Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of subglacial weathering in the silicon cycle
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31534420
PubMed Central
PMC6735475
DOI
10.1098/rspa.2019.0098
PII: rspa20190098
Knihovny.cz E-zdroje
- Klíčová slova
- glaciers and ice sheets, silicon cycle, silicon isotopes, subglacial weathering,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Glacial environments play an important role in high-latitude marine nutrient cycling, potentially contributing significant fluxes of silicon (Si) to the polar oceans, either as dissolved silicon (DSi) or as dissolvable amorphous silica (ASi). Silicon is a key nutrient in promoting marine primary productivity, contributing to atmospheric CO2 removal. We present the current understanding of Si cycling in glacial systems, focusing on the Si isotope (δ30Si) composition of glacial meltwaters. We combine existing glacial δ30Si data with new measurements from 20 sub-Arctic glaciers, showing that glacial meltwaters consistently export isotopically light DSi compared with non-glacial rivers (+0.16‰ versus +1.38‰). Glacial δ30SiASi composition ranges from -0.05‰ to -0.86‰ but exhibits low seasonal variability. Silicon fluxes and δ30Si composition from glacial systems are not commonly included in global Si budgets and isotopic mass balance calculations at present. We discuss outstanding questions, including the formation mechanism of ASi and the export of glacial nutrients from fjords. Finally, we provide a contextual framework for the recent advances in our understanding of subglacial Si cycling and highlight critical research avenues for assessing potential future changes in these environments.
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Environmental Sciences Western Norway University of Applied Sciences Sogndal Norway
German Research Centre for Geosciences GFZ Potsdam Germany
School of Earth Sciences University of Bristol Bristol UK
School of Geographical Sciences University of Bristol Bristol UK
Zobrazit více v PubMed
Hawkings JR, et al. 2015. The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet. Geochem. Perspect. Lett. 1, 94–104. (10.7185/geochemlet.1510) DOI
Hawkings JR, Wadham JL, Benning LG, Hendry KR, Tranter M, Tedstone A, Nienow P, Raiswell R. 2017. Ice sheets as a missing source of silica to the polar oceans. Nat. Commun. 8, 14198 (10.1038/ncomms14198) PubMed DOI PMC
Hawkings JR, et al. 2014. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (10.1038/ncomms4929) PubMed DOI PMC
Lawson EC, et al. 2014. Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosciences 11, 4015–4028. (10.5194/bg-11-4015-2014) DOI
Meire L, et al. 2016. High export of dissolved silica from the Greenland Ice Sheet. Geophys. Res. Lett. 43, 9173–9182. (10.1002/2016GL070191) DOI
Arrigo KR, Dijken GL, Castelao RM, Luo H, Rennermalm ÅK, Tedesco M, Mote TL, Oliver H, Yager PL. 2017. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett. 44, 6278–6285. (10.1002/2017GL073583) DOI
Graly JA, Humphrey NF, Landowski CM, Harper JT. 2014. Chemical weathering under the Greenland Ice Sheet. Geology 42, 551–554. (10.1130/G35370.1) DOI
Graly J, Harrington J, Humphrey N. 2017. Combined diurnal variations of discharge and hydrochemistry of the Isunnguata Sermia outlet, Greenland Ice Sheet. Cryosphere 11, 1131–1140. (10.5194/tc-11-1131-2017) DOI
Stevenson EI, Fantle MS, Das SB, Williams HM, Aciego SM. 2017. The iron isotopic composition of subglacial streams draining the Greenland ice sheet. Geochim. Cosmochim. Acta 213, 237–254. (10.1016/j.gca.2017.06.002) DOI
Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA. 2013. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 6, 274 (10.1038/ngeo1746) DOI
Bhatia MP, Das SB, Xu L, Charette MA, Wadham JL, Kujawinski EB. 2013. Organic carbon export from the Greenland ice sheet. Geochim. Cosmochim. Acta 109, 329–344. (10.1016/j.gca.2013.02.006) DOI
Lawson EC, Bhatia MP, Wadham JL, Kujawinski EB. 2014. Continuous summer export of nitrogen-rich organic matter from the Greenland Ice Sheet inferred by ultrahigh resolution mass spectrometry. Environ. Sci. Technol. 48, 14 248–14 257. (10.1021/es501732h) PubMed DOI
Meire L, Mortensen J, Meire P, Juul-Pedersen T, Sejr MK, Rysgaard S, Nygaard R, Huybrechts P, Meysman FJR. 2017. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344–5357. (10.1111/gcb.13801) PubMed DOI
Tréguer P, Pondaven P. 2000. Silica control of carbon dioxide. Nature 406, 358 (10.1038/35019236) PubMed DOI
Tréguer P, et al. 2018. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37. (10.1038/s41561-017-0028-x) DOI
Harrison KG. 2000. Role of increased marine silica input on paleo-pCO2 levels. Paleoceanography 15, 292–298. (10.1029/1999PA000427) DOI
Frings PJ, Clymans W, Fontorbe G, De La Rocha CL, Conley DJ. 2016. The continental Si cycle and its impact on the ocean Si isotope budget. Chem. Geol. 425, 12–36. (10.1016/j.chemgeo.2016.01.020) DOI
Sutton JN, et al. 2018. A review of the stable isotope bio-geochemistry of the global silicon cycle and its associated trace elements. Front. Earth Sci. 5, 112 (10.3389/feart.2017.00112) DOI
Tréguer PJ, Rocha CLDL. 2013. The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477–501. (10.1146/annurev-marine-121211-172346) PubMed DOI
Opfergelt S, Delmelle P. 2012. Silicon isotopes and continental weathering processes: assessing controls on Si transfer to the ocean. C. R. Geosci. 344, 723–738. (10.1016/j.crte.2012.09.006) DOI
Struyf E, Smis A, Van Damme S, Meire P, Conley DJ. 2009. The global biogeochemical silicon cycle. Silicon 1, 207–213. (10.1007/s12633-010-9035-x) DOI
McKeague JA, Cline MG. 1963. Silica in soil solutions I. The form and concentration of dissolved silica in aqueous extracts of some soils. Can. J. Soil Sci. 43, 70–82. (10.4141/cjss63-010) DOI
White AF. 1995. Chemical weathering rates of silicate minerals in soils. Rev. Mineral. Geochem. 31, 407–461.
Cornelis JT, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S. 2011. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8, 89–112. (10.5194/bg-8-89-2011) DOI
Fettweis X, Hanna E, Lang C, Belleflamme A, Erpicum M, Gallée H. 2013. Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet. Cryosphere 7, 241–248. (10.5194/tc-7-241-2013) DOI
Bamber J, den Broeke M, Ettema J, Lenaerts J, Rignot E. 2012. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 39, L19501 (10.1029/2012GL052552) DOI
Tedesco M, Fettweis X, Mote T, Wahr J, Alexander P, Box JE, Wouters B. 2013. Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere 7, 615–630. (10.5194/tc-7-615-2013) DOI
Fettweis X, Franco B, Tedesco M, van Angelen JH, Lenaerts JTM, van den Broeke MR, Gallée H. 2013. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489. (10.5194/tc-7-469-2013) DOI
Trusel LD, Das SB, Osman MB, Evans MJ, Smith BE, Fettweis X, McConnell JR, Noël BPY, van den Broeke MR. 2018. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 564, 104–108. (10.1038/s41586-018-0752-4) PubMed DOI
Gíslason SR, Snorrason A, Ingvarsson GB, Sigfússon B, Eiríksdóttir ES, Elefsen SO, Hardardottir J, Thorlaksdottir SB, Torssander P. 2006. Chemical composition, discharge and suspended load in rivers in North-Western Iceland. Report RH-07-2006. Database of the Science Institute and the Hydrological Service of the National Energy Authority. See https://notendur.hi.is/sigrg/pdfskyrslur/RH-07-2006.pdf.
Anderson SP. 2007. Biogeochemistry of glacial landscape systems. Annu. Rev. Earth Planet. Sci. 35, 375–399. (10.1146/annurev.earth.35.031306.140033) DOI
Walling DE, Fang D. 2003. Recent trends in the suspended sediment loads of the world's rivers. Glob. Planet. Change 39, 111–126. (10.1016/S0921-8181(03)00020-1) DOI
Bartholomew I, Nienow P, Mair D, Hubbard A, King MA, Sole A. 2010. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci. 3, 408 (10.1038/ngeo863) DOI
Tedstone AJ, Nienow PW, Gourmelen N, Dehecq A, Goldberg D, Hanna E. 2015. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature 526, 692 (10.1038/nature15722) PubMed DOI
Faure F, Mensing TM. 2005. Isotopes: principles and applications. Hoboken, NJ: Wiley and Sons.
Young ED, Galy A, Nagahara H. 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66, 1095–1104. (10.1016/S0016-7037(01)00832-8) DOI
De La Rocha CL, Brzezinski MA, DeNiro MJ. 2000. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim. Cosmochim. Acta 64, 2467–2477. (10.1016/S0016-7037(00)00373-2) DOI
Pogge von Strandmann PAE, Opfergelt S, Lai Y-J, Sigfússon B, Gislason SR, Burton KW. 2012. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland. Earth Planet. Sci. Lett. 339–340, 11–23. (10.1016/j.epsl.2012.05.035) DOI
De la Rocha CL, Brzezinski MA, DeNiro MJ. 1997. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim. Cosmochim. Acta 61, 5051–5056. (10.1016/S0016-7037(97)00300-1) DOI
Opfergelt S, Cardinal D, Henriet C, Draye X, André L, Delvaux B. 2006. Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device. Plant Soil 285, 333–345. (10.1007/s11104-006-9019-1) DOI
Geilert S, Vroon PZ, Roerdink DL, Van Cappellen P, van Bergen MJ. 2014. Silicon isotope fractionation during abiotic silica precipitation at low temperatures: inferences from flow-through experiments. Geochim. Cosmochim. Acta 142, 95–114. (10.1016/j.gca.2014.07.003) DOI
Oelze M, von Blanckenburg F, Bouchez J, Hoellen D, Dietzel M. 2015. The effect of Al on Si isotope fractionation investigated by silica precipitation experiments. Chem. Geol. 397, 94–105. (10.1016/j.chemgeo.2015.01.002) DOI
Georg RB, Reynolds BC, Frank M, Halliday AN. 2006. Mechanisms controlling the silicon isotopic compositions of river waters. Earth Planet. Sci. Lett. 249, 290–306. (10.1016/j.epsl.2006.07.006) DOI
Opfergelt S, Burton KW, Pogge von Strandmann PAE, Gislason SR, Halliday AN. 2013. Riverine silicon isotope variations in glaciated basaltic terrains: implications for the Si delivery to the ocean over glacial–interglacial intervals. Earth Planet. Sci. Lett. 369–370, 211–219. (10.1016/j.epsl.2013.03.025) DOI
Hughes HJ, Sondag F, Cocquyt C, Laraque A, Pandi A, André L, Cardinal D. 2011. Effect of seasonal biogenic silica variations on dissolved silicon fluxes and isotopic signatures in the Congo River. Limnol. Oceanogr. 56, 551–561. (10.4319/lo.2011.56.2.0551) DOI
Cardinal D, Gaillardet J, Hughes HJ, Opfergelt S, André L. 2010. Contrasting silicon isotope signatures in rivers from the Congo Basin and the specific behaviour of organic-rich waters. Geophys. Res. Lett. 37, L12403 (10.1029/2010GL043413) DOI
Savage PS, Georg RB, Williams HM, Halliday AN. 2013. Silicon isotopes in granulite xenoliths: insights into isotopic fractionation during igneous processes and the composition of the deep continental crust. Earth Planet. Sci. Lett. 365, 221–231. (10.1016/j.epsl.2013.01.019) DOI
Douthitt CB. 1982. The geochemistry of the stable isotopes of silicon. Geochim. Cosmochim. Acta 46, 1449–1458. (10.1016/0016-7037(82)90278-2) DOI
Georg RB, Reynolds BC, West AJ, Burton KW, Halliday AN. 2007. Silicon isotope variations accompanying basalt weathering in Iceland. Earth Planet. Sci. Lett. 261, 476–490. (10.1016/j.epsl.2007.07.004) DOI
Hawkings JR, et al. 2018. The silicon cycle impacted by past ice sheets. Nat. Commun. 9, 3210 (10.1038/s41467-018-05689-1) PubMed DOI PMC
Anderson SP, Drever JI, Frost CD, Holden P. 2000. Chemical weathering in the foreland of a retreating glacier. Geochim. Cosmochim. Acta 64, 1173–1189. (10.1016/S0016-7037(99)00358-0) DOI
Anderson SP, Drever JI, Humphrey NF. 1997. Chemical weathering in glacial environments. Geology 25, 399–402. (10.1130/0091-7613(1997)025<0399:CWIGE>2.3.CO;2) DOI
Hosein R, Arn K, Steinmann P, Adatte T, Föllmi KB. 2004. Carbonate and silicate weathering in two presently glaciated, crystalline catchments in the Swiss Alps. Geochim. Cosmochim. Acta 68, 1021–1033. (10.1016/S0016-7037(03)00445-9) DOI
Torres MA, Moosdorf N, Hartmann J, Adkins JF, West AJ. 2017. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. Proc. Natl Acad. Sci. USA 114, 8716–8721. (10.1073/pnas.1702953114) PubMed DOI PMC
Graly JA, Humphrey NF, Licht KJ. 2018. Two metrics describing the causes of seasonal and spatial changes in subglacial aqueous chemistry. Front. Earth Sci. 6, 195 (10.3389/feart.2018.00195) DOI
Wadham JL, Tranter M, Skidmore M, Hodson AJ, Priscu J, Lyons WB, Sharp M, Wynn P, Jackson M. 2010. Biogeochemical weathering under ice: size matters. Global Biogeochem. Cycles 24, GB3025 (10.1029/2009GB003688) DOI
Tranter M, Sharp MJ, Lamb HR, Brown GH, Hubbard BP, Willis IC. 2002. Geochemical weathering at the bed of Haut Glacier d'Arolla, Switzerland—a new model. Hydrol. Process. 16, 959–993. (10.1002/hyp.309) DOI
Hatton JE, Hendry KR, Hawkings JR, Wadham JL, Kohler TJ, Stibal M, Beaton AD, Bagshaw EA, Telling J. 2019. Investigation of subglacial weathering under the Greenland Ice Sheet using silicon isotopes. Geochim. Cosmochim. Acta 247, 191–206. (10.1016/j.gca.2018.12.033) DOI
Chandler DM, et al. 2013. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 6, 195–198. (10.1038/ngeo1737) DOI
Fountain AG, Walder JS. 1998. Water flow through temperate glaciers. Rev. Geophys. 36, 299–328. (10.1029/97RG03579) DOI
Anderson SP, Longacre SA, Kraal ER. 2003. Patterns of water chemistry and discharge in the glacier-fed Kennicott River, Alaska: evidence for subglacial water storage cycles. Chem. Geol. 202, 297–312. (10.1016/j.chemgeo.2003.01.001) DOI
Bartholomew I, Nienow P, Sole A, Mair D, Cowton T, Palmer S, Wadham J. 2011. Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophys. Res. Lett. 38, L08502 (10.1029/2011GL047063) DOI
Hodgkins R. 2001. Seasonal evolution of meltwater generation, storage and discharge at a non-temperate glacier in Svalbard. Hydrol. Process. 15, 441–460. (10.1002/hyp.160) DOI
Sharp M, Tranter M, Brown GH, Skidmore M. 1995. Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment. Geology 23, 61–64. (10.1130/0091-7613(1995)023<0061:ROCDAC>2.3.CO;2) DOI
Gibbs MT, Kump LR. 1994. Global chemical erosion during the Last Glacial Maximum and the present: sensitivity to changes in lithology and hydrology. Paleoceanography 9, 529–543. (10.1029/94PA01009) DOI
Dubnick A, Kazemi S, Sharp M, Wadham J, Hawkings J, Beaton A, Lanoil B. 2017. Hydrological controls on glacially exported microbial assemblages. J. Geophys. Res. Biogeosci. 122, 1049–1061. (10.1002/2016JG003685) DOI
Hindshaw RS, Rickli J, Leuthold J, Wadham J, Bourdon B. 2014. Identifying weathering sources and processes in an outlet glacier of the Greenland Ice Sheet using Ca and Sr isotope ratios. Geochim. Cosmochim. Acta 145, 50–71. (10.1016/j.gca.2014.09.016) DOI
Macdonald ML, Wadham JL, Telling J, Skidmore ML. 2018. Glacial erosion liberates lithologic energy sources for microbes and acidity for chemical weathering beneath glaciers and ice sheets. Front. Earth Sci. 6, 212 (10.3389/feart.2018.00212) DOI
Montross SN, Skidmore M, Tranter M, Kivimäki A-L, Parkes RJ. 2013. A microbial driver of chemical weathering in glaciated systems. Geology 41, 215–218. (10.1130/G33572.1) DOI
Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD. 2005. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl. Environ. Microbiol. 71, 6986–6997. (10.1128/AEM.71.11.6986-6997.2005) PubMed DOI PMC
Žárský JD, Kohler TJ, Yde JC, Falteisek L, Lamarche-Gagnon G, Hawkings JR, Hatton JE, Stibal M. 2018. Prokaryotic assemblages in suspended and subglacial sediments within a glacierized catchment on Qeqertarsuaq (Disko Island), west Greenland. FEMS Microbiol. Ecol. 94, fiy100. PubMed
Lamarche-Gagnon G, et al. 2019. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 565, 73–77. (10.1038/s41586-018-0800-0) PubMed DOI
Roubeix V, Becquevort S, Lancelot C. 2008. Influence of bacteria and salinity on diatom biogenic silica dissolution in estuarine systems. Biogeochemistry 88, 47–62. (10.1007/s10533-008-9193-8) DOI
Stevenson EI, Aciego SM, Chutcharavan P, Parkinson IJ, Burton KW, Blakowski MA, Arendt CA. 2016. Insights into combined radiogenic and stable strontium isotopes as tracers for weathering processes in subglacial environments. Chem. Geol. 429, 33–43. (10.1016/j.chemgeo.2016.03.008) DOI
Graly JA, Drever JI, Humphrey NF. 2017. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems. Global Biogeochem. Cycles 31, 709–727. (10.1002/2016GB005425) DOI
Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF. 2005. Natural variations of δ30 Si ratios during progressive basalt weathering, Hawaiian Islands. Geochim. Cosmochim. Acta 69, 4597–4610. (10.1016/j.gca.2005.05.008) DOI
Blackburn T, Siman-Tov S, Coble MA, Stock GM, Brodsky EE, Hallet B. 2019. Composition and formation age of amorphous silica coating glacially polished surfaces. Geology 47, 347–350. (10.1130/G45737.1) DOI
Overeem I, Hudson BD, Syvitski JPM, Mikkelsen AB, Hasholt B, van den Broeke MR, Noël BPY, Morlighem M. 2017. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859 (10.1038/ngeo3046) DOI
Gerringa LJA, Alderkamp A-C, Laan P, Thuróczy C-E, De Baar HJW, Mills MM, van Dijken GL, Haren HV, Arrigo KR. 2012. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): iron biogeochemistry. Deep Sea Res. Part II Top. Stud. Oceanogr. 71–76, 16–31. (10.1016/j.dsr2.2012.03.007) DOI
Yde JC, Knudsen NT, Hasholt B, Mikkelsen AB. 2014. Meltwater chemistry and solute export from a Greenland Ice Sheet catchment, Watson River, West Greenland. J. Hydrol. 519, 2165–2179. (10.1016/j.jhydrol.2014.10.018) DOI
Telling J, et al. 2015. Rock comminution as a source of hydrogen for subglacial ecosystems. Nat. Geosci. 8, 851 (10.1038/ngeo2533) DOI
Sharp M, Brown GH, Tranter M, Willis IC, Hubbard B. 2017. Comments on the use of chemically based mixing models in glacier hydrology. J. Glaciol. 41, 241–246. (10.1017/S0022143000016142) DOI
Tranter M, Raiswell R. 2017. The composition of the englacial and subglacial component in bulk meltwaters draining the Gornergletscher, Switzerland. J. Glaciol. 37, 59–66. (10.1017/S0022143000042805) DOI
Sharp M, Tranter M. 2017. Glacier biogeochemistry. Geochem. Perspect. 6, 173–174. (10.7185/geochempersp.6.2) DOI
Loucaide S, Van Cappellen P, Behrends T. 2008. Dissolution of biogenic silica from land to ocean: role of salinity and pH. Limnol. Oceanogr. 53, 1614–1621. (10.4319/lo.2008.53.4.1614) DOI
Cowton T, Nienow P, Bartholomew I, Sole A, Mair D. 2012. Rapid erosion beneath the Greenland ice sheet. Geology 40, 343–346. (10.1130/G32687.1) DOI
Georg RB, Reynolds BC, Frank M, Halliday AN. 2006. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem. Geol. 235, 95–104. (10.1016/j.chemgeo.2006.06.006) DOI
Ding T, Wan D, Wang C, Zhang F. 2004. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim. Cosmochim. Acta 68, 205–216. (10.1016/S0016-7037(03)00264-3) DOI
Ding TP, Gao JF, Tian SH, Wang HB, Li M. 2011. Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle. Geochim. Cosmochim. Acta 75, 6672–6689. (10.1016/j.gca.2011.07.040) DOI
Hughes HJ, Sondag F, Santos RV, André L, Cardinal D. 2013. The riverine silicon isotope composition of the Amazon Basin. Geochim. Cosmochim. Acta 121, 637–651. (10.1016/j.gca.2013.07.040) DOI
Morrison MA, Benoit G. 2001. Filtration artifacts caused by overloading membrane filters. Environ. Sci. Technol. 35, 3774–3779. (10.1021/es010670k) PubMed DOI
Shiller AM. 2003. Syringe filtration methods for examining dissolved and colloidal trace element distributions in remote field locations. Environ. Sci. Technol. 37, 3953–3957. (10.1021/es0341182) PubMed DOI
Ragueneau O, Savoye N, Del Amo Y, Cotten J, Tardiveau B, Leynaert A. 2005. A new method for the measurement of biogenic silica in suspended matter of coastal waters: using Si: Al ratios to correct for the mineral interference. Cont. Shelf Res. 25, 697–710. (10.1016/j.csr.2004.09.017) DOI
Hughes HJ, Delvigne C, Korntheuer M, de Jong J, André L, Cardinal D. 2011. Controlling the mass bias introduced by anionic and organic matrices in silicon isotopic measurements by MC-ICP-MS. J. Anal. At. Spectrom. 26, 1892 (10.1039/c1ja10110b) DOI
Crompton JW, Flowers GE, Kirste D, Hagedorn B, Sharp MJ. 2015. Clay mineral precipitation and low silica in glacier meltwaters explored through reaction-path modelling. J. Glaciol. 61, 1061–1078. (10.3189/2015JoG15J051) DOI
Wimpenny J, James RH, Burton KW, Gannoun A, Mokadem F, Gíslason SR. 2010. Glacial effects on weathering processes: new insights from the elemental and lithium isotopic composition of West Greenland rivers. Earth Planet. Sci. Lett. 290, 427–437. (10.1016/j.epsl.2009.12.042) DOI
Sun X, et al. 2018. Stable silicon isotopic compositions of the Lena River and its tributaries: implications for silicon delivery to the Arctic Ocean. Geochim. Cosmochim. Acta 241, 120–133. (10.1016/j.gca.2018.08.044) DOI
Cornelis J-T, Weis D, Lavkulich L, Vermeire M-L, Delvaux B, Barling J. 2014. Silicon isotopes record dissolution and re-precipitation of pedogenic clay minerals in a podzolic soil chronosequence. Geoderma 235–236, 19–29. (10.1016/j.geoderma.2014.06.023) DOI
Panizzo VN, Swann GEA, Mackay AW, Vologina E, Alleman L, André L, Pashley VH, Horstwood MSA. 2017. Constraining modern-day silicon cycling in Lake Baikal. Global Biogeochem. Cycles 31, 556–574. (10.1002/2016GB005518) DOI
Hughes HJ, Bouillon S, André L, Cardinal D. 2012. The effects of weathering variability and anthropogenic pressures upon silicon cycling in an intertropical watershed (Tana River, Kenya). Chem. Geol. 308–309, 18–25. (10.1016/j.chemgeo.2012.03.016) DOI
Frings PJ, Clymans W, Fontorbe G, Gray W, Chakrapani GJ, Conley DJ, De La Rocha C. 2015. Silicate weathering in the Ganges alluvial plain. Earth Planet. Sci. Lett. 427, 136–148. (10.1016/j.epsl.2015.06.049) DOI
Pokrovsky OS, Reynolds BC, Prokushkin AS, Schott J, Viers J. 2013. Silicon isotope variations in Central Siberian rivers during basalt weathering in permafrost-dominated larch forests. Chem. Geol. 355, 103–116. (10.1016/j.chemgeo.2013.07.016) DOI
Fontorbe G, De La Rocha CL, Chapman HJ, Bickle MJ. 2013. The silicon isotopic composition of the Ganges and its tributaries. Earth Planet. Sci. Lett. 381, 21–30. (10.1016/j.epsl.2013.08.026) DOI
Cockerton HE, Street-Perrott FA, Leng MJ, Barker PA, Horstwood MSA, Pashley V. 2013. Stable-isotope (H, O, and Si) evidence for seasonal variations in hydrology and Si cycling from modern waters in the Nile Basin: implications for interpreting the Quaternary record. Quat. Sci. Rev. 66, 4–21. (10.1016/j.quascirev.2012.12.005) DOI
Engström E, Rodushkin I, Ingri J, Baxter DC, Ecke F, Österlund H, Öhlander B. 2010. Temporal isotopic variations of dissolved silicon in a pristine boreal river. Chem. Geol. 271, 142–152. (10.1016/j.chemgeo.2010.01.005) DOI
Kohler TJ, et al. 2017. Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland Ice Sheet. Geophys. Res. Lett. 44, 6209–6217. (10.1002/2017GL073219) DOI
Savage PS, Armytage RMG, Georg RB, Halliday AN. 2014. High temperature silicon isotope geochemistry. Lithos 190, 500–519. (10.1016/j.lithos.2014.01.003) DOI
Savage PS, Georg RB, Armytage RMG, Williams HM, Halliday AN. 2010. Silicon isotope homogeneity in the mantle. Earth Planet. Sci. Lett. 295, 139–146. (10.1016/j.epsl.2010.03.035) DOI
Nienow P. 2014. The plumbing of Greenland's ice. Nature 514, 38 (10.1038/514038a) PubMed DOI
Bendixen M, et al. 2017. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550, 101–104. (10.1038/nature23873) PubMed DOI
Mavromatis V, Rinder T, Prokushkin AS, Pokrovsky OS, Korets MA, Chmeleff J, Oelkers EH. 2016. The effect of permafrost, vegetation, and lithology on Mg and Si isotope composition of the Yenisey River and its tributaries at the end of the spring flood. Geochim. Cosmochim. Acta 191, 32–46. (10.1016/j.gca.2016.07.003) DOI
Opfergelt S, Delvaux B, André L, Cardinal D. 2008. Plant silicon isotopic signature might reflect soil weathering degree. Biogeochemistry 91, 163–175. (10.1007/s10533-008-9278-4) DOI
Henderson JH, Syers JK, Jackson ML. 1970. Quartz dissolution as influenced by pH and the presence of a disturbed surface layer. Isr. J. Chem. 8, 357–372. (10.1002/ijch.197000042) DOI
Lin IJ, Somasundaran P. 1972. Alterations in properties of samples during their preparation by grinding. Powder Technol. 6, 171–179. (10.1016/0032-5910(72)80074-3) DOI
Sánchez-Soto PJ, Carmen Jiménez de Haro M, Pérez-Maqueda LA, Varona I, Pérez-Rodríguez JL. 2000. Effects of dry grinding on the structural changes of kaolinite powders. J. Am. Ceram. Soc. 83, 1649–1657. (10.1111/j.1151-2916.2000.tb01444.x) DOI
Schofield O, et al. 2015. Penguin biogeography along the West Antarctic Peninsula: testing the canyon hypothesis with Palmer LTER observations. Oceanography 26, 204–206. (10.5670/oceanog.2013.63) DOI
Hopwood MJ, Carroll D, Browning TJ, Meire L, Mortensen J, Krisch S, Achterberg EP. 2018. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256 (10.1038/s41467-018-05488-8) PubMed DOI PMC
Juul-Pedersen T, Arendt KE, Mortensen J, Blicher ME, Søgaard DH, Rysgaard S. 2015. Seasonal and interannual phytoplankton production in a sub-Arctic tidewater outlet glacier fjord, SW Greenland. Mar. Ecol. Prog. Ser. 524, 27–38. (10.3354/meps11174) DOI
Annett AL, Skiba M, Henley SF, Venables HJ, Meredith MP, Statham PJ, Ganeshram RS. 2015. Comparative roles of upwelling and glacial iron sources in Ryder Bay, coastal western Antarctic Peninsula. Mar. Chem. 176, 21–33. (10.1016/j.marchem.2015.06.017) DOI
Lund-Hansen LC, Hawes I, Holtegaard Nielsen M, Dahllöf I, Sorrell BK. 2018. Summer meltwater and spring sea ice primary production, light climate and nutrients in an Arctic estuary, Kangerlussuaq, west Greenland. Arct. Antarct. Alp. Res. 50, S100025 (10.1080/15230430.2017.1414468) DOI
Henley SF, Tuerena RE, Annett AL, Fallick AE, Meredith MP, Venables HJ, Clarke A, Ganeshram RS. 2017. Macronutrient supply, uptake and recycling in the coastal ocean of the west Antarctic Peninsula. Deep Sea Res. Part II Top. Stud. Oceanogr. 139, 58–76. (10.1016/j.dsr2.2016.10.003) DOI
Sherrell RM, Annett AL, Fitzsimmons JN, Roccanova VJ, Meredith MP. 2018. A ‘shallow bathtub ring’ of local sedimentary iron input maintains the Palmer Deep biological hotspot on the West Antarctic Peninsula shelf. Phil. Trans. R. Soc. A 376, 20170171 (10.1098/rsta.2017.0171) PubMed DOI PMC
Wehrmann LM, Formolo MJ, Owens JD, Raiswell R, Ferdelman TG, Riedinger N, Lyons TW. 2014. Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West Spitsbergen, Svalbard): evidence for a benthic recycling-transport mechanism. Geochim. Cosmochim. Acta 141, 628–655. (10.1016/j.gca.2014.06.007) DOI
Kanna N, Sugiyama S, Ohashi Y, Sakakibara D, Fukamachi Y, Nomura D. 2018. Upwelling of macronutrients and dissolved inorganic carbon by a subglacial freshwater driven plume in Bowdoin Fjord, Northwestern Greenland. J. Geophys. Res. Biogeosci. 123, 1666–1682. (10.1029/2017JG004248) DOI
Jeandel C, Oelkers EH. 2015. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles. Chem. Geol. 395, 50–66. (10.1016/j.chemgeo.2014.12.001) DOI
Hopwood MJ, Connelly DP, Arendt KE, Juul-Pedersen T, Stinchcombe MC, Meire L, Esposito M, Krishna R. 2016. Seasonal changes in Fe along a glaciated Greenlandic fjord. Front. Earth Sci. 4, 15 (10.3389/feart.2016.00015) DOI
Sun X, Olofsson M, Andersson PS, Fry B, Legrand C, Humborg C, Mörth C-M. 2014. Effects of growth and dissolution on the fractionation of silicon isotopes by estuarine diatoms. Geochim. Cosmochim. Acta 130, 156–166. (10.1016/j.gca.2014.01.024) DOI
Hendry KR, et al. The biogeochemical impact of glacial meltwater from Southwest Greenland. Prog. Oceanogr. 176, 102126 (10.1016/j.pocean.2019.102126) DOI
Frajka-Williams E, Rhines PB. 2010. Physical controls and interannual variability of the Labrador Sea spring phytoplankton bloom in distinct regions. Deep Sea Res. Part I Oceanogr. Res. Pap. 57, 541–552. (10.1016/j.dsr.2010.01.003) DOI
Oliver H, et al. 2018. Exploring the potential impact of Greenland meltwater on stratification, photosynthetically active radiation, and primary production in the Labrador Sea. J. Geophys. Res. Oceans 123, 2570–2591. (10.1002/2018JC013802) DOI
Dickson R, Rudels B, Dye S, Karcher M, Meincke J, Yashayaev I. 2007. Current estimates of freshwater flux through Arctic and subarctic seas. Prog. Oceanogr. 73, 210–230. (10.1016/j.pocean.2006.12.003) DOI
Myers PG, Donnelly C, Ribergaard MH. 2009. Structure and variability of the West Greenland Current in summer derived from 6 repeat standard sections. Prog. Oceanogr. 80, 93–112. (10.1016/j.pocean.2008.12.003) DOI
De La Rocha CL, Brzezinski MA, DeNiro MJ, Shemesh A. 1998. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680 (10.1038/27174) DOI
Beucher CP, Brzezinski MA, Crosta X. 2007. Silicic acid dynamics in the glacial sub-Antarctic: implications for the silicic acid leakage hypothesis. Global Biogeochem. Cycles 21, GB3015 (10.1029/2006GB002746) DOI
Froelich PN, Blanc V, Mortlock RA, Chillrud SN. 1992. River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans. Paleoceanography 7, 739–767. (10.1029/92PA02090) DOI
Milner AM, et al. 2017. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778. (10.1073/pnas.1619807114) PubMed DOI PMC
Bronselaer B, Winton M, Griffies SM, Hurlin WJ, Rodgers KB, Sergienko OV, Stouffer RJ, Russell JL. 2018. Change in future climate due to Antarctic meltwater. Nature 564, 53–58. (10.1038/s41586-018-0712-z) PubMed DOI
Insights into silicon cycling from ice sheet to coastal ocean from isotope geochemistry
Patterns in Microbial Assemblages Exported From the Meltwater of Arctic and Sub-Arctic Glaciers
figshare
10.6084/m9.figshare.c.4591640