic Hummel‐Dreyer characterization of nanoparticle‐plasma protein corona: the non‐specific interactions between PEG‐modified persistent luminescence nanoparticles and albumin. Colloids Surf B Biointerfaces. 2017;159:437–444.
Ramirez‐Garcia G, D'Orlye F, Richard C, Mignet N, Varenne A. Electrokinetic elucidation of the interactions between persistent luminescent nanoprobes and the binary apolipoprotein‐E/albumin protein system. Analyst. 2021;146:5245–5254.
Guo M, Lv D, Shao CY, Kuang Y, Sun ZH. Analysis of the interaction mechanisms of polysaccharide homologs binding with serum albumin using capillary electrophoresis. J Chem Soc Pakistan. 2019;41:640–649.
Brzezicka T, Glatz Z, Kohutova L. Sensitivity enhancement of capillary electrophoresis‐frontal analysis‐based method for characterization of drug‐protein interactions using on‐line sample preconcentration. J Sep Sci. 2023;46:2300152.
Mlcochova H, Ratih R, Michalcova L, Watzig H, Glatz Z, Stein M. Comparison of mobility shift affinity capillary electrophoresis and capillary electrophoresis frontal analysis for binding constant determination between human serum albumin and small drugs. Electrophoresis. 2022;43:1724–1734.
Michalcova L, Nevidalova H, Glatz Z. Toward an automated workflow for the study of plasma protein‐drug interactions based on capillary electrophoresis‐frontal analysis combined with in‐capillary mixing of interacting partners. J Chromatogr A. 2021;1635:461734.
Qian C, Wang S, Fu HQ, Turner RFB, Li HH, Chen DDY. Pressure‐assisted capillary electrophoresis frontal analysis for faster binding constant determination. Electrophoresis. 2018;39:1786–1793.
Yang Y, Fu HQ, Qian C, Li HH, Chen DDY. Characterization of interaction between Bcl‐2 oncogene promoter I‐Motif DNA and flavonoids using electrospray ionization mass spectrometry and pressure‐assisted capillary electrophoresis frontal analysis. Talanta. 2020;215:120885.
Mlcochova H, Michalcova L, Glatz Z. Extending the application potential of capillary electrophoresis/frontal analysis for drug‐plasma protein studies by combining it with mass spectrometry detection. Electrophoresis. 2022;43:955–963.
Asmari M, Abdel‐Megied AM, Michalcova L, Glatz Z, El Deeb S. Analytical approaches for the determination of deferiprone and its iron (III) complex: Investigation of binding affinity based on liquid chromatography‐mass spectrometry (LC‐ESI/MS) and capillary electrophoresis‐frontal analysis (CE/FA). Microchem J. 2020;154:104556.
Lounis FM, Chamieh J, Leclercq L, Gonzalez P, Rossi JC, Cottet H. Effect of dendrigraft generation on the interaction between anionic polyelectrolytes and dendrigraft poly(L‐lysine). Polymers. 2018;10:45.
Petrov A, Okhonin V, Berezovski M, Krylov SN. Kinetic capillary electrophoresis (KCE): a conceptual platform for kinetic homogeneous affinity methods. J. Am. Chem. Soc. 2005;127:17104–17110.
Galievsky VA, Stasheuski AS, Krylov SN. Capillary electrophoresis for quantitative studies of biomolecular interactions. Anal. Chem. 2015;87:157–171.
Miyabe K. Moment theory of affinity capillary electrophoresis for analysis of reaction kinetics of intermolecular interactions. J Chromatogr A. 2022;1684:463557.
Krylov SN. Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM): a novel method for biomolecular screening. J Biomol Screen. 2006;11:115–122.
Okhonin V, Berezovski M, Krylov SN. Sweeping capillary electrophoresis: a non‐stopped‐flow method for measuring bimolecular rate constant of complex formation between protein and DNA. J Am Chem Soc. 2004;126:7166–7167.
Okhonin V, Berezovski MV, Krylov SN. MASKE: macroscopic approach to studying kinetics at equilibrium. J Am Chem Soc. 2010;132:7062–7068.
Newman CID, Collins GE. Advances in CE for kinetic studies. Electrophoresis. 2008;29:44–55.
Thunecke F, Kalman A, Kalman F, Ma S, Rathore AS, Horvath C. Kinetic study on the cis‐trans isomerization of peptidyl‐ proline dipeptides. J. Chromatogr. A. 1996;744:259–272.
Trapp O, Schurig V. ChromWin—a computer program for the determination of enantiomerization barriers in dynamic chromatography. Comp Chem. 2001;25:187–195.
Schoetz G, Trapp O, Schurig V. Determination of the cis‐trans isomerization barrier of several L‐peptidyl‐L‐proline dipeptides by dynamic capillary electrophoresis and computer simulation. Electrophoresis. 2001;22:2409–2415.
Dubsky P, Tesarova E, Gas B. Dynamics of interconversion of enantiomers in chiral separation systems: a novel approach for determination of all rate constants involved in the interconversion. Electrophoresis. 2004;25:733–742.
Dubsky P, Svobodova J, Tesarova E, Gas B. Model of CE enantioseparation systems with a mixture of chiral selectors Part II. Determination of thermodynamic parameters of the interconversion in chiral and achiral environments separately. J Chromatogr B Anal Technol Biomed Life Sci. 2008;875:35–41.
Svobodova J, Dubsky P, Tesarova E, Gas B. Accuracy and sensitivity of the determination of rate constants of interconversion in achiral and chiral environments by dynamic enantioselective electrophoresis. Electrophoresis. 2011;32:595–603.
Trapp O. Direct calculation of interconversion barriers in dynamic chromatography and electrophoresis: Isomerization of captopril. Electrophoresis. 2005;26:487–493.
Berezovski M, Krylov SN. Nonequilibrium capillary electrophoresis of equilibrium mixtures—a single experiment reveals equilibrium and kinetic parameters of protein‐DNA interactions. J Am Chem Soc. 2002;124:13674–13675.
Okhonin V, Krylova SM, Krylov SN. Nonequilibrium capillary electrophoresis of equilibrium mixtures, mathematical model. Anal. Chem. 2004;76:1507–1512.
Lou CL, Ye XZ, Chen G, Zhu JD, Kang JW. Screening inhibitors for blocking UHRF1‐methylated DNA interaction with capillary electrophoresis. J Chromatogr A. 2021;1636:461790.
Bromberg A, Mathies RA. Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip. Anal Chem. 2003;75:1188–1195.
Jameson EE, Cunliffe JM, Neubig RR, Sunahara RK, Kennedy RT. Detection of G proteins by affinity probe capillary electrophoresis using a fluorescently labeled GTP analogue. Anal Chem. 2003;75:4297–4304.
Newman CID, McGuffin VL. Effects of nonequilibrium on velocity and plate height in reactive capillary electrophoresis. Electrophoresis. 2005;26:4016–4025.
Newman CID, McGuffin VL. Capillary electrophoresis for thermodynamic and kinetic studies of peptidyl‐proline isomerization by the theoretical plate height model. Electrophoresis. 2006;27:542–552.
Le ATH, Krylova SM, Krylov SN. Determination of the equilibrium constant and rate constant of protein‐oligonucleotide complex dissociation under the conditions of ideal‐filter capillary electrophoresis. Anal Chem. 2019;91:8532–8539.
Chen GY, Zhang H, Zhang CY, Wang Y, Zhao CP, Chen H, et al. Immobilized Kallikrein microreactor based on capillary electrophoresis for online enzyme kinetics analysis and inhibitor screening. Chromatographia. 2021;84:1141–1150.
Wang WF, Yang JL. Advances in screening enzyme inhibitors by capillary electrophoresis. Electrophoresis. 2019;40:2075–2083.
Huang SY, Paul P, Ramana P, Adams E, Augustijns P, Van Schepdael A. Advances in capillary electrophoretically mediated microanalysis for on‐line enzymatic and derivatization reactions. Electrophoresis. 2018;39:97–110.
Banni GAD, Nehme R. Capillary electrophoresis for enzyme‐based studies: applications to lipases and kinases. J Chromatogr A. 2022;1661:462687.
Cheng MX, Chen ZL. Recent advances in screening of enzymes inhibitors based on capillary electrophoresis. J Pharm Anal. 2018;8:226–233.
Rozenski J, Asfaw AA, Van Schepdael A. Overview of in‐capillary enzymatic reactions using capillary electrophoresis. Electrophoresis. 2022;43:57–73.
Li Y, Fang H, Hou Z, Sang LH, Yang XY. An in‐line capillary electrophoresis assay for the high‐throughput screening of histone deacetylase inhibitors. J Chromatogr A. 2019;1591:171–177.
Yan TC, Yue ZX, Gu YX, Zheng H, Cao J. Screening of lipase inhibitors in citrus fruits by electrophoretically‐mediated microanalysis combined with molecular docking. J Food Comp Anal. 2022;105:104185.
Schejbal J, Glatz Z. Immobilized‐enzyme reactors integrated with capillary electrophoresis for pharmaceutical research. J Sep Sci. 2018;41:323–335.
Siebert DA, Caon NB, Alberton MD, Vitali L, Parize AL, Micke GA. Immobilized acetylcholinesterase in magnetic nanoparticles for in‐line inhibition studies using a capillary electrophoresis system. Anal Chim Acta. 2023;1275:341566.
Wu ZY, Zhang H, Li QQ, Yang FQ, Li DQ. Capillary electrophoresis‐based online immobilized enzyme reactor for beta‐glucosidase kinetics assays and inhibitors screening. J Chromatogr B Anal Technol Biomed Life Sci. 2019;1110:67–73.
Wu ZY, Zhang H, Li F, Yang FQ. Evaluation of xanthine oxidase inhibitory activity of flavonoids by an online capillary electrophoresis‐based immobilized enzyme microreactor. Electrophoresis. 2020;41:1326–1332.
Krylova SM, Okhonin V, Krylov SN. Transverse diffusion of laminar flow profiles—a generic method for mixing reactants in capillary microreactor. J Sep Sci. 2009;32:742–756.
Li QQ, Yang FQ, Wang YZ, Wu ZY, Xia ZN, Chen H, Evaluation of thrombin inhibitory activity of catechins by online capillary electrophoresis‐based immobilized enzyme microreactor and molecular docking. Talanta. 2018;185:16–22.
Zhang H, Wu ZY, Wang YZ, Zhou DD, Yang FQ, Li DQ. On‐line immobilized trypsin microreactor for evaluating inhibitory activity of phenolic acids by capillary electrophoresis and molecular docking. Food Chem. 2020;310:125823.
Nguyen BT, Kang MJ. Application of capillary electrophoresis with laser‐induced fluorescence to immunoassays and enzyme assays. Molecules. 2019;24:1977.
Liu JN, Li MM, Liu XJ, Huang J, Yang L. Ultrasensitive assay of O‐GlcNAc transferase using capillary electrophoresis‐laser induced fluorescence. Electrophoresis. 2023;44:53–61.
Claude B, Cutolo G, Farhat A, Zarafu I, Ionita P, Schuler M, et al. Capillary electrophoresis with dual detection UV/(CD)‐D‐4 for monitoring myrosinase‐mediated hydrolysis of thiol glucosinolate designed for gold nanoparticle conjugation. Anal. Chim. Acta. 2019;1085:117–125.
Banni GAD, Nasreddine R, Fayad S, Cao‐Ngos P, Rossi JC, Leclercq L, et al. Screening for pancreatic lipase natural modulators by capillary electrophoresis hyphenated to spectrophotometric and conductometric dual detection. Analyst. 2021;146:1386–1401.
Fayad S, Tannoury M, Morin P, Nehme R. Simultaneous elastase‐, hyaluronidase‐ and collagenase‐capillary electrophoresis based assay. Application to evaluate the bioactivity of the red alga Jania rubens. Anal Chim Acta. 2018;1020:134–141.
Liu X, Azhar I, Khan H, Qu QS, Tian MM, Yang L, Capillary electrophoresis‐immobilized enzyme microreactors for acetylcholinesterase assay with surface modification by highly‐homogeneous microporous layer. J Chromatogr A. 2020;1609:460454.
Ciura K, Fedorowicz J, Andric F, Greber KE, Gurgielewicz A, Sawicki W, et al. Lipophilicity determination of quaternary (fluoro)quinolones by chromatographic and theoretical approaches. Int J Mol Sci. 2019;20:5288.
Saranjam L, Nedyalkova M, Fuguet E, Simeonov V, Mas F, Madurga S. Collection of partition coefficients in hexadecyltrimethylammonium bromide, sodium cholate, and lithium perfluorooctanesulfonate micellar solutions: experimental determination and computational predictions. Molecules. 2023;28:5729.
Poole SK, Poole CF. Separation methods for estimating octanol‐water partition coefficients. J Chromatogr B Anal Technol Biomed Life Sci. 2003;797:3–19.
Kempinska D, Chmiel T, Kot‐Wasik A, Mroz A, Mazerska Z, Namiesnik J. State of the art and prospects of methods for determination of lipophilicity of chemical compounds. Trends Anal Chem. 2019;113:54–73.
Godyn J, Hebda M, Wieckowska A, Wieckowski K, Malawska B, Bajda M. Lipophilic properties of anti‐Alzheimer's agents determined by micellar electrokinetic chromatography and reversed‐phase thin‐layer chromatography. Electrophoresis. 2017;38:1268–1275.
Ishihama Y, Oda Y, Uchikawa K, Asakawa N. Evaluation of solute hydrophobicity by microemulsion electrokinetic chromatography. Anal Chem. 1995;67:1588–1595.
Ishihama Y, Oda Y, Asakawa N. A hydrophobicity scale based on the migration index from microemulsion electrokinetic chromatography of anionic solutes. Anal. Chem. 1996;68:1028–1032.
Fernandez‐Pumarega A, Amezqueta S, Fuguet E, Roses M. Feasibility of the estimation of octanol‐water distribution coefficients of acidic drugs by microemulsion electrokinetic chromatography. Admet and Dmpk. 2018;6:55–60.
Jiang H, Zhang H, Yin SJ, Lu M, Wang X, Yang FQ. Determination of lipid‐water partition coefficient of neutral and ionic drugs by liposome electrokinetic chromatography. Electrophoresis. 2021;42:1436–1449.
Subirats X, Redon L, Roses M. Lipophilicity determination of acidic compounds: MEEKC as a reliable high‐throughput methodology. ADMET. 2018;6:153–161.
Fernandez‐Pumarega A, Amezqueta S, Fuguet E, Roses M. Estimation of the octanol‐water distribution coefficient of acidic compounds by microemulsion electrokinetic chromatography. J Pharm Biomed Anal. 2020;179:112981.
Fernandez‐Pumarega A, Amezqueta S, Fuguet E, Roses M. Determination of the retention factor of ionizable compounds in microemulsion electrokinetic chromatography. Anal Chim Acta. 2019;1078:221–230.