• This record comes from PubMed

The silicon cycle impacted by past ice sheets

. 2018 Aug 10 ; 9 (1) : 3210. [epub] 20180810

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
NE/I008845/1 Natural Environment Research Council (NERC) - International
NE/I008845/1 Natural Environment Research Council (NERC) - International
NE/K008536/1 Natural Environment Research Council (NERC) - International
ERC-2015-Stg - 678371_ICY-LAB EC | European Research Council (ERC) - International
UF120084 Royal Society - International
Leverhulme Research Fellowship Leverhulme Trust - International
204069 Přírodovědecká Fakulta, Univerzita Karlova (Faculty of Science, Charles University) - International
15-17346Y Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International

Links

PubMed 30097566
PubMed Central PMC6086862
DOI 10.1038/s41467-018-05689-1
PII: 10.1038/s41467-018-05689-1
Knihovny.cz E-resources

Globally averaged riverine silicon (Si) concentrations and isotope composition (δ30Si) may be affected by the expansion and retreat of large ice sheets during glacial-interglacial cycles. Here we provide evidence of this based on the δ30Si composition of meltwater runoff from a Greenland Ice Sheet catchment. Glacier runoff has the lightest δ30Si measured in running waters (-0.25 ± 0.12‰), significantly lower than nonglacial rivers (1.25 ± 0.68‰), such that the overall decline in glacial runoff since the Last Glacial Maximum (LGM) may explain 0.06-0.17‰ of the observed ocean δ30Si rise (0.5-1.0‰). A marine sediment core proximal to Iceland provides further evidence for transient, low-δ30Si meltwater pulses during glacial termination. Diatom Si uptake during the LGM was likely similar to present day due to an expanded Si inventory, which raises the possibility of a feedback between ice sheet expansion, enhanced Si export to the ocean and reduced CO2 concentration in the atmosphere, because of the importance of diatoms in the biological carbon pump.

See more in PubMed

Treguer PJ, De La Rocha CL. The world ocean silica cycle. Annu. Rev. Mar. Sci. 2013;5:477–501. doi: 10.1146/annurev-marine-121211-172346. PubMed DOI

Nelson DM, et al. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cy. 1995;9:359–372. doi: 10.1029/95GB01070. DOI

Egge JK, Aksnes DL. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Prog. Ser. 1992;83:281–289. doi: 10.3354/meps083281. DOI

Frings PJ, et al. The continental Si cycle and its impact on the ocean Si isotope budget. Chem. Geol. 2016;425:12–36. doi: 10.1016/j.chemgeo.2016.01.020. DOI

Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF. Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochim. Cosmochim. Acta. 2005;69:4597–4610. doi: 10.1016/j.gca.2005.05.008. DOI

Hendry KR, Robinson LF. The relationship between silicon isotope fractionation in sponges and silicic acid concentration: modern and core-top studies of biogenic opal. Geochim. Cosmochim. Acta. 2012;81:1–12. doi: 10.1016/j.gca.2011.12.010. DOI

De La Rocha CL, Brzezinski MA, DeNiro MJ, Shemesh A. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature. 1998;395:680–683. doi: 10.1038/27174. DOI

Hendry KR, Robinson LF, McManus JF, Hays JD. Silicon isotopes indicate enhanced carbon export efficiency in the North Atlantic during deglaciation. Nat. Commun. 2014;5:3107. doi: 10.1038/ncomms4107. PubMed DOI

Georg RB, Reynolds BC, Frank M, Halliday AN. Mechanisms controlling the silicon isotopic compositions of river waters. Earth Planet. Sci. Lett. 2006;249:290–306. doi: 10.1016/j.epsl.2006.07.006. DOI

Horn MG, Beucher CP, Robinson RS, Brzezinski MA. Southern ocean nitrogen and silicon dynamics during the last deglaciation. Earth Planet. Sci. Lett. 2011;310:334–339. doi: 10.1016/j.epsl.2011.08.016. DOI

Beucher CP, Brzezinski MA, Crosta X. Silicic acid dynamics in the glacial sub-Antarctic: implications for the silicic acid leakage hypothesis. Global Biogeochem. Cy. 2007;21:GB3015. doi: 10.1029/2006GB002746. DOI

Opfergelt S, et al. Riverine silicon isotope variations in glaciated basaltic terrains: implications for the Si delivery to the ocean over glacial-interglacial intervals. Earth Planet. Sci. Lett. 2013;369:211–219. doi: 10.1016/j.epsl.2013.03.025. DOI

Georg RB, et al. Silicon isotope variations accompanying basalt weathering in Iceland. Earth Planet. Sci. Lett. 2007;261:476–490. doi: 10.1016/j.epsl.2007.07.004. DOI

Hawkings JR, et al. Ice sheets as a missing source of silica to the polar oceans. Nat. Commun. 2017;8:14198. doi: 10.1038/ncomms14198. PubMed DOI PMC

Jones IW, et al. Modelled glacial and non-glacial HCO3(-), Si and Ge fluxes since the LGM: little potential for impact on atmospheric CO2 concentrations and a potential proxy of continental chemical erosion, the marine Ge/Si ratio. Glob. Planet. Chang. 2002;33:139–153. doi: 10.1016/S0921-8181(02)00067-X. DOI

Vance D, Teagle DAH, Foster GL. Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature. 2009;458:493–496. doi: 10.1038/nature07828. PubMed DOI

Ehlers, J., Gibbard, P. L. & Hughes, P. D. Quaternary Glaciations—Extent and Chronology: A Closer Look (Elsevier, Amsterdam, 2011).

Knudson KP, Hendy IL. Climatic influences on sediment deposition and turbidite frequency in the Nitinat Fan, British Columbia. Mar. Geol. 2009;262:29–38. doi: 10.1016/j.margeo.2009.03.002. DOI

Jaeger JM, Koppes MN. The role of the cryosphere in source-to-sink systems. Earth-Sci. Rev. 2016;153:43–76. doi: 10.1016/j.earscirev.2015.09.011. DOI

Deschamps P, et al. Ice-sheet collapse and sea-level rise at the Bolling warming 14,600 years ago. Nature. 2012;483:559–564. doi: 10.1038/nature10902. PubMed DOI

Peltier WR, Fairbanks RG. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 2006;25:3322–3337. doi: 10.1016/j.quascirev.2006.04.010. DOI

Hawkings JR, et al. The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet. Geochem. Perspect. Lett. 2015;1:94–104. doi: 10.7185/geochemlet.1510. DOI

Wadham J, et al. The potential role of the Antarctic Ice Sheet in global biogeochemical cycles. Earth Env. Sci. T. R. Soc. 2013;104:55–67.

Meire L, et al. High export of dissolved silica from the Greenland Ice Sheet. Geophys. Res. Lett. 2016;43:9173–9182. doi: 10.1002/2016GL070191. DOI

Arrigo KR, et al. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett. 2017;44:6278–6285. doi: 10.1002/2017GL073583. DOI

Cermeno P, et al. Continental erosion and the Cenozoic rise of marine diatoms. Proc. Natl. Acad. Sci. USA. 2015;112:4239–4244. doi: 10.1073/pnas.1412883112. PubMed DOI PMC

De La Rocha CL, Bickle MJ. Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Mar. Geol. 2005;217:267–282. doi: 10.1016/j.margeo.2004.11.016. DOI

Georg RB, West AJ, Basu AR, Halliday AN. Silicon fluxes and isotope composition of direct groundwater discharge into the Bay of Bengal and the effect on the global ocean silicon isotope budget. Earth Planet. Sci. Lett. 2009;283:67–74. doi: 10.1016/j.epsl.2009.03.041. DOI

Jeandel C, Oelkers EH. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles. Chem. Geol. 2015;395:50–66. doi: 10.1016/j.chemgeo.2014.12.001. DOI

Cowton T, et al. Rapid erosion beneath the Greenland ice sheet. Geology. 2012;40:343–346. doi: 10.1130/G32687.1. DOI

Bouysse, P. Geological Map of the World at 1: 35 000 000, 3rd edn (CCGM-CGMW, Paris, France, 2014).

Bartholomew I, et al. Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophys. Res. Lett. 2011;38:L08502. doi: 10.1029/2011GL047063. DOI

Sarmiento JL, Toggweiler JR. A new model for the role of the oceans in determining atmospheric PCO2. Nature. 1984;308:621. doi: 10.1038/308621a0. DOI

Peltier WR, Argus DF, Drummond R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res.—Sol. Ea. 2015;120:450–487. doi: 10.1002/2014JB011176. DOI

Thornalley DJR, Elderfield H, McCave IN. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years. Paleoceanography. 2010;25:PA1211.

Lin IJ, Somasund P. Alterations in properties of samples during their preparation by grinding. Powder Technol. 1972;6:171–179. doi: 10.1016/0032-5910(72)80074-3. DOI

Sánchez-Soto PJ, et al. Effects of dry grinding on the structural changes of kaolinite powders. J. Am. Ceram. Soc. 2000;83:1649–1657. doi: 10.1111/j.1151-2916.2000.tb01444.x. DOI

Hellmann R, et al. Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: a study based on the nanometer-scale chemistry of fluid-silicate interfaces. Chem. Geol. 2012;294:203–216. doi: 10.1016/j.chemgeo.2011.12.002. DOI

Ruiz-Agudo E, Putnis CV, Putnis A. Coupled dissolution and precipitation at mineral-fluid interfaces. Chem. Geol. 2014;383:132–146. doi: 10.1016/j.chemgeo.2014.06.007. DOI

Casey WH, et al. Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals. Nature. 1993;366:253–256. doi: 10.1038/366253a0. DOI

Chemtob SM, et al. Silicon isotope systematics of acidic weathering of fresh basalts, Kilauea Volcano, Hawai’i. Geochim. Cosmochim. Acta. 2015;169:63–81. doi: 10.1016/j.gca.2015.07.026. DOI

Crompton JW, et al. Clay mineral precipitation and low silica in glacier meltwaters explored through reaction-path modelling. J. Glaciol. 2015;61:1061–1078. doi: 10.3189/2015JoG15J051. DOI

Georg RB, Zhu C, Reynolds BC, Halliday AN. Stable silicon isotopes of groundwater, feldspars, and clay coatings in the Navajo Sandstone aquifer, Black Mesa, Arizona, USA. Geochim. Cosmochim. Acta. 2009;73:2229–2241. doi: 10.1016/j.gca.2009.02.005. DOI

Hawkings J, et al. The Greenland Ice Sheet as a hotspot of phosphorus weathering and export in the Arctic. Glob. Biogeochem. Cy. 2016;30:191–210. doi: 10.1002/2015GB005237. DOI

Overeem I, et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 2017;10:859–863. doi: 10.1038/ngeo3046. DOI

Chandler DM, et al. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 2013;6:195–198. doi: 10.1038/ngeo1737. DOI

Chu VW. Greenland ice sheet hydrology: a review. Prog. Phys. Geogr. 2014;38:19–54. doi: 10.1177/0309133313507075. DOI

Tedstone AJ, et al. Greenland ice sheet motion insensitive to exceptional meltwater forcing. Proc. Natl. Acad. Sci. USA. 2013;110:19719–19724. doi: 10.1073/pnas.1315843110. PubMed DOI PMC

Dove PM, Han N, Wallace AF, De Yoreo JJ. Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs. Proc. Natl. Acad. Sci. USA. 2008;105:9903–9908. doi: 10.1073/pnas.0803798105. PubMed DOI PMC

Icenhower JP, Dove PM. The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength. Geochim. Cosmochim. Acta. 2000;64:4193–4203. doi: 10.1016/S0016-7037(00)00487-7. DOI

Kato K, Kitano Y. Solubility and dissolution rate of amorphous silica in distilled and sea water at 20°C. J. Oceanogr. Soc. Jpn. 1968;24:147–152. doi: 10.5928/kaiyou1942.24.147. DOI

Yool A, Tyrrell T. Role of diatoms in regulating the ocean’s silicon cycle. Global Biogeochem. Cy. 2003;17:1103. doi: 10.1029/2002GB002018. DOI

Durkin CA, et al. Silicic acid supplied to coastal diatom communities influences cellular silicification and the potential export of carbon. Limnol. Oceanogr. 2013;58:1707–1726. doi: 10.4319/lo.2013.58.5.1707. DOI

Dugdale RC, Wilkerson FP. Silicate regulation of new production in the equatorial Pacific upwelling. Nature. 1998;391:270–273. doi: 10.1038/34630. DOI

Dugdale RC, Wilkerson FP, Minas HJ. The role of a silicate pump in driving new production. Deep-Sea Res. Pt. I. 1995;42:697–719. doi: 10.1016/0967-0637(95)00015-X. DOI

Gregoire LJ, Payne AJ, Valdes PJ. Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature. 2012;487:219. doi: 10.1038/nature11257. PubMed DOI

Golledge NR, et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 2014;5:5107. doi: 10.1038/ncomms6107. PubMed DOI

Patton H, et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 2017;169:148–172. doi: 10.1016/j.quascirev.2017.05.019. DOI

Norðdahl H, Ingólfsson Oacute. Collapse of the Icelandic ice sheet controlled by sea-level rise? arktos. 2015;1:1–18. doi: 10.1007/s41063-015-0020-x. DOI

Thornalley DJR, et al. The deglacial evolution of North Atlantic deep convection. Science. 2011;331:202–205. doi: 10.1126/science.1196812. PubMed DOI

Thornalley DJR, et al. A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period. Science. 2015;349:706–710. doi: 10.1126/science.aaa9554. PubMed DOI

Thornalley DJR, Elderfield H, McCave IN. Reconstructing North Atlantic deglacial surface hydrography and its link to the Atlantic overturning circulation. Glob. Planet. Chang. 2011;79:163–175. doi: 10.1016/j.gloplacha.2010.06.003. DOI

Chen T, et al. Ocean mixing and ice-sheet control of seawater 234U238U during the last deglaciation. Science. 2016;354:626–629. doi: 10.1126/science.aag1015. PubMed DOI

Hawkings JR, et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 2014;5:3929. doi: 10.1038/ncomms4929. PubMed DOI PMC

Sole A, et al. Winter motion mediates dynamic response of the Greenland Ice Sheet to warmer summers. Geophys. Res. Lett. 2013;40:3940–3944. doi: 10.1002/grl.50764. DOI

DeMaster DJ. The supply and accumulation of silica in the marine-environment. Geochim. Cosmochim. Acta. 1981;45:1715–1732. doi: 10.1016/0016-7037(81)90006-5. DOI

Clymans W, et al. Amorphous silica analysis in terrestrial runoff samples. Geoderma. 2011;167−68:228–235. doi: 10.1016/j.geoderma.2011.07.033. DOI

Sauer D, et al. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry. 2006;80:89–108. doi: 10.1007/s10533-005-5879-3. DOI

Georg RB, Reynolds BC, Frank M, Halliday AN. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem. Geol. 2006;235:95–104. doi: 10.1016/j.chemgeo.2006.06.006. DOI

Telling J, et al. Rock comminution as a source of hydrogen for subglacial ecosystems. Nat. Geosci. 2015;8:851–855. doi: 10.1038/ngeo2533. DOI

Hughes HJ, et al. Controlling the mass bias introduced by anionic and organic matrices in silicon isotopic measurements by MC-ICP-MS. J. Anal. At. Spectrom. 2011;26:1892–1896. doi: 10.1039/c1ja10110b. DOI

Cardinal D, et al. Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J. Anal. At. Spectrom. 2003;18:213–218. doi: 10.1039/b210109b. DOI

Reynolds BC, et al. An inter-laboratory comparison of Si isotope reference materials. J. Anal. At. Spectrom. 2007;22:561–568. doi: 10.1039/B616755A. DOI

Hendry KR, Rickaby REM, Allen CS. Changes in micronutrient supply to the surface Southern Ocean (Atlantic sector) across the glacial termination. Geochem. Geophy. Geosys. 2011;12:QO9007. doi: 10.1029/2011GC003691. DOI

Panizzo VN, et al. Insights into the transfer of silicon isotopes into the sediment record. Biogeosciences. 2016;13:147–157. doi: 10.5194/bg-13-147-2016. DOI

Ivanovic RF, et al. Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1)—PMIP4 Core experiment design and boundary conditions. Geosci. Model Dev. 2016;9:2563–2587. doi: 10.5194/gmd-9-2563-2016. DOI

Gregoire LJ, Valdes PJ, Payne AJ, Kahana R. Optimal tuning of a GCM using modern and glacial constraints. Clim. Dynam. 2011;37:705–719. doi: 10.1007/s00382-010-0934-8. DOI

Bliss A, Hock R, Radić V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res.—Earth. 2014;119:717–730. doi: 10.1002/2013JF002931. DOI

Dai A, Trenberth KE. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeorol. 2002;3:660–687. doi: 10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2. DOI

Petit JR, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999;399:429–436. doi: 10.1038/20859. DOI

Durr HH, et al. Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosciences. 2011;8:597–620. doi: 10.5194/bg-8-597-2011. DOI

Conley DJ. Riverine contribution of biogenic silica to the oceanic silica budget. Limnol. Oceanogr. 1997;42:774–777. doi: 10.4319/lo.1997.42.4.0774. DOI

Lawson EC, et al. Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosciences. 2014;11:4015–4028. doi: 10.5194/bg-11-4015-2014. DOI

Palmer S, Shepherd A, Nienow P, Joughin I. Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water. Earth Planet. Sci. Lett. 2011;302:423–428. doi: 10.1016/j.epsl.2010.12.037. DOI

Andersen KK, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature. 2004;431:147–151. doi: 10.1038/nature02805. PubMed DOI

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.K., Zweng, M.M., Reagan, J.R., Johnson, D.R. (2014) World Ocean Atlas 2013, Volume 4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate). S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 76, 25 pp

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...