The silicon cycle impacted by past ice sheets
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NE/I008845/1
Natural Environment Research Council (NERC) - International
NE/I008845/1
Natural Environment Research Council (NERC) - International
NE/K008536/1
Natural Environment Research Council (NERC) - International
ERC-2015-Stg - 678371_ICY-LAB
EC | European Research Council (ERC) - International
UF120084
Royal Society - International
Leverhulme Research Fellowship
Leverhulme Trust - International
204069
Přírodovědecká Fakulta, Univerzita Karlova (Faculty of Science, Charles University) - International
15-17346Y
Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
PubMed
30097566
PubMed Central
PMC6086862
DOI
10.1038/s41467-018-05689-1
PII: 10.1038/s41467-018-05689-1
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Globally averaged riverine silicon (Si) concentrations and isotope composition (δ30Si) may be affected by the expansion and retreat of large ice sheets during glacial-interglacial cycles. Here we provide evidence of this based on the δ30Si composition of meltwater runoff from a Greenland Ice Sheet catchment. Glacier runoff has the lightest δ30Si measured in running waters (-0.25 ± 0.12‰), significantly lower than nonglacial rivers (1.25 ± 0.68‰), such that the overall decline in glacial runoff since the Last Glacial Maximum (LGM) may explain 0.06-0.17‰ of the observed ocean δ30Si rise (0.5-1.0‰). A marine sediment core proximal to Iceland provides further evidence for transient, low-δ30Si meltwater pulses during glacial termination. Diatom Si uptake during the LGM was likely similar to present day due to an expanded Si inventory, which raises the possibility of a feedback between ice sheet expansion, enhanced Si export to the ocean and reduced CO2 concentration in the atmosphere, because of the importance of diatoms in the biological carbon pump.
Bristol Glaciology Centre School of Geographical Sciences University Road Bristol BS8 1SS UK
Department of Ecology Charles University Viničná 7 12844 Prague 2 Czech Republic
Earth and Planetary Sciences University of California Santa Cruz CA 95064 USA
Institute of Geochemistry and Petrology ETH Zurich Clausiusstrasse 25 8092 Zürich Switzerland
School of Earth and Environment University of Leeds Leeds LS2 9JT UK
School of Earth and Ocean Sciences Cardiff University Main Building Park Place Cardiff CF10 3AT UK
School of Earth Sciences University of Bristol Bristol BS8 1RJ UK
See more in PubMed
Treguer PJ, De La Rocha CL. The world ocean silica cycle. Annu. Rev. Mar. Sci. 2013;5:477–501. doi: 10.1146/annurev-marine-121211-172346. PubMed DOI
Nelson DM, et al. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cy. 1995;9:359–372. doi: 10.1029/95GB01070. DOI
Egge JK, Aksnes DL. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Prog. Ser. 1992;83:281–289. doi: 10.3354/meps083281. DOI
Frings PJ, et al. The continental Si cycle and its impact on the ocean Si isotope budget. Chem. Geol. 2016;425:12–36. doi: 10.1016/j.chemgeo.2016.01.020. DOI
Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF. Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochim. Cosmochim. Acta. 2005;69:4597–4610. doi: 10.1016/j.gca.2005.05.008. DOI
Hendry KR, Robinson LF. The relationship between silicon isotope fractionation in sponges and silicic acid concentration: modern and core-top studies of biogenic opal. Geochim. Cosmochim. Acta. 2012;81:1–12. doi: 10.1016/j.gca.2011.12.010. DOI
De La Rocha CL, Brzezinski MA, DeNiro MJ, Shemesh A. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature. 1998;395:680–683. doi: 10.1038/27174. DOI
Hendry KR, Robinson LF, McManus JF, Hays JD. Silicon isotopes indicate enhanced carbon export efficiency in the North Atlantic during deglaciation. Nat. Commun. 2014;5:3107. doi: 10.1038/ncomms4107. PubMed DOI
Georg RB, Reynolds BC, Frank M, Halliday AN. Mechanisms controlling the silicon isotopic compositions of river waters. Earth Planet. Sci. Lett. 2006;249:290–306. doi: 10.1016/j.epsl.2006.07.006. DOI
Horn MG, Beucher CP, Robinson RS, Brzezinski MA. Southern ocean nitrogen and silicon dynamics during the last deglaciation. Earth Planet. Sci. Lett. 2011;310:334–339. doi: 10.1016/j.epsl.2011.08.016. DOI
Beucher CP, Brzezinski MA, Crosta X. Silicic acid dynamics in the glacial sub-Antarctic: implications for the silicic acid leakage hypothesis. Global Biogeochem. Cy. 2007;21:GB3015. doi: 10.1029/2006GB002746. DOI
Opfergelt S, et al. Riverine silicon isotope variations in glaciated basaltic terrains: implications for the Si delivery to the ocean over glacial-interglacial intervals. Earth Planet. Sci. Lett. 2013;369:211–219. doi: 10.1016/j.epsl.2013.03.025. DOI
Georg RB, et al. Silicon isotope variations accompanying basalt weathering in Iceland. Earth Planet. Sci. Lett. 2007;261:476–490. doi: 10.1016/j.epsl.2007.07.004. DOI
Hawkings JR, et al. Ice sheets as a missing source of silica to the polar oceans. Nat. Commun. 2017;8:14198. doi: 10.1038/ncomms14198. PubMed DOI PMC
Jones IW, et al. Modelled glacial and non-glacial HCO3(-), Si and Ge fluxes since the LGM: little potential for impact on atmospheric CO2 concentrations and a potential proxy of continental chemical erosion, the marine Ge/Si ratio. Glob. Planet. Chang. 2002;33:139–153. doi: 10.1016/S0921-8181(02)00067-X. DOI
Vance D, Teagle DAH, Foster GL. Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature. 2009;458:493–496. doi: 10.1038/nature07828. PubMed DOI
Ehlers, J., Gibbard, P. L. & Hughes, P. D. Quaternary Glaciations—Extent and Chronology: A Closer Look (Elsevier, Amsterdam, 2011).
Knudson KP, Hendy IL. Climatic influences on sediment deposition and turbidite frequency in the Nitinat Fan, British Columbia. Mar. Geol. 2009;262:29–38. doi: 10.1016/j.margeo.2009.03.002. DOI
Jaeger JM, Koppes MN. The role of the cryosphere in source-to-sink systems. Earth-Sci. Rev. 2016;153:43–76. doi: 10.1016/j.earscirev.2015.09.011. DOI
Deschamps P, et al. Ice-sheet collapse and sea-level rise at the Bolling warming 14,600 years ago. Nature. 2012;483:559–564. doi: 10.1038/nature10902. PubMed DOI
Peltier WR, Fairbanks RG. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 2006;25:3322–3337. doi: 10.1016/j.quascirev.2006.04.010. DOI
Hawkings JR, et al. The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet. Geochem. Perspect. Lett. 2015;1:94–104. doi: 10.7185/geochemlet.1510. DOI
Wadham J, et al. The potential role of the Antarctic Ice Sheet in global biogeochemical cycles. Earth Env. Sci. T. R. Soc. 2013;104:55–67.
Meire L, et al. High export of dissolved silica from the Greenland Ice Sheet. Geophys. Res. Lett. 2016;43:9173–9182. doi: 10.1002/2016GL070191. DOI
Arrigo KR, et al. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett. 2017;44:6278–6285. doi: 10.1002/2017GL073583. DOI
Cermeno P, et al. Continental erosion and the Cenozoic rise of marine diatoms. Proc. Natl. Acad. Sci. USA. 2015;112:4239–4244. doi: 10.1073/pnas.1412883112. PubMed DOI PMC
De La Rocha CL, Bickle MJ. Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Mar. Geol. 2005;217:267–282. doi: 10.1016/j.margeo.2004.11.016. DOI
Georg RB, West AJ, Basu AR, Halliday AN. Silicon fluxes and isotope composition of direct groundwater discharge into the Bay of Bengal and the effect on the global ocean silicon isotope budget. Earth Planet. Sci. Lett. 2009;283:67–74. doi: 10.1016/j.epsl.2009.03.041. DOI
Jeandel C, Oelkers EH. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles. Chem. Geol. 2015;395:50–66. doi: 10.1016/j.chemgeo.2014.12.001. DOI
Cowton T, et al. Rapid erosion beneath the Greenland ice sheet. Geology. 2012;40:343–346. doi: 10.1130/G32687.1. DOI
Bouysse, P. Geological Map of the World at 1: 35 000 000, 3rd edn (CCGM-CGMW, Paris, France, 2014).
Bartholomew I, et al. Supraglacial forcing of subglacial drainage in the ablation zone of the Greenland ice sheet. Geophys. Res. Lett. 2011;38:L08502. doi: 10.1029/2011GL047063. DOI
Sarmiento JL, Toggweiler JR. A new model for the role of the oceans in determining atmospheric PCO2. Nature. 1984;308:621. doi: 10.1038/308621a0. DOI
Peltier WR, Argus DF, Drummond R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res.—Sol. Ea. 2015;120:450–487. doi: 10.1002/2014JB011176. DOI
Thornalley DJR, Elderfield H, McCave IN. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years. Paleoceanography. 2010;25:PA1211.
Lin IJ, Somasund P. Alterations in properties of samples during their preparation by grinding. Powder Technol. 1972;6:171–179. doi: 10.1016/0032-5910(72)80074-3. DOI
Sánchez-Soto PJ, et al. Effects of dry grinding on the structural changes of kaolinite powders. J. Am. Ceram. Soc. 2000;83:1649–1657. doi: 10.1111/j.1151-2916.2000.tb01444.x. DOI
Hellmann R, et al. Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: a study based on the nanometer-scale chemistry of fluid-silicate interfaces. Chem. Geol. 2012;294:203–216. doi: 10.1016/j.chemgeo.2011.12.002. DOI
Ruiz-Agudo E, Putnis CV, Putnis A. Coupled dissolution and precipitation at mineral-fluid interfaces. Chem. Geol. 2014;383:132–146. doi: 10.1016/j.chemgeo.2014.06.007. DOI
Casey WH, et al. Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals. Nature. 1993;366:253–256. doi: 10.1038/366253a0. DOI
Chemtob SM, et al. Silicon isotope systematics of acidic weathering of fresh basalts, Kilauea Volcano, Hawai’i. Geochim. Cosmochim. Acta. 2015;169:63–81. doi: 10.1016/j.gca.2015.07.026. DOI
Crompton JW, et al. Clay mineral precipitation and low silica in glacier meltwaters explored through reaction-path modelling. J. Glaciol. 2015;61:1061–1078. doi: 10.3189/2015JoG15J051. DOI
Georg RB, Zhu C, Reynolds BC, Halliday AN. Stable silicon isotopes of groundwater, feldspars, and clay coatings in the Navajo Sandstone aquifer, Black Mesa, Arizona, USA. Geochim. Cosmochim. Acta. 2009;73:2229–2241. doi: 10.1016/j.gca.2009.02.005. DOI
Hawkings J, et al. The Greenland Ice Sheet as a hotspot of phosphorus weathering and export in the Arctic. Glob. Biogeochem. Cy. 2016;30:191–210. doi: 10.1002/2015GB005237. DOI
Overeem I, et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 2017;10:859–863. doi: 10.1038/ngeo3046. DOI
Chandler DM, et al. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 2013;6:195–198. doi: 10.1038/ngeo1737. DOI
Chu VW. Greenland ice sheet hydrology: a review. Prog. Phys. Geogr. 2014;38:19–54. doi: 10.1177/0309133313507075. DOI
Tedstone AJ, et al. Greenland ice sheet motion insensitive to exceptional meltwater forcing. Proc. Natl. Acad. Sci. USA. 2013;110:19719–19724. doi: 10.1073/pnas.1315843110. PubMed DOI PMC
Dove PM, Han N, Wallace AF, De Yoreo JJ. Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs. Proc. Natl. Acad. Sci. USA. 2008;105:9903–9908. doi: 10.1073/pnas.0803798105. PubMed DOI PMC
Icenhower JP, Dove PM. The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength. Geochim. Cosmochim. Acta. 2000;64:4193–4203. doi: 10.1016/S0016-7037(00)00487-7. DOI
Kato K, Kitano Y. Solubility and dissolution rate of amorphous silica in distilled and sea water at 20°C. J. Oceanogr. Soc. Jpn. 1968;24:147–152. doi: 10.5928/kaiyou1942.24.147. DOI
Yool A, Tyrrell T. Role of diatoms in regulating the ocean’s silicon cycle. Global Biogeochem. Cy. 2003;17:1103. doi: 10.1029/2002GB002018. DOI
Durkin CA, et al. Silicic acid supplied to coastal diatom communities influences cellular silicification and the potential export of carbon. Limnol. Oceanogr. 2013;58:1707–1726. doi: 10.4319/lo.2013.58.5.1707. DOI
Dugdale RC, Wilkerson FP. Silicate regulation of new production in the equatorial Pacific upwelling. Nature. 1998;391:270–273. doi: 10.1038/34630. DOI
Dugdale RC, Wilkerson FP, Minas HJ. The role of a silicate pump in driving new production. Deep-Sea Res. Pt. I. 1995;42:697–719. doi: 10.1016/0967-0637(95)00015-X. DOI
Gregoire LJ, Payne AJ, Valdes PJ. Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature. 2012;487:219. doi: 10.1038/nature11257. PubMed DOI
Golledge NR, et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 2014;5:5107. doi: 10.1038/ncomms6107. PubMed DOI
Patton H, et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 2017;169:148–172. doi: 10.1016/j.quascirev.2017.05.019. DOI
Norðdahl H, Ingólfsson Oacute. Collapse of the Icelandic ice sheet controlled by sea-level rise? arktos. 2015;1:1–18. doi: 10.1007/s41063-015-0020-x. DOI
Thornalley DJR, et al. The deglacial evolution of North Atlantic deep convection. Science. 2011;331:202–205. doi: 10.1126/science.1196812. PubMed DOI
Thornalley DJR, et al. A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period. Science. 2015;349:706–710. doi: 10.1126/science.aaa9554. PubMed DOI
Thornalley DJR, Elderfield H, McCave IN. Reconstructing North Atlantic deglacial surface hydrography and its link to the Atlantic overturning circulation. Glob. Planet. Chang. 2011;79:163–175. doi: 10.1016/j.gloplacha.2010.06.003. DOI
Chen T, et al. Ocean mixing and ice-sheet control of seawater 234U238U during the last deglaciation. Science. 2016;354:626–629. doi: 10.1126/science.aag1015. PubMed DOI
Hawkings JR, et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 2014;5:3929. doi: 10.1038/ncomms4929. PubMed DOI PMC
Sole A, et al. Winter motion mediates dynamic response of the Greenland Ice Sheet to warmer summers. Geophys. Res. Lett. 2013;40:3940–3944. doi: 10.1002/grl.50764. DOI
DeMaster DJ. The supply and accumulation of silica in the marine-environment. Geochim. Cosmochim. Acta. 1981;45:1715–1732. doi: 10.1016/0016-7037(81)90006-5. DOI
Clymans W, et al. Amorphous silica analysis in terrestrial runoff samples. Geoderma. 2011;167−68:228–235. doi: 10.1016/j.geoderma.2011.07.033. DOI
Sauer D, et al. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry. 2006;80:89–108. doi: 10.1007/s10533-005-5879-3. DOI
Georg RB, Reynolds BC, Frank M, Halliday AN. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chem. Geol. 2006;235:95–104. doi: 10.1016/j.chemgeo.2006.06.006. DOI
Telling J, et al. Rock comminution as a source of hydrogen for subglacial ecosystems. Nat. Geosci. 2015;8:851–855. doi: 10.1038/ngeo2533. DOI
Hughes HJ, et al. Controlling the mass bias introduced by anionic and organic matrices in silicon isotopic measurements by MC-ICP-MS. J. Anal. At. Spectrom. 2011;26:1892–1896. doi: 10.1039/c1ja10110b. DOI
Cardinal D, et al. Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J. Anal. At. Spectrom. 2003;18:213–218. doi: 10.1039/b210109b. DOI
Reynolds BC, et al. An inter-laboratory comparison of Si isotope reference materials. J. Anal. At. Spectrom. 2007;22:561–568. doi: 10.1039/B616755A. DOI
Hendry KR, Rickaby REM, Allen CS. Changes in micronutrient supply to the surface Southern Ocean (Atlantic sector) across the glacial termination. Geochem. Geophy. Geosys. 2011;12:QO9007. doi: 10.1029/2011GC003691. DOI
Panizzo VN, et al. Insights into the transfer of silicon isotopes into the sediment record. Biogeosciences. 2016;13:147–157. doi: 10.5194/bg-13-147-2016. DOI
Ivanovic RF, et al. Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1)—PMIP4 Core experiment design and boundary conditions. Geosci. Model Dev. 2016;9:2563–2587. doi: 10.5194/gmd-9-2563-2016. DOI
Gregoire LJ, Valdes PJ, Payne AJ, Kahana R. Optimal tuning of a GCM using modern and glacial constraints. Clim. Dynam. 2011;37:705–719. doi: 10.1007/s00382-010-0934-8. DOI
Bliss A, Hock R, Radić V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res.—Earth. 2014;119:717–730. doi: 10.1002/2013JF002931. DOI
Dai A, Trenberth KE. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeorol. 2002;3:660–687. doi: 10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2. DOI
Petit JR, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999;399:429–436. doi: 10.1038/20859. DOI
Durr HH, et al. Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosciences. 2011;8:597–620. doi: 10.5194/bg-8-597-2011. DOI
Conley DJ. Riverine contribution of biogenic silica to the oceanic silica budget. Limnol. Oceanogr. 1997;42:774–777. doi: 10.4319/lo.1997.42.4.0774. DOI
Lawson EC, et al. Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosciences. 2014;11:4015–4028. doi: 10.5194/bg-11-4015-2014. DOI
Palmer S, Shepherd A, Nienow P, Joughin I. Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water. Earth Planet. Sci. Lett. 2011;302:423–428. doi: 10.1016/j.epsl.2010.12.037. DOI
Andersen KK, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature. 2004;431:147–151. doi: 10.1038/nature02805. PubMed DOI
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.K., Zweng, M.M., Reagan, J.R., Johnson, D.R. (2014) World Ocean Atlas 2013, Volume 4: Dissolved Inorganic Nutrients (phosphate, nitrate, silicate). S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 76, 25 pp
Insights into silicon cycling from ice sheet to coastal ocean from isotope geochemistry