Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization

. 2016 Oct ; 27 (10) : 1647-60. [epub] 20160711

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid27400696

Grantová podpora
T32 GM008268 NIGMS NIH HHS - United States

Odkazy

PubMed 27400696
PubMed Central PMC5031493
DOI 10.1007/s13361-016-1437-6
PII: 10.1007/s13361-016-1437-6
Knihovny.cz E-zdroje

Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions. Graphical Abstract ᅟ.

Zobrazit více v PubMed

Locke MJ, McIver RT., Jr Effect of solvation on the acid/base properties of glycine. J Am Chem Soc. 1983;105:4226–4232.

Suenham RD, Lovas FJ. Millimeter wave spectrum of glycine. J Mol Spectrosc. 1978;72:372–382.

Brown RD, Godfrey PD, Storey JWV, Bassez M-P. Microwave spectrum and conformation of glycine. J Chem Soc Chem Commun. 1978:547–548.

Iijima K, Tanaka K, Onuma S. Main conformer of gaseous glycine: molecular structure and rotational barrier from electron diffraction data and rotational constants. J Mol Struct. 1991;246:257–266.

Lovas FJ, Kawashima Y, Grabow JU, Suenram RD, Fraser GT, Hirota E. Microwave spectra, hyperfine structure, and electric dipole moments for conformers I and II of glycine. Astrophys J. 1995;455:L201–L204.

Linder R, Nispel M, Haeber T, Kleinermanns K. Gas-phase FT-IR-spectra of natural amino acids. Chem Phys Lett. 2005;409:260–264.

de Vries MS, Hobza P. Gas-phase spectroscopy of biomolecular building blocks. Ann Rev Phys Chem. 2007;58:585–612. PubMed

Linder R, Seefeld K, Vavra A, Kleinermanns K. Gas phase infrared spectra of nonaromatic amino acids. Chem Phys Lett. 2008;453:1–6.

Clemmer DE, Jarrold MF. Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom. 1997;32:577–592.

Wyttenbach T, Witt M, Bowers MT. On the stability of amino acid zwitterions in the gas phase. The influence of derivatization, proton affinity, and alkali ion addition. J Am Chem Soc. 2000;122:3458–3464.

Wu R, McMahon TB. Stabilization of zwitterionic structures of amino acids (Gly, Ala, Val, Leu, Ile, Ser, and Pro) by ammonium ions in the gas phase. J Am Chem Soc. 2008;130:3065–3078. PubMed

Bush MF, Forbes MW, Jockusch RA, Oomens J, Polfer NC, Saykally RJ, Williams ER. Infrared spectroscopy of cationized lysine and ε-N-methyllysine in the gas phase: effects of alkali-metal ion size and proton affinity on zwitterion stability. J Phys Chem A. 2007;111:7753–7760. PubMed

Julian RR, Jarrold MF. Gas-phase zwitterions in the absence of a net charge. J Phys Chem A. 2004;108:10861–10864.

Lemoff AS, Bush MF, Williams ER. Binding energies of water to sodiated valine and structural isomers in the gas phase: the effect of proton affinity on zwitterion stability. J Am Chem Soc. 2003;125:13576–13584. PubMed

Cerda BA, Wesdemiotis C. Zwitterionic versus charge-solvated structures in the binding of arginine to alkali metal ions in the gas phase. Analyst. 2000;125:657–660.

Dunbar RC, Polfer NC, Oomens J. Gas-phase zwitterion stabilization by a metal dication. J Am Chem Soc. 2007;129:14562–14563. PubMed

Bush MF, Oomens J, Saykally RJ, Williams ER. Alkali metal ion binding to glutamine and glutamine derivatives investigated by infrared action spectroscopy and theory. J Phys Chem A. 2008;112:8578–8584. PubMed

Bush MF, Oomens J, Williams ER. Proton affinity and zwitterion stability: new results from infrared spectroscopy and theory of cationized lysine and analogues in the gas phase. J Phys Chem A. 2009;113:431–438. PubMed

Prell JS, O’Brien JT, Steill JD, Oomens J, Williams ER. Structures of protonated dipeptides: the role of arginine in stabilizing salt bridges. J Am Chem Soc. 2009;131:11442–11449. PubMed

Drayss MK, Armentrout PB, Oomens J, Schaefer M. IR spectroscopy of cationized aliphatic amino acids: stability of charge-solvated structure increases with metal cation size. Int J Mass Spectrom. 2010;297:18–27.

Pathak AK. Stabilizing the zwitterionic form of amino acids in the gas phase: an ab initio study on the minimum number of solvents and ions. Chem Phys Lett. 2014;610/611:345–350.

Gill AC, Jennings KR, Wyttenbach T, Bowers MT. Conformations of biopolymers in the gas phase: a new mass spectrometric method. Int J Mass Spectrom. 2000;195/196:685–697.

Shelimov KB, Clemmer DE, Hodgins RR, Jarrold MF. Protein structure in vacuo: gas-phase conformations of BPTI and cytochrome c. J Am Chem Soc. 1997;119:2240–2248.

Fort KL, Silveira JA, Pierson NA, Servage KA, Clemmer DE, Russell DH. From solution to the gas phase: factors that influence kinetic trapping of Substance P in the gas phase. J Phys Chem B. 2014;118:14336–14344. PubMed

Silveira JA, Fort KL, Kim D, Servage KA, Pierson NA, Clemmer DE, Russell DH. From solution to the gas phase: stepwise dehydration and kinetic trapping of Substance P reveals the origin of peptide conformations. J Am Chem Soc. 2013;135:19147–19153. PubMed

Tureček F, Chung TW, Moss CL, Wyer JA, Ehlerding A, Holm AIS, Zettergren H, Nielsen SB, Hvelplund P, Chamot-Rooke J, Bythell B, Paizs B. The histidine effect. Electron transfer and capture cause different dissociations and rearrangements of histidine peptide cation-radicals. J Am Chem Soc. 2010;132:10728–10740. PubMed

Moss CL, Chamot-Rooke J, Brown J, Campuzano I, Richardson K, Williams J, Bush M, Bythell B, Paizs B, Tureček F. Assigning structures to gas-phase peptide cations and cation-radicals. An infrared multiphoton dissociation, ion mobility, electron transfer and computational study of a histidine peptide ion. J Phys Chem B. 2012;116:3445–3456. PubMed

Tureček F, Moss CL, Pikalov I, Pepin R, Golyuz K, Polfer NC, Bush MF, Brown J, Richardson K. Gas-phase structures of phospho-peptide ions: a difficult case. Int J Mass Spectrom. 2013;354/355:249–256.

Pepin R, Laszlo KJ, Peng B, Marek A, Bush MF, Tureček F. Comprehensive analysis of Gly-Leu-Gly-Gly-Lys peptide dication structures and cation-radical dissociations following electron transfer: from electron attachment to backbone cleavage, ion-molecule complexes and fragment separation. J Phys Chem A. 2014;118:308–324. PubMed

Marek A, Pepin R, Peng B, Laszlo KJ, Bush MF, Tureček F. Electron transfer dissociation of photolabeled peptides. Backbone cleavages compete with diazirine ring rearrangements. J Am Soc Mass Spectrom. 2013;24:1641–1653. PubMed

Čeřovský V, Hovorka O, Cvačka J, Voburka Z, Bednářová L, Borovičková L, Slaninová J, Fučík V. Melectin: a novel antimicrobial peptide from the venom of the cleptoparasitic bee Melecta albifrons. Chem BioChem. 2008;9:2815–2821. PubMed

Moss CL, Chung TW, Čeřovský V, Tureček F. Electron transfer dissociation of a melectin peptide: correlating the precursor ion structure with peptide backbone dissociations. Coll Czech Chem Commun. 2011;76:295–309.

Kortemme T, Ramirez-Alvarado M, Serrano L. Design of a 20-amino acid, three stranded beta sheet protein. Science. 1998;281:253–256. PubMed

Neidigh JW, Fesinmeyer RM, Andersen NH. Designing a 20-residue protein. Nat Struct Biol. 2002;9(6):425–430. PubMed

Naduthambi D, Zondlo NJ. Stereoelectronic tuning of the structure and stability of the Trp cage miniprotein. J Am Chem Soc. 2006;128:12430–12431. PubMed

Pastor MT, Gimenez-Giner A, Perez-Paya E. The role of an aliphatic-aromatic interaction in the stabilization of a model betahairpin peptide. Chem BioChem. 2005;6:1753–1756. PubMed

Hill RB, Raleigh DP, Lombardi A, DeGrado WF. De novo design of helical bundles as models for understanding protein folding and function. Acc Chem Res. 2000;33:745–754. PubMed PMC

Pantoja-Uceda D, Pastor MT, Salgado J, Pineda-Lucena A, Perez-Paya E. Design of a bivalent peptide with two independent elements of secondary strucutre able to fold autonomously. J Pept Sci. 2008;14:845–854. PubMed

Ben Hamidane H, He H, Tsybin OY, Emmett MR, Hendrickson CL, Marshall AG, Tsybin YO. Periodic sequence distribution of product ion abundances in electron capture dissociation of amphipathic peptides and proteins. J Am Soc Mass Spectrom. 2009;20:1182–1192. PubMed

Venkatachalam CM. Stereochemical criteria for polypeptides and proteins. V Conformation of a system of three linked peptide units. Biopolymers. 1968;6:1425–1436. PubMed

Deber CM. Evidence of β-turn analogs in proline peptides in the solid state. Infrared study. Macromolecules. 1974;7:47–51. PubMed

Toniolo C. Intramolecularly hydrogen-bonded peptide conformations. CRC Crit Rev Biochem. 1980;9:1–44. PubMed

Hollosi M, Kawai M, Fasman GD. Studies on proline-containing tetrapeptide models of β-turns. Biopolymers. 1985;24:211–242. PubMed

Moehle K, Gussmann M, Hofmann H. Structural and energetic relations between β turns. J Comp Chem. 1997;18:1415–1430.

Raghothama SR, Awasthi SK, Balaram P. β-Hairpin nucleation by Pro-Gly β-turns. Comparison of D-Pro-Gly and L-Pro-Gly sequences in an apolar octapeptide. J Chem Soc Perkin Trans 2: Phys Org Chem. 1998;1:137–144.

Bull HB, Breese K. Surface tension of amino acid solutions: a hydrophobicity scale of the amino acid residues. Arch Biochem Biophys. 1974;161:665–670. PubMed

Kovacs JM, Mant CT, Hodges RS. Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or conformational effects. Biopolymers. 2006;84:283–297. PubMed PMC

Sibanda BL, Blundell TL, Thornton JM. Conformation of β-hairpins in protein structures. A systematic classification with applications to modeling by homology, electron density fitting, and protein engineering. J Mol Biol. 1989;206:759–777. PubMed

Allen SJ, Giles K, Gilbert T, Bush MF. Ion mobility mass spectrometry of peptide, protein and protein complex ions using a radio-frequency confining drift cell. Analyst. 2016;141:884–891. PubMed

Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE, Thalassinos K, Bateman RH, Bowers MT, Scrivens JH. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int J Mass Spectrom. 2007;261:1–10.

Giles K, Williams JP, Campuzano I. Enhancements in traveling wave ion mobility resolution. Rapid Commun Mass Spectrom. 2011;25:1559–1566. PubMed

Ruotolo BT, Benesch JLP, Sandercock AM, Hyung S-J, Robinson CV. Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc. 2008;3:1139–1152. PubMed

Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem. 2010;82:9557–9565. PubMed

MacKerell AD, Jr, Bashford D, Bellott M, Dunbrack RL, Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616. PubMed

Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314:141–151.

Stewart JJP. Optimization of parameters for semi-empirical methods. V Modification of NDDO approximations and application to 70 elements. J Mol Model. 2007;13:1173–1213. PubMed PMC

Becke AD. New mixing of Hartree-Fock and local density-functional theories. J Chem Phys. 1993;98:1372–1377.

Becke AD. Density functional thermochemistry. III The role of exact exchange. J Chem Phys. 1993;98:5648–5652.

Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120:215–241.

Møller C, Plesset MS. A note on an approximation treatment for many-electron systems. Phys Rev. 1934;46:618–622.

Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–6620. PubMed

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02. Gaussian, Inc; Wallingford CT: 2009.

Mulliken RS. Electronic population analysis on LCAO-MO molecular wave functions. J Chem Phys. 1955;23:1833–1840.

Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83:735–748.

Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comp Chem. 1984;5:129–160.

Shvartsburg AA, Jarrold MF. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem Phys Lett. 1996;261:86–91.

Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF. Structural information from ion mobility measurements: effects of the long-range potential. J Phys Chem. 1996;100:16082–16086.

Campuzano I, Bush MF, Robinson CV, Beaumont C, Richardson K, Kim H, Kim HI. Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections. Anal Chem. 2012;84:1026–1033. PubMed

Lalli PM, Corilo YE, Fasciotti M, Riccio MF, De Sa GF, Daroda RJ, Souza GHMF, McCullagh M, Bartberger MD, Eberlin MN, Campuzano IDG. Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: investigating the effects of polarizable drift gases and ionic charge distribution. J Mass Spectrom. 2013;48:989–997. PubMed

Chen YL, Colling BA, Douglas DJ. Collision cross sections of myoglobin and cytochrome c ions with Ne, Ar, and Kr. J Am Soc Mass Spectrom. 1998;8:681–687.

Counterman AE, Clemmer DE. Volumes of individual amino acid residues in gas-phase peptide ions. J Am Chem Soc. 1999;121:4031–4039.

Valentine SJ, Counterman AE, Clemmer DE. A Database of 660 peptide ion cross sections: use of intrinsic size parameters for bona fide predictions of cross sections. J Am Soc Mass Spectrom. 1999;10:1188–1211. PubMed

Lietz CB, Yu Q, Li L. Large-scale collision cross-section profiling on a traveling wave ion mobility mass spectrometer. J Am Soc Mass Spectrom. 2015;25:2009–2019. PubMed PMC

Henderson SC, Li J, Counterman AE, Clemmer DE. Intrinsic size parameters for Val, Ile, Leu, Gln, Thr, Phe, and Trp residues from ion mobility measurements of polyamino acid ions. J Phys Chem B. 1999;103:8780–8785.

Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Defining the hydrogen bond: an account. Pure Appl Chem. 2011;83:1619–1636.

Hernandez PP, Maitre P, Paizs B. Zundel-type H-bonding in biomolecular ions. J Am Soc Mass Spectrom. 2014;25:1511–1514. PubMed

Gronert S. Determining the gas-phase properties and reactivities of multiply charged ions. J Mass Spectrom. 1999;34:787–796. PubMed

Gronert S. Coulomb repulsion in multiply charged ions: A computational study of the effective dielectric constants of organic spacer groups. Int J Mass Spectrom. 1999;185/187:351–357.

Turecek F. Stereochemical interactions in ammonium dications. hypervalent diammonium cation radicals and ammonium radicals A B3-MP2 computational study. Eur J Mass Spectrom. 2003;9:267–277. PubMed

Schnier PD, Gross DS, Williams ER. Electrostatic forces and dielectric polarizability of multiply protonated gas-phase cytochrome c ions probed by ion/molecule chemistry. J Am Chem Soc. 1995;117:6747–6757.

Haeffner F, Merle JK, Irikura KK. N-protonated isomers as gateways to peptide ion fragmentation. J Am Soc Mass Spectrom. 2011;22:2222–2231. PubMed

Moss CL, Chung TW, Wyer JA, Nielsen SB, Hvelplund P, Tureček F. Dipole-guided electron capture causes abnormal dissociations of phosphorylated pentapeptides. J Am Soc Mass Spectrom. 2011;22:731–751. PubMed

von Helden G, Hsu MT, Gotts N, Bowers MT. Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity. J Phys Chem. 1993;97:8182–8192.

Shvartsburg AA, Mashkevich SV, Baker ES, Smith RD. Optimization of algorithms for ion mobility calculations. J Phys Chem A. 2007;111(10):2002–2010. PubMed

Larriba C, Hogan CJ. Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models. J Phys Chem A. 2013;117:3887–3901. PubMed

Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF. Structural information from ion mobility measurements:effects of the long-range potential. J Phys Chem. 1996;100:16082–16086.

Wyttenbach T, Von Helden G, Batka JJ, Carlat D, Bowers MT. Effect of the long-range potential on ion mobility measurements. J Am Soc Mass Spectrom. 1997;8:275–282.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...