Vitrification Ability of Combined and Single Cryoprotective Agents

. 2021 Nov 06 ; 10 (11) : . [epub] 20211106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34834755

Grantová podpora
QK1910277 Ministry of Agriculture of the Czech republic
MZERO0418 Ministry of Agriculture of the Czech republic

Cryoprotective agents (CPA) are an important part of many current vitrification methods. The vitrification ability of CPAs influences the probability of the glass transition and water crystallization occurrence. Thermal characteristics and the vitrification ability of two combined CPAs (PVS2 and PVS3), common plant vitrification solutions, and four single CPAs (ethylene glycol, DMSO, glycerol, and sucrose), the components of the mentioned PVSs, were evaluated utilizing a differential scanning calorimetry (DSC) during standard cooling/warming rates of 10 °C min-1. The effect of solute concentration on their vitrification ability was shown in the CPAs tested. Four typical concentration regions at which the glassy state and/or crystallization occurred were defined. We suggest the solute concentration of 0.7 g g-1 as the universal vitrification concentration, characterized by an actual Tg of CPA solution and limited water crystallization. Knowledge of the thermal properties of CPAs allows the design of new combined CPAs with the required vitrification ability respecting the cryopreservation method used and the characteristics of the cryopreserved sample.

Zobrazit více v PubMed

Clarke A., Morris G.J., Fonseca F., Murray B.J., Acton E., Price H.C. A low temperature limit for life on Earth. PLoS ONE. 2013;8:e66207. doi: 10.1371/journal.pone.0066207. PubMed DOI PMC

Fahy G.M., MacFarlane D., Angell C.A., Meryman H. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21:407–426. doi: 10.1016/0011-2240(84)90079-8. PubMed DOI

Pegg D.E. Cryopreservation and Freeze-Drying Protocols. Humana Press; Totowa, NJ, USA: 2007. Principles of cryopreservation; pp. 39–57.

Park S., Seawright A., Park S., Dutton J.C., Grinnell F., Han B. Preservation of tissue microstructure and functionality during freezing by modulation of cytoskeletal structure. J. Mech. Behav. Biomed. 2015;45:32–44. doi: 10.1016/j.jmbbm.2015.01.014. PubMed DOI PMC

Fuller B., Paynter S. Fundamentals of cryobiology in reproductive medicine. Reprod. Biomed. Online. 2004;9:680–691. doi: 10.1016/S1472-6483(10)61780-4. PubMed DOI

Wowk B. Thermodynamic aspects of vitrification. Cryobiology. 2010;60:11–22. doi: 10.1016/j.cryobiol.2009.05.007. PubMed DOI

Day J.G., Harding K.C., Nadarajan J., Benson E.E. Molecular Biomethods Handbook. Humana Press; Totowa, NJ, USA: 2008. Cryopreservation; pp. 917–947.

Sakai A., Engelmann F. Vitrification, encapsulation-vitrification and droplet-vitrification: A review. CryoLetters. 2007;28:151–172. PubMed

Gonzalez-Arnao M.T., Engelmann F. Cryopreservation of plant germplasm using the encapsulation-dehydration technique: Review and case study on sugarcane. CryoLetters. 2006;27:155–168. PubMed

Benson E.E. Cryopreservation of Phytodiversity: A Critical Appraisal of Theory & Practice. Crit. Rev. Plant Sci. 2008;27:141–219. doi: 10.1080/07352680802202034. DOI

Engelmann F. Plant cryopreservation: Progress and prospects. In Vitro Cell. Dev. Biol. Plant. 2004;40:427–433. doi: 10.1079/IVP2004541. DOI

Fahy G.M., Wowk B. Cryopreservation and Freeze-Drying Protocols. Humana Press; Totowa, NJ, USA: 2021. Principles of ice-free cryopreservation by vitrification; pp. 27–97. PubMed

Fahy G.M., Wowk B. Principles of cryopreservation by vitrification. Methods Mol. Biol. 2015;1257:21–82. doi: 10.1007/978-1-4939-2193-5_2. PubMed DOI

Fahy G.M. Cryoprotectant toxicity neutralization. Cryobiology. 2010;60:S45–S53. doi: 10.1016/j.cryobiol.2009.05.005. PubMed DOI

Hubálek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology. 2003;46:205–229. doi: 10.1016/S0011-2240(03)00046-4. PubMed DOI

Elliott G.D., Wang S., Fuller B.J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology. 2017;76:74–91. doi: 10.1016/j.cryobiol.2017.04.004. PubMed DOI

Panis B., Piette B., Swennen R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Sci. 2005;168:45–55. doi: 10.1016/j.plantsci.2004.07.022. DOI

Reed B.M., Kovalchuk I., Kushnarenko S., Meier-Dinkel A., Schoenweiss K., Pluta S., Straczynska K., Benson E.E. Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. CryoLetters. 2004;25:341–352. PubMed

Matsumoto T. Cryopreservation of plant genetic resources: Conventional and new methods. Rev. Agric. Sci. 2017;5:13–20. doi: 10.7831/ras.5.13. DOI

Benson E., Harding K., Ryan M., Petrenko A., Petrenko Y., Fuller B. Alginate encapsulation to enhance biopreservation scope and success: A multidisciplinary review of current ideas and applications in cryopreservation and non-freezing storage. Cryoletters. 2018;39:14–38. PubMed

Popova E., Shukla M., Kim H.-H., Saxena P.K. Root cryobanking: An important tool in plant cryopreservation. Plant Cell Tissue Organ Cult. PCTOC. 2021;144:49–66. doi: 10.1007/s11240-020-01859-6. DOI

Han Z., Bischof J.C. Critical cooling and warming rates as a function of CPA concentration. CryoLetters. 2020;41:185–193. PubMed PMC

Teixeira A.S., Gonzalez-Benito M.E., Molina-Garcia A.D. Measurement of Cooling and Warming Rates in Vitrification-Based Plant Cryopreservation Protocols. Biotechnol. Progr. 2014;30:1177–1184. doi: 10.1002/btpr.1938. PubMed DOI

Paredes E., Mazur P. The survival of mouse oocytes shows little or no correlation with the vitrification or freezing of the external medium, but the ability of the medium to vitrify is affected by its solute concentration and by the cooling rate. Cryobiology. 2013;67:386–390. doi: 10.1016/j.cryobiol.2013.09.003. PubMed DOI PMC

Best B.P. Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res. 2015;18:422–436. doi: 10.1089/rej.2014.1656. PubMed DOI PMC

Sestak J. Some Thermodynamic Aspects of the Glassy State. Thermochim. Acta. 1985;95:459–471. doi: 10.1016/0040-6031(85)85312-0. DOI

Boutron P., Kaufmann A. Stability of Amorphous State in System Water-Glycerol-Dimethylsulfoxide. Cryobiology. 1978;15:93–108. doi: 10.1016/0011-2240(78)90012-3. PubMed DOI

Roos Y.H., Karel M. Phase-Transitions of Amorphous Sucrose and Frozen Sucrose Solutions. J. Food Sci. 1991;56:266–267. doi: 10.1111/j.1365-2621.1991.tb08029.x. DOI

Roos Y.H. Glass Transition and Re-Crystallization Phenomena of Frozen Materials and Their Effect on Frozen Food Quality. Foods. 2021;10:447. doi: 10.3390/foods10020447. PubMed DOI PMC

Roos Y. Melting and glass transitions of low molecular weight carbohydrates. Carbohyd. Res. 1993;238:39–48. doi: 10.1016/0008-6215(93)87004-C. DOI

Ren H., Wei Y., Hua T., Zhang J. Theoretical prediction of vitrification and devitrification tendencies for cryoprotective solutions. Cryobiology. 1994;31:47–56. doi: 10.1006/cryo.1994.1006. DOI

Block W. Water status and thermal analysis of alginate beads used in cryopreservation of plant germplasm. Cryobiology. 2003;47:59–72. doi: 10.1016/S0011-2240(03)00069-5. PubMed DOI

Dumet D., Grapin A., Bailly C., Dorion N. Revisiting crucial steps of an encapsulation/desiccation based cryopreservation process: Importance of thawing method in the case of Pelargonium meristems. Plant Sci. 2002;163:1121–1127. doi: 10.1016/S0168-9452(02)00323-0. DOI

Matsumoto Y., Morinaga Y., Ujihira M., Oka K., Tanishita K. Improvement in the viability of cryopreserved cells by microencapsulation. Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2001;44:937–945. doi: 10.1299/jsmec.44.937. DOI

Wowk B., Darwin M., Harris S.B., Russell S.R., Rasch C.M. Effects of solute methoxylation on glass-forming ability and stability of vitrification solutions. Cryobiology. 1999;39:215–227. doi: 10.1006/cryo.1999.2203. PubMed DOI

Kaczmarczyk A., Zanke C., Senula A., Grube M., Keller E.R.J. Thermal Analyses by Differential Scanning Calorimetry for Cryopreservation of Potato Shoot Tips. Acta Hortic. 2011;908:39–46. doi: 10.17660/ActaHortic.2011.908.2. DOI

Hammond S.D., Faltus M., Zámečník J. Cryopreservation-Current Advances and Evaluations. IntechOpen; Rijeka, Croatia: 2019. Methods of Thermal Analysis as a Tool to Develop Cryopreservation Protocols of Vegetatively Propagated Crops; pp. 161–176.

Vozovyk K., Bobrova O., Prystalov A., Shevchenko N., Kuleshova L. Amorphous state stability of plant vitrification solutions. Biologija. 2020;66:47–53. doi: 10.6001/biologija.v66i1.4190. DOI

Šesták J., Zámečník J. Can clustering of liquid water and thermal analysis be of assistance for better understanding of biological germplasm exposed to ultra-low temperatures. J. Therm. Anal. Calorim. 2007;88:411–416. doi: 10.1007/s10973-006-8232-8. DOI

Kim H.H., No N.Y., Shin D.J., Ko H.C., Kang J.H., Cho E.G., Engelmann F. Development of Alternative Plant Vitrification Solutions to be Used in Droplet-Vitrification Procedures. Acta Hortic. 2011;908:181–186. doi: 10.17660/ActaHortic.2011.908.20. DOI

Sarkar D., Naik P.S. Cryopreservation of shoot tips of tetraploid potato (Solanum tuberosum L.) clones by vitrification. Ann. Bot. 1998;82:455–461. doi: 10.1006/anbo.1998.0703. DOI

Choi C.-H., Popova E., Lee H., Park S.-U., Ku J., Kang J.-H., Kim H.-H. Cryopreservation of endangered wild species, Aster altaicus var. uchiyamae Kitam, using droplet-vitrification procedure. CryoLetters. 2019;40:113–122. PubMed

Yi J.Y., Sylvestre I., Colin M., Salma M., Lee S.Y., Kim H.H., Park H.J., Engelmann F. Improved Cryopreservation Using Droplet-vitrification and Histological Changes Associated with Cryopreservation of Madder (Rubia akane Nakai) Korean J. Hortic. Sci. 2012;30:79–84. doi: 10.7235/hort.2012.11087. DOI

Benson E., Reed B., Brennan R., Clacher K., Ross D. Use of thermal analysis in the evaluation of cryopreservation protocols for Ribes nigrum L. germplasm. Cryo-Letters. 1996;17:347–362.

Volk G.M., Walters C. Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology. 2006;52:48–61. doi: 10.1016/j.cryobiol.2005.09.004. PubMed DOI

Sakai A., Kobayashi S., Oiyama I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990;9:30–33. doi: 10.1007/BF00232130. PubMed DOI

Dumetlll D., Block W., Worland R., ReedJ B.M., Benson E.E. Profiling cryopreserv a tion protocols for ribes cilia rum using differential scanning calorimetry. CryoLetters. 2000;21:378. PubMed

Niino T., Sakai A., Yakuwa H., Nojiri K. Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tissue Organ Cult. 1992;28:261–266. doi: 10.1007/BF00036122. DOI

Volk G.M., Harris J.L., Rotindo K.E. Survival of mint shoot tips after exposure to cryoprotectant solution components. Cryobiology. 2006;52:305–308. doi: 10.1016/j.cryobiol.2005.11.003. PubMed DOI

Niino T., Yamamoto S.-I., Fukui K., Martínez C.R.C., Arizaga M.V., Matsumoto T., Engelmann F. Dehydration improves cryopreservation of mat rush (Juncus decipiens Nakai) basal stem buds on cryo-plates. CryoLetters. 2013;34:549–560. PubMed

Kim H.-H., Lee Y.-G., Shin D.-J., Ko H.-C., Gwag J.-G., Cho E.-G., Engelmann F. Development of alternative plant vitrification solutions in droplet-vitrification procedures. CryoLetters. 2009;30:320–334. doi: 10.17660/ActaHortic.2011.908.20. PubMed DOI

Boutron P. Glass-forming tendency and stability of the amorphous state in solutions of a 2, 3-butanediol containing mainly the levo and dextro isomers in water, buffer, and Euro-Collins. Cryobiology. 1993;30:86–97. doi: 10.1006/cryo.1993.1008. DOI

Nishizawa S., Sakai A., Amano Y., Matsuzawa T. Cryopreservation of Asparagus (Asparagus-Officinalis L) Embryogenic Suspension Cells and Subsequent Plant-Regeneration by Vitrification. Plant Sci. 1993;91:67–73. doi: 10.1016/0168-9452(93)90189-7. DOI

Kim H.H., Popova E.V., Yi J.Y., Cho G.T., Park S.U., Lee S.C., Engelmann F. Cryopreservation of Hairy Roots of Rubia Akane (Nakai) Using a Droplet-Vitrification Procedure. Cryoletters. 2010;31:473–484. PubMed

Teixeira A.S., Faltus M., Zamecnik J., Gonzalez-Benito M.E., Molina-Garcia A.D. Glass transition and heat capacity behaviors of plant vitrification solutions. Thermochim. Acta. 2014;593:43–49. doi: 10.1016/j.tca.2014.08.015. DOI

Wang M.-R., Zhang Z., Zámečník J., Bilavčík A., Blystad D.-R., Haugslien S., Wang Q.-C. Droplet-vitrification for shoot tip cryopreservation of shallot (Allium cepa var. aggregatum): Effects of PVS3 and PVS2 on shoot regrowth. Plant Cell Tissue Organ Cult. PCTOC. 2020;140:185–195. doi: 10.1007/s11240-019-01721-4. DOI

Kim J.-B., Kim H.-H., Baek H.-J., Cho E.-G., Kim Y.-H., Engelmann F. Changes in sucrose and glycerol content in garlic shoot tips during freezing using PVS3 solution. CryoLetters. 2005;26:103–112. PubMed

Le K.C., Kim H.H., Park S.Y. Modification of the droplet-vitrification method of cryopreservation to enhance survival rates of adventitious roots of Panax ginseng. Hortic. Environ. Biotechnol. 2019;60:501–510. doi: 10.1007/s13580-019-00150-8. DOI

Ree J.F., Guerra M.P. Exogenous inorganic ions, partial dehydration, and high rewarming temperatures improve peach palm (Bactris gasipaes Kunth) embryogenic cluster post-vitrification regrowth. Plant Cell Tissue Organ Cult. 2021;144:157–169. doi: 10.1007/s11240-020-01852-z. DOI

Faltus M., Bilavčík A., Zámečník J. Thermal analysis of grapevine shoot tips during dehydration and vitrification. VITIS J. Grapevine Res. 2015;54:243–245.

Gao C., Zhou G.-Y., Xu Y., Hua T.-C. Glass transition and enthalpy relaxation of ethylene glycol and its aqueous solution. Thermochim. Acta. 2005;435:38–43. doi: 10.1016/j.tca.2005.03.024. DOI

Fahy G.M., Levy D., Ali S. Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions. Cryobiology. 1987;24:196–213. doi: 10.1016/0011-2240(87)90023-X. PubMed DOI

Roos Y. Frozen state transitions in relation to freeze drying. J. Therm. Anal. Calorim. 1997;48:535–544. doi: 10.1007/BF01979500. DOI

Sherlock G., Block W., Benson E.E. Thermal analysis of the plant encapsulation-dehydration cryopreservation protocol using silica gel as the desiccant. CryoLetters. 2005;26:45–54. PubMed

Dereuddre J., Kaminski M. Applications of Thermal-Analysis in Cryopreservation of Plant-Cells and Organs. J. Therm. Anal. 1992;38:1965–1978. doi: 10.1007/BF01979606. DOI

Lynch P.T., Souch G.R., Zámeník J., Harding K. Optimization of water content for the cryopreservation of Allium sativum in vitro cultures by encapsulation-dehydration. CryoLetters. 2016;37:308–317. PubMed

International Society for Biological and Environmental Repositories Best practices for repositories I: Collection, storage, and retrieval of human biological materials for research. Cell Preserv. Technol. 2005;3:5–48. doi: 10.1089/cpt.2005.3.5. DOI

Schafer-Menuhr A., Muller E., Mix-Wagner G. Cryopreservation: An alternative for the long-term storage of old potato varieties. Potato Res. 1996;39:507–513. doi: 10.1007/BF02358469. DOI

Kartha K., Leung N., Mroginski L. In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz) Z. Pflanzenphysiol. 1982;107:133–140. doi: 10.1016/S0044-328X(82)80099-8. DOI

Kaczmarczyk A., Rutten T., Melzer M., Keller E.R.J. Ultrastructural changes associated with cryopreservation of potato (Solanum tuberosum L.) shoot tips. Cryoletters. 2008;29:145–156. PubMed

Weng L., Stott S.L., Toner M. Exploring dynamics and structure of biomolecules, cryoprotectants, and water using molecular dynamics simulations: Implications for biostabilization and biopreservation. Annu. Rev. Biomed. Eng. 2019;21:1–31. doi: 10.1146/annurev-bioeng-060418-052130. PubMed DOI PMC

Halmagyi A., Deliu C., Isac V. Cryopreservation of Malus cultivars: Comparison of two droplet protocols. Sci. Hortic. 2010;124:387–392. doi: 10.1016/j.scienta.2010.01.012. DOI

Volk G.M., Caspersen A.M. Cryoprotectants and components induce plasmolytic responses in sweet potato (Ipomoea batatas (L.) Lam.) suspension cells. In Vitro Cell. Dev. Biol. Plant. 2017;53:363–371. doi: 10.1007/s11627-017-9834-5. DOI

Kim H.-H., Lee Y.-G., Park S.-U., Lee S.-C., Baek H.-J., Cho E.-G., Engelmann F. Development of alternative loading solutions in droplet-vitrification procedures. CryoLetters. 2009;30:291–299. PubMed

Lee H., Park H., Popova E., Lee Y.-Y., Park S.-U., Kim H.-H. Ammonium-free medium is critical for regeneration of shoot tips of the endangered species Pogostemon yatabeanus cryopreserved using droplet-vitrification. CryoLetters. 2021;42:290–299. PubMed

Weng L., Beauchesne P.R. Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology. 2020;94:9–17. doi: 10.1016/j.cryobiol.2020.03.012. PubMed DOI

Kasai M., Mukaida T. Cryopreservation of animal and human embryos by vitrification. Reprod. BioMed. Online. 2004;9:164–170. doi: 10.1016/S1472-6483(10)62125-6. PubMed DOI

Murasnige T., Skoog F. A revised medium for rapid growth and bio agsays with tohaoco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Warner R.M., Ampo E., Nelson D., Benson J.D., Eroglu A., Higgins A.Z. Rapid quantification of multi-cryoprotectant toxicity using an automated liquid handling method. Cryobiology. 2021;98:219–232. doi: 10.1016/j.cryobiol.2020.10.017. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...