Reorganization of bird communities along a rainforest elevation gradient during a strong El Niño event in Papua New Guinea
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38751823
PubMed Central
PMC11094519
DOI
10.1002/ece3.10955
PII: ECE310955
Knihovny.cz E-zdroje
- Klíčová slova
- ENSO, Mt. Wilhelm, drought, elevational gradient, feeding guilds, forest birds, terrestrial birds,
- Publikační typ
- časopisecké články MeSH
The El Niño 2015 event, most extreme since 1997, led to severe droughts in tropical wet Papua New Guinea (PNG), reducing May to October dry season rainfall by 75% in the lowlands and 25% in the highlands. Such droughts are likely to have significant effects on terrestrial ecosystems, but they have been poorly explored in Papua New Guinea. Here, we report changes in bird community composition prior to, during, and after the 2015 El Niño event along the elevational gradient ranging from 200 m to 2700 m a.s.l. at the Mt. Wilhelm rainforest in PNG. The abundance of birds in the lowlands dropped by 60% but increased by 40% at elevations above 1700 m during El Niño year. In the following year, the individual bird species reached mean population sizes similar to pre-El Niño years but did not fully recover. Species richness roughly followed the pattern of observed abundance and quickly and fully re-established after the event to the pre- El Niño values. Thus, at least some terrestrial birds seem to react quickly to the extreme droughts in lowlands and shift to less affected mountain habitats. We recorded upper elevational range limits to shifts by more than 500 m a.s.l. in 22 bird species (out of 237 recorded in total) during El Niño year, in contrast to their typical ranges. Our study suggests that a strong El Niño event can have strong but reversible effects on bird communities as long as they have an opportunity to move to more favorable sites through undisturbed habitats.
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
School of Life Sciences University of Sussex Brighton UK
The New Guinea Binatang Research Center Madang Papua New Guinea
Zobrazit více v PubMed
Adeney, J. M. , Ginsberg, J. R. , Russell, G. J. , & Kinnaird, M. F. (2006). Effects of an ENSO‐related fire on birds of a lowland tropical forest in Sumatra. Animal Conservation, 9, 292–301.
Aiba, S.‐I. , & Kitayama, K. (2002). Effects of the 1997–98 El Nino drought on rain forests of Mount Kinabalu, Borneo. Journal of Tropical Ecology, 18, 215–230.
Appanah, S. (1985). General flowering in the climax rain forests of South‐east Asia. Journal of Tropical Ecology, 1, 225–240.
Appanah, S. (1993). Mass flowering of dipterocarp forests in the aseasonal tropics. Journal of Biosciences, 18, 457–474.
Bates, D. , Mächler, M. , Bolker, B. , & Walker, S. (2014). Fiteting linear mixed‐effects models using lme4. arXiv. [Preprint]. 10.18637/jss.v067.i01 DOI
Beissinger, S. R. (2008). Long‐term studies of the green‐rumped Parrotlet (Forpus passerinus) in Venezuela: Hatching asynchrony, social system and population structure. Ornitología Neotropical, 19, 73–83.
Blake, J. G. , & Loiselle, B. A. (2000). Diversity of birds along an elevational gradient in the Cordillera Central, Costa Rica. The Auk, 117, 663–686.
Blake, J. G. , & Loiselle, B. A. (2015). Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ, 3, e1177. PubMed PMC
Bolker, B. , & Bolker, M. B. (2012). bbmle R package . R Development Core Team. Version, 1(5.2).
Boyle, W. A. , Shogren, E. H. , & Brawn, J. D. (2020). Hygric niches for tropical endotherms. Trends in Ecology & Evolution, 35, 938–952. PubMed
Bryan, J. , Shearman, P. , Ash, J. , & Kirkpatrick, J. B. (2010). Estimating rainforest biomass stocks and carbon loss from deforestation and degradation in Papua New Guinea 1972–2002: Best estimates, uncertainties and research needs. Journal of Environmental Management, 91, 995–1001. PubMed
Burnham, K. P. , & Anderson, D. R. (2002). A practical information‐theoretic approach. Model selection and multimodel inference (2nd ed.). Springer.
Butt, N. , Seabrook, L. , Maron, M. , Law, B. S. , Dawson, T. P. , Syktus, J. , & McAlpine, C. A. (2015). Cascading effects of climate extremes on vertebrate fauna through changes to low‐latitude tree flowering and fruiting phenology. Global Change Biology, 21, 3267–3277. PubMed
Cai, J. , Xu, J. , Guan, Z. , & Powell, A. M. (2019). Interdecadal variability of El Niño onset and its impact on monsoon systems over areas encircling the Pacific Ocean. Climate Dynamics, 52, 7173–7188.
Chan, K. (2001). Partial migration in Australian landbirds: A review. Emu, 101, 281–292.
Chen, I.‐C. , Hill, J. K. , Ohlemüller, R. , Roy, D. B. , & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026. PubMed
Colwell, R. K. (2009). EstimateS: Statistical estimation of species richness and shared species from samples . Version 9. User's guide and application retrieved from http://purl.oclc.org/estimates
Dean, W. R. J. (2004). Nomadic desert birds: With 32 tables. Springer Science & Business Media.
ENSO . (2015). Pacific ENSO update: 2nd Quarter 2015 . United States Pacific El Niño‐Southern Oscillation (ENSO) Applications Climate Center. Retrieved May 29, 2015, from http://www.webcitation.org/6g75Hi8LE?url=http%3A%2F%2Fwww.weather.gov%2Fmedia%2Fpeac%2FPEU%2FPEU_v21_n2.pdf
ENSO . (2016). El Niño/Southern Oscillation (ENSO) diagnostic discussion: June 2016 . United States Climate Prediction Center. Retrieved June 9, 2016, from http://origin.cpc.ncep.noaa.gov/products/expert_assessment/ENSO_DD_archive.shtml
Ferger, S. W. , Peters, M. K. , Appelhans, T. , Detsch, F. , Hemp, A. , Nauss, T. , Otte, I. , Böhning‐Gaese, K. , & Schleuning, M. (2017). Synergistic effects of climate and land use on avian beta‐diversity. Diversity and Distributions, 23, 1246–1255.
Freeman, B. G. , & Freeman, A. M. C. (2014). Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proceedings of the National Academy of Sciences of the United States of America, 111, 4490–4494. PubMed PMC
Gandiwa, E. , Heitkönig, I. M. , Eilers, P. H. , & Prins, H. H. (2016). Rainfall variability and its impact on large mammal populations in a complex of semi‐arid African savanna protected areas. Tropical Ecology, 57, 163–180.
Gomez, J. P. , Ponciano, J. M. , Londoño, G. A. , & Robinson, S. K. (2020). The biotic interactions hypothesis partially explains bird species turnover along a lowland Neotropical precipitation gradient. Global Ecology and Biogeography, 29, 491–502.
Gotelli, N. J. , & Colwell, R. K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379–391.
Hanmer, D. (1997). Bird longevity in the eastern highlands of Zimbabwe–drought survivors. Safring News, 26, 47–54.
Herremans, M. (2004). Effects of drought on birds in the Kalahari, Botswana. Ostrich, 75, 217–227.
Hirons, M. , Beauchamp, E. , Whitfield, S. , Conway, D. , Asare, R. , & Malhi, Y. (2020). Resilience to climate shocks in the tropics. Environmental Research Letters, 15, 100203.
Holmgren, M. , Scheffer, M. , Ezcurra, E. , Gutiérrez, J. R. , & Mohren, G. M. (2001). El Niño effects on the dynamics of terrestrial ecosystems. Trends in Ecology & Evolution, 16, 89–94. PubMed
Immelmann, K. (1969). Environmental factors controlling reproduction in African and Australian birds—A comparison. Ostrich, 40, 193–204.
IOM . (2015). El Nino affects a million people in PNG highlands . International Organization for Migration. Retrieved September 4, 2015, from http://reliefweb.int/report/papua‐new‐guinea/el‐nino‐affects‐million‐people‐png‐highlands
Isaac, J. L. , Vanderwal, J. , Johnson, C. N. , & Williams, S. E. (2009). Resistance and resilience: Quantifying relative extinction risk in a diverse assemblage of Australian tropical rainforest vertebrates. Diversity and Distributions, 15, 280–288.
Jaksic, F. , & Feinsinger, P. (1998). Biodiversity in fluctuating dry‐land environments: Basic and applied aspects. In Rundel P. W., Montenegro G., & Jaksic F. M. (Eds.), Landscape disturbance and biodiversity in mediterranean‐type ecosystems (pp. 389–403). Springer.
Jaksic, F. M. (2001). Ecological effects of El Nino in terrestrial ecosystems of western South America. Ecography, 24, 241–250.
Jaksic, F. M. , & Lazo, I. (1999). Response of a bird assemblage in semiarid Chile to the 1997‐1998 El Niño. The Wilson Bulletin, 11, 527–535.
Jaksic, F. M. , Silva, S. I. , Meserve, P. L. , & Gutierrez, J. R. (1997). A long‐term study of vertebrate predator responses to an El Nino (ENSO) disturbance in western South America. Oikos, 78, 341–354.
Kishimoto‐Yamada, K. , Ishikawa, T. , Saito, M. U. , Meleng, P. , Tanaka, H. O. , & Itioka, T. (2015). Canopy crane survey of the hemipteran assemblage structure in a Bornean forest. Raffles Bulletin of Zoology, 63, 471–483.
Leighton, M. (1983). Vertebrate responses to fruiting seasonality within a Bornean rain forest. In Sutton S. L., Whitmore T. C., & Chadwick A. C. (Eds.), Tropical rain forest ecology and management (pp. 181–196). Blackwell Science Publications.
Levey, D. J. , & Stiles, F. G. (1992). Evolutionary precursors of long‐distance migration: Resource availability and movement patterns in Neotropical landbirds. The American Naturalist, 140, 447–476.
Lima, M. , Keymer, J. E. , & Jaksic, F. M. (1999). El Nino–southern oscillation–driven rainfall variability and delayed density dependence cause rodent outbreaks in western South America: Linking demography and population dynamics. The American Naturalist, 153, 476–491. PubMed
Lima, M. , Marquet, P. A. , & Jaksic, F. M. (1999). El Nino events, precipitation patterns, and rodent outbreaks are statistically associated in semiarid Chile. Ecography, 22, 213–218.
Lüdecke, D. , Ben‐Shachar, M. S. , Patil, I. , Waggoner, P. , & Makowski, D. (2021). Performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6, 3139.
Mantyka‐pringle, C. S. , Martin, T. G. , & Rhodes, J. R. (2012). Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta‐analysis. Global Change Biology, 18, 1239–1252.
McAlpine, J. R. , Keig, R. , & Falls, R. (1983). Climate of Papua New Guinea. CSIRO and Australian National University Press.
Mendoza, I. , Peres, C. A. , & Morellato, L. P. C. (2017). Continental‐scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review. Global and Planetary Change, 148, 227–241.
Meserve, P. L. , Milstead, W. B. , Gutiérrez, J. R. , & Jaksic, F. M. (1999). The interplay of biotic and abiotic factors in a semiarid Chilean mammal assemblage: Results of a long‐term experiment. Oikos, 85, 364–372.
Moy, C. M. , Seltzer, G. O. , Rodbell, D. T. , & Anderson, D. M. (2002). Variability of El Niño/Southern oscillation activity at millennial timescales during the holocene epoch. Nature, 420(6912), 162–165. PubMed
Null, J. (2017). El Niño and La Niña years and intensities . Retrieved from http://ggweather.com/enso/oni.htm
Owens, J. (1995). Constraints to seed production: Temperate and tropical forest trees. Tree Physiology, 15, 477–484. PubMed
Paijmans, K. (Ed.). (1976). New Guinea vegetation. National University Press.
Peck, M. R. , Kaina, G. S. , Hazell, R. J. , Isua, B. , Alok, C. , Paul, L. , & Stewart, A. J. (2017). Estimating carbon stock in lowland Papua New Guinean forest: Low density of large trees results in lower than global average carbon stock. Austral Ecology, 42, 964–975.
Pratt, T. K. , & Beehler, B. M. (2015). Birds of New Guinea. Princeton University Press.
Reich, P. B. (1995). Phenology of tropical forests: Patterns, causes, and consequences. Canadian Journal of Botany, 73, 164–174.
Rompré, G. , Douglas Robinson, W. , Desrochers, A. , & Angehr, G. (2007). Environmental correlates of avian diversity in lowland Panama rain forests. Journal of Biogeography, 34, 802–815.
Ryder, T. B. , & Sillett, T. S. (2016). Climate, demography and lek stability in an Amazonian bird. Proceedings of the Royal Society B: Biological Sciences, 283, 20152314. PubMed PMC
Sakai, S. , Harrison, R. D. , Momose, K. , Kuraji, K. , Nagamasu, H. , Yasunari, T. , Chong, L. , & Nakashizuka, T. (2006). Irregular droughts trigger mass flowering in aseasonal tropical forests in Asia. American Journal of Botany, 93, 1134–1139. PubMed
Sam, K. , & Koane, B. (2014). New avian records along the elevational gradient of Mt. Wilhelm, Papua New Guinea. Bulletin of the British Ornithologists' Club, 134, 116–133.
Sam, K. , Koane, B. , Bardos, D. C. , Jeppy, S. , & Novotny, V. (2019). Species richness of birds along a complete rain forest elevational gradient in the tropics: Habitat complexity and food resources matter. Journal of Biogeography, 46, 279–290.
Sam, K. , Koane, B. , Jeppy, S. , & Novotny, V. (2014). Effect of forest fragmentation on bird species richness in Papua New Guinea. Journal of Field Ornithology, 85, 152–167.
Sam, K. , Koane, B. , Jeppy, S. , Sykorova, J. , & Novotny, V. (2017). Diet of land birds along an elevational gradient in Papua New Guinea. Scientific Reports, 7, 44018. PubMed PMC
Santillan, V. , Quitián, M. , Tinoco, B. A. , Zárate, E. , Schleuning, M. , Böhning‐Gaese, K. , & Neuschulz, E. L. (2018). Spatio‐temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. PLoS One, 13, e0196179. PubMed PMC
Şekercioḡlu, Ç. H. , Ehrlich, P. R. , Daily, G. C. , Aygen, D. , Goehring, D. , & Sandí, R. F. (2002). Disappearance of insectivorous birds from tropical forest fragments. Proceedings of the National Academy of Sciences of the United States of America, 99, 263–267. PubMed PMC
Shearman, P. L. , Ash, J. , Mackey, B. , Bryan, J. E. , & Lokes, B. (2009). Forest conversion and degradation in Papua New Guinea 1972–2002. Biotropica, 41, 379–390.
Sillett, T. S. , Holmes, R. T. , & Sherry, T. W. (2000). Impacts of a global climate cycle on population dynamics of a migratory songbird. Science, 288, 2040–2042. PubMed
Stouffer, P. C. , Johnson, E. I. , & Bierregaard, R. O., Jr. (2013). Breeding seasonality in central Amazonian rainforest birds. The Auk, 130, 529–540.
Styrsky, J. N. , & Brawn, J. D. (2011). Annual fecundity of a Neotropical bird during years of high and low rainfall. The Condor, 113, 194–199.
Tebbich, S. , Taborsky, M. , Fessl, B. , Dvorak, M. , & Winkler, H. (2004). Feeding behavior of four arboreal Darwin's finches: Adaptations to spatial and seasonal variability. The Condor, 106, 95–105.
Van Bael, S. A. , Aiello, A. , Valderrama, A. , Medianero, E. , Samaniego, M. , & Wright, S. J. (2004). General herbivore outbreak following an El Nino‐related drought in a lowland Panamanian forest. Journal of Tropical Ecology, 20, 625–633.
WFP . (2015). Briefing document prepared on September 7, 2015 by WFP's Regional Bureau for Asia & the Pacific and the Food Security, Markets and Vulnerability Analysis unit (OSZAF), with support from the Emergency Preparedness and Support Response Division (OSE) . WFP's Regional Bureau for Asia & the Pacfic and the Food Security, Markets and Vulnerability Analysis Unit (OSZAF). Retrieved from https://reliefweb.int/sites/reliefweb.int/files/resources/PNG%20Brief%20Sep2015.pdf
Wolfe, J. D. , Ralph, C. J. , & Elizondo, P. (2015). Changes in the apparent survival of a tropical bird in response to the El Niño Southern Oscillation in mature and young forest in Costa Rica. Oecologia, 178, 715–721. PubMed
Wright, S. J. , Carrasco, C. , Calderon, O. , & Paton, S. (1999). The El Niño Southern Oscillation, variable fruit production, and famine in a tropical forest. Ecology, 80, 1632–1647.