Oleaginous yeast as a component in fish feed
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
213-2013-80
Svenska Forskningsrådet Formas (Swedish Research Council Formas) - International
213-2013-80
Svenska Forskningsrådet Formas (Swedish Research Council Formas) - International
213-2013-80
Svenska Forskningsrådet Formas (Swedish Research Council Formas) - International
213-2013-80
Svenska Forskningsrådet Formas (Swedish Research Council Formas) - International
213-2013-80
Svenska Forskningsrådet Formas (Swedish Research Council Formas) - International
213-2013-80
Svenska Forskningsrådet Formas (Swedish Research Council Formas) - International
213-2013-80
Svenska Forskningsrådet Formas (Swedish Research Council Formas) - International
213-2013-80
Svenska Forskningsrådet Formas (Swedish Research Council Formas) - International
PubMed
30374026
PubMed Central
PMC6206134
DOI
10.1038/s41598-018-34232-x
PII: 10.1038/s41598-018-34232-x
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny analýza MeSH
- krmivo pro zvířata analýza MeSH
- lignin metabolismus MeSH
- Lipomyces růst a vývoj metabolismus MeSH
- mastné kyseliny analýza chemie MeSH
- pilotní projekty MeSH
- pšenice metabolismus MeSH
- pstruh růst a vývoj metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- lignin MeSH
- lignocellulose MeSH Prohlížeč
- mastné kyseliny MeSH
This study investigates the replacement of vegetable oil (VO) in aquaculture feed for Arctic char (Salvelinus alpinus) with oil produced by the oleaginous yeast Lipomyces starkeyi grown in lignocellulose (wheat straw) hydrolysate. VO is extensively used to partially replace fish oil in aquaculture feed, which can be seen as non-sustainable. VO itself is becoming a limited resource. Plant oils are used in many different applications, including food, feed and biodiesel. Its replacement in non-food applications is desirable. For this purpose, yeast cells containing 43% lipids per g dry weight were mechanically disrupted and incorporated into the fish feed. There were no significant differences in this pilot study, regarding weight and length gain, feed conversion ratio, specific growth rate, condition factor and hepatosomatic index between the control and the yeast oil fed group. Fatty and amino acid composition of diet from both groups was comparable. Our results in fish demonstrate that it is possible to replace VO by yeast oil produced from lignocellulose, which may broaden the range of raw materials for food production and add value to residual products of agriculture and forestry.
Zobrazit více v PubMed
FAO. The state of world fisheries and aquaculture, contributing to food security and nutrition for all. (Rome, 2016).
Tacon, A. G. J., Hasan, M. R. & Metian, M. Vol. No. 564 (FAO Fisheries and Aquaculture Technical paper No 564, Rome, 2011).
Tocher DR. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. 2015;449:94–107. doi: 10.1016/j.aquaculture.2015.01.010. DOI
Emery JA, Smullen RP, Turchini GM. Tallow in Atlantic salmon feed. Aquaculture. 2014;422–423:98–108. doi: 10.1016/j.aquaculture.2013.12.004. DOI
Hatlen B, et al. Growth, feed utilization and endocrine responses in Atlantic salmon (Salmo salar) fed diets added poultry by-product meal and blood meal in combination with poultry oil. Aquaculture Nutrition. 2015;21:714–725. doi: 10.1111/anu.12194. DOI
Salini M, et al. Marginal efficiencies of long chain-polyunsaturated fatty acid use by barramundi (Lates calcarifer) when fed diets with varying blends of fish oil and poultry fat. Aquaculture. 2015;449:48–57. doi: 10.1016/j.aquaculture.2015.02.027. DOI
Bell JG, Henderson RJ, Tocher DR, Sargent JR. Replacement of dietary fish oil with increasing levels of linseed oil: Modification of flesh fatty acid compositions in Atlantic salmon (Salmo salar) using a fish oil finishing diet. Lipids. 2004;39:223–232. doi: 10.1007/s11745-004-1223-5. PubMed DOI
Sprague, M., Dick, J. R. & Tocher, D. R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Scientific Reports6, 21892, 10.1038/srep21892https://www.nature.com/articles/srep21892#supplementary-information (2016). PubMed PMC
Azócar L, Ciudad G, Heipieper HJ, Navia R. Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol. 2010;88:621–636. doi: 10.1007/s00253-010-2804-z. PubMed DOI
Escobar JC, et al. Biofuels: Environment, technology and food security. Renewable and Sustainable Energy Reviews. 2009;13:1275–1287. doi: 10.1016/j.rser.2008.08.014. DOI
Pinzi S, Leiva D, López-García I, Redel-Macías MD, Dorado MP. Latest trends in feedstocks for biodiesel production. Biofuels, Bioproducts and Biorefining. 2014;8:126–143. doi: 10.1002/bbb.1435. DOI
Xu Z, Sun D-W, Zeng X-A, Liu D, Pu H. Research developments in methods to reduce the carbon footprint of the food system: A review. Critical Reviews in Food Science and Nutrition. 2015;55:1270–1286. doi: 10.1080/10408398.2013.821593. PubMed DOI
Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC. Primary forest cover loss in Indonesia over 2000-2012. Nat Climate Change. 2014;4:730–735. doi: 10.1038/nclimate2277. DOI
Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C. Production strategies and applications of microbial single cell oils. Frontiers in Microbiology. 2016;7:1539. doi: 10.3389/fmicb.2016.01539. PubMed DOI PMC
Passoth, V. In Biotechnology of Yeasts and Filamentous Fungi (ed. Andriy A. Sibirny) 149–204 (Springer International Publishing, 2017).
Sitepu IR, et al. Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnology Advances. 2014;32:1336–1360. doi: 10.1016/j.biotechadv.2014.08.003. PubMed DOI
Huyben D, et al. Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout. Aquaculture. 2017;473:528–537. doi: 10.1016/j.aquaculture.2017.03.024. DOI
Nasseri AT, Rasoul-Amini S, Morowvat MH, Ghasemi Y. Single cell protein: Production and process. American Journal of Food Technology. 2011;6:103–116. doi: 10.3923/ajft.2011.103.116. DOI
Brandenburg J, et al. Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation. Yeast. 2016;33:451–462. doi: 10.1002/yea.3160. PubMed DOI
Brandenburg J, et al. Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction. Appl Microbiol Biotechnol. 2018;102:6269–6277. doi: 10.1007/s00253-018-9081-7. PubMed DOI PMC
Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology. 2008;99:3051–3056. doi: 10.1016/j.biortech.2007.06.045. PubMed DOI
Calvey CH, Su Y-K, Willis LB, McGee M, Jeffries TW. Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresource Technology. 2016;200:780–788. doi: 10.1016/j.biortech.2015.10.104. PubMed DOI
Huang C, et al. Bioconversion of corncob acid hydrolysate into microbial oil by the oleaginous yeast Lipomyces starkeyi. Applied biochemistry and biotechnology. 2014;172:2197–2204. doi: 10.1007/s12010-013-0651-y. PubMed DOI
Yu X, Zheng Y, Dorgan KM, Chen S. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol. 2011;102:6134–6140. doi: 10.1016/j.biortech.2011.02.081. PubMed DOI
Dubois V, Breton S, Linder M, Fanni J, Parmentier M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. European Journal of Lipid Science and Technology. 2007;109:710–732. doi: 10.1002/ejlt.200700040. DOI
Pettersson A, Johnsson L, Brännäs E, Pickova J. Effects of rapeseed oil replacement in fish feed on lipid composition and self-selection by rainbow trout (Oncorhynchus mykiss) Aquaculture Nutrition. 2009;15:577–586. doi: 10.1111/j.1365-2095.2008.00625.x. DOI
Hatlen B, Berge GM, Odom JM, Mundheim H, Ruyter B. Growth performance, feed utilisation and fatty acid deposition in Atlantic salmon, Salmo salar L., fed graded levels of high-lipid/high-EPA Yarrowia lipolytica biomass. Aquaculture. 2012;364:39–47. doi: 10.1016/j.aquaculture.2012.07.005. DOI
Khatri P, Jain S. Environmental life cycle assessment of edible oils: A review of current knowledge and future research challenges. J Cleaner Prod. 2017;152:63–76. doi: 10.1016/j.jclepro.2017.03.096. DOI
Schmidt JH. Life cycle assessment of five vegetable oils. J Cleaner Prod. 2015;87:130–138. doi: 10.1016/j.jclepro.2014.10.011. DOI
Harnesk D, Brogaard S, Peck P. Regulating a global value chain with the European Union’s sustainability criteria- experiences from the Swedish liquid transport biofuel sector. J Cleaner Prod. 2017;153:580–591. doi: 10.1016/j.jclepro.2015.09.039. DOI
Karlsson H, et al. A systems analysis of biodiesel production from wheat straw using oleaginous yeast: process design, mass and energy balances. Biotechnol Biofuels. 2016;9:229. doi: 10.1186/s13068-016-0640-9. PubMed DOI PMC
Simopoulos, A. P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother60, 502–507, doi:S0753-3322(06)00243-5 (2006). PubMed
Olstorpe M, Pickova J, Kiessling A, Passoth V. Strain- and temperature-dependent changes of fatty acid composition in Wickerhamomyces anomalus and Blastobotrys adeninivorans. Biotechnol Appl Biochem. 2014;61:45–50. doi: 10.1002/bab.1130. PubMed DOI
Slininger PJ, et al. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol Bioeng. 2016;113:1676–1690. doi: 10.1002/bit.25928. PubMed DOI
Karlsson H, et al. Greenhouse gas performance of biochemical biodiesel production from straw: soil organic carbon changes and time-dependent climate impact. Biotechnol Biofuels. 2017;10:217. doi: 10.1186/s13068-017-0907-9. PubMed DOI PMC
Meena DK, et al. Beta-glucan: an ideal immunostimulant in aquaculture (a review) Fish Physiology and Biochemistry. 2013;39:431–457. doi: 10.1007/s10695-012-9710-5. PubMed DOI
Huyben D, et al. Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste. Acta Vet Scandinavia. 2018;60:9. doi: 10.1186/s13028-018-0363-y. PubMed DOI PMC
Cheng K, et al. Metabolomics approach to evaluate a baltic sea sourced diet for cultured Arctic Char (Salvelinus alpinus L.) Journal of Agricultural and Food Chemistry. 2017;65:5083–5090. doi: 10.1021/acs.jafc.7b00994. PubMed DOI
Appelqvist LÅ. Rapid methods of lipid extraction and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing accumulation of lipid contaminants. Arkiv for Kemi. 1968;28:551–570.
Fredriksson Eriksson S, Pickova J. Fatty acids and tocopherol levels in M. Longissimus dorsi of beef cattle in Sweden - A comparison between seasonal diets. Meat Sci. 2007;76:746–754. doi: 10.1016/j.meatsci.2007.02.021. PubMed DOI