The Effect of Vibratory Grinding Time on Moisture Sorption, Particle Size Distribution, and Phenolic Bioaccessibility of Carob Powder
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36431790
PubMed Central
PMC9698127
DOI
10.3390/molecules27227689
PII: molecules27227689
Knihovny.cz E-zdroje
- Klíčová slova
- HPLC analysis, correlation, flavonoid, in vitro digestion, phenolic,
- MeSH
- Fabaceae * chemie MeSH
- fenoly chemie MeSH
- flavonoidy MeSH
- galaktany * chemie MeSH
- prášky, zásypy, pudry MeSH
- rostlinné gumy chemie MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenoly MeSH
- flavonoidy MeSH
- galaktany * MeSH
- locust bean gum MeSH Prohlížeč
- prášky, zásypy, pudry MeSH
- rostlinné gumy MeSH
Carob pod powder, an excellent source of health-promoting substances, has found its use in a wide range of food products. Grinding conditions affect the physical and chemical properties of the powder, but their influence on the bioaccessibility of phenolic compounds in carob pod powder has not yet been determined. The carob pods were ground for 30-180 s in a vibratory grinder. The median values (D50) of particle size decreased after 60 s of grinding (87.9 μm), then increased to 135.1 μm. Lightness showed a negative correlation with D50 and aw, while the values of redness and yellowness decreased with the reduction in particle size and water activity. The smaller the value of D50, the higher the equilibrium moisture content of carob powder. Phenolic acids (vanillic, ferulic, cinnamic) and flavonoids (luteolin, naringenin, apigenin) were found in all samples of carob powder. The grinding time influenced their content in carob powder, with maximum values at 180 s. Similar observations were made when assessing antioxidant capacity. The in vitro digestion process only improved the bioaccessibility of catechin content in all samples. However, the bioaccessibility of the phenolic compounds and the total phenolic and flavonoid contents decreased with the increase in grinding time. Our findings revealed that the grinding of carob pods for 180 s improved the extractability of phenolics; however, their bioaccessibility was reduced. It is sufficient to ground the carob pod for 30 s, ensuring good availability of nutraceuticals and lower energy cost for grinding.
Zobrazit více v PubMed
Ayaz F.A., Torun H., Glew R.H., Bak Z.D., Chuang L.T., Presley J.M., Andrews R. Nutrient content of carob pod (Ceratonia siliqua L.) flour prepared commercially and domestically. Plant Foods Hum. Nutr. 2009;64:286–292. doi: 10.1007/s11130-009-0130-3. PubMed DOI
Stavrou I.J., Christou A., Kapnissi-Christodoulou C.P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 2018;269:355–374. doi: 10.1016/j.foodchem.2018.06.152. PubMed DOI
Boublenza I., El Haitoum A., Ghezlaoui S., Mahdad M., Vasai F., Chemat F. Algerian carob (Ceratonia siliqua L.) populations. Morphological and chemical variability of their fruits and seeds. Sci. Hortic. 2019;256:e108537. doi: 10.1016/j.scienta.2019.05.064. DOI
Gioxari A., Amerikanou C., Nestoridi I., Gourgari E., Pratsinis H., Kalogeropoulos N., Adrikopoulos N.A., Kaliora A.C. Carob: A sustainable opportunity for metabolic health. Foods. 2022;11:2154. doi: 10.3390/foods11142154. PubMed DOI PMC
Issaoui M., Flamini G., Delgado A. Sustainability opportunities for Mediterranean food products through new formulations based on carob flour (Ceratonia siliqua L.) Sustainability. 2021;13:8026. doi: 10.3390/su13148026. DOI
Červenka L., Frühbauerová M., Velichová H. Functional properties of muffin as affected by substituting wheat flour with carob powder. Potravinarstvo. 2019;13:212–217. doi: 10.5219/1033. DOI
Pawlowska K., Kuligowski M., Jasinska-Kuligowska I., Kidon M., Siger A., Rudzinska M., Nowak J. Effect of replacing cocoa powder by carob powder in the muffins on sensory and physicochemical properties. Plant Foods Hum. Nutr. 2018;73:196–202. doi: 10.1007/s11130-018-0675-0. PubMed DOI PMC
Biernacka B., Dziki D., Gawlik-Dziki U., Różyło R. Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT-Food Sci. Technol. 2017;77:186–192. doi: 10.1016/j.lwt.2016.11.042. DOI
Román L., González A., Espina T., Gómez M. Degree of roasting of carob flour affecting the properties of gluten-free cakes and cookies. J. Food Sci. Technol. 2017;54:2094–2103. doi: 10.1007/s13197-017-2649-x. PubMed DOI PMC
Akdeniz E., Yakışı E., Pirouzian H.R., Akkın S., Turan B., Tipigil E., Toker O.S., Ozcan O. Carob powder as cocoa substitute in milk and dark compound chocolate formulation. J. Food. Sci. Technol. 2021;58:4558–4566. doi: 10.1007/s13197-020-04943-z. PubMed DOI PMC
Tounsi L., Mkaouar S., Bredai S., Kechaou N. Valorization of carob by-product for producing an added value powder: Characterization and incorporation into Halva formulation. J. Food Meas. Charact. 2022;16:3957–3966. doi: 10.1007/s11694-022-01494-z. DOI
Benković M., Radić K., Čepo D.V., Jaškūnas E., Janutis L., Morkunaite M., Srečec S. Production of cocoa and carob-based drink powders by foam mat drying. J. Food Process Eng. 2018;41:e12825. doi: 10.1111/jfpe.12825. DOI
Rodríguez-Solana R., Coelho N., Santos-Rufo A., Gonçalves S., Pérez-Santín E., Romano A. The influence of in vitro gastrointestinal digestion on the chemical composition and antioxidant and enzyme inhibitory capacities of carob liqueurs obtained with different elaboration techniques. Antioxidants. 2019;8:563. doi: 10.3390/antiox8110563. PubMed DOI PMC
Liu S., Yu J., Zou J., Yang Y., Cui L., Chang X. Effects of different drying and milling methods on the physicochemical properties and phenolic content of hawthorn fruit powders. J. Food Process Preserv. 2020;44:e14460. doi: 10.1111/jfpp.14460. DOI
Araújo A.L., Silva Pena R. Effect of particle size and temperature on the hygroscopic behaviour of cassava flour from dry group and storage time estimation. CyTA J. Food. 2020;18:178–186. doi: 10.1080/19476337.2020.1717635. DOI
Drakos A., Kyriakakis G., Evageliou V., Protonotariou S., Mandala I., Ritzoulis C. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours. Food Chem. 2017;215:326–332. doi: 10.1016/j.foodchem.2016.07.169. PubMed DOI
Gao X., Zhu D., Liu Y., Zha L., Chen D., Guo H. Physicochemical properties and anthocyanin bioaccessibility of downy rose-myrtle powder prepared by superfine grinding. Int. J. Food Prop. 2019;22:2022–2032. doi: 10.1080/10942912.2019.1702999. DOI
Sun X., Zhang Y., Li J., Aslam N., Sun H., Zhao J., Wu Z., He S. Effects of particle size on physicochemical and functional properties of superfine black kidney bean (Phaseolus vulgaris L.) powder. PeerJ. 2019;7:e6369. doi: 10.7717/peerj.6369. PubMed DOI PMC
An Y., Sun Y., Zhang M., Adhikari B., Li Z. Effect of ball milling time on physicochemical properties of Cordyceps militaris ultrafine particles. J. Food Process Preserv. 2019;42:e13065. doi: 10.1111/jfpe.13065. DOI
Jiang G., Ramachandraiah K., Wu Z., Li S., Eun J.-B. Impact of ball-milling time on the physical properties, bioactive compounds, and structural characteristics of onion peel powder. Food Biosci. 2020;36:100630. doi: 10.1016/j.fbio.2020.100630. DOI
Norhidayah A., Noriham A., Rusop M. Changes in physical and antioxidant properties of nanostructured Zingiber officinale (ginger) rhizome as affected by milling time. Adv. Mater. Res. 2013;667:144–149. doi: 10.4028/www.scientific.net/AMR.667.144. DOI
Wang J., Zhang M., Devahastin S., Liu Y. Influence of low-temperature ball milling time on physicochemical properties, flavor, bioactive compounds contents and antioxidant activity of horseradish powder. Adv. Powder Technol. 2020;31:914–921. doi: 10.1016/j.apt.2019.12.011. DOI
Zhao X., Sun L., Zhang X., Liu H., Zhu Y. Effect of ultrafine grinding time on the functional and flavor properties of soybean isolates. Colloids Surf. B. 2020;196:111345. doi: 10.1016/j.colsurfb.2020.111345. PubMed DOI
Benković M., Belščak-Cvitanović A., Bauman I., Komes D., Srečec S. Flow properties and chemical composition of carob (Ceratonia siliqua L.) flours as related to particle size and seed presence. Food Res. Int. 2017;100:211–218. doi: 10.1016/j.foodres.2017.08.048. PubMed DOI
Labanca R.A., Svelander C., Alminger M. Effect of particle size of chia seeds on bioaccessibility of phenolic compounds during in vitro digestion. Cogent Food Agric. 2019;5:1694775. doi: 10.1080/23311932.2019.1694775. DOI
Savlak N., Türker B., Yeşilkanat N. Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour. Food Chem. 2016;213:180–186. doi: 10.1016/j.foodchem.2016.06.064. PubMed DOI
Capuano E., Pellegrini N. An integrated look at the effect of structure on nutrient bioavailability in plant foods. J. Sci. Food Agric. 2019;99:493–498. doi: 10.1002/jsfa.9298. PubMed DOI
Chait Y.A., Gunenc A., Bendali F., Hosseinian F. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity. LWT-Food Sci. Technol. 2020;117:108623. doi: 10.1016/j.lwt.2019.108623. DOI
Goulas V., Hadjisolomou A. Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion. LWT-Food Sci. Technol. 2019;101:269–275. doi: 10.1016/j.lwt.2018.11.003. DOI
Frühbauerová M., Červenka L., Hájek T., Pouzar M., Palarčík J. Bioaccessibility of phenolics from carob (Ceratonia siliqua L.) pod powder prepared by cryogenic and vibratory grinding. Food Chem. 2022;377:131968. doi: 10.1016/j.foodchem.2021.131968. PubMed DOI
Boublenza I., Lazouni H.A., Ghaffari L., Ruiz K., Fabiano-Tixier A.S., Chemat F. Influence of roasting on sensory, antioxidant, aromas, and physicochemical properties of carob pod powder (Ceratonia siliqua L.) J. Food Qual. 2017;2017:4193672. doi: 10.1155/2017/4193672. DOI
Ali H., Al-Khalifa A.R., Aboelsood W., Bareh G., Farouk A. Influence of spray-drying on improving the quality of dried carob juice. Qual. Assur. Saf. Crop. 2019;11:391–399. doi: 10.3920/QAS2018.1524. DOI
Donohue M.D., Aranovich G.L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998;76–77:137–152. doi: 10.1016/S0001-8686(98)00044-X. DOI
Vega-Gálvez A., López J., Ah-Hen K., Torres M.J., Lemus-Mondaca R. Thermodynamic properties, sorption isotherms and glass transition temperature of cape gooseberry (Physalis peruviana L.) Food Technol. Biotechnol. 2014;52:83–92.
Czubinski J., Wroblewska K., Czyzniejewski M., Górnaś P., Kachlicki P., Siger A. Bioaccessibility of defatted lupin seed phenolic compounds in a standardized static in vitro digestion system. Food Res. Int. 2019;19:1126–1134. doi: 10.1016/j.foodres.2018.09.057. PubMed DOI
Zeng Q., Xu Z., Dai M., Cao X., Xiong X., He S., Yuan Y., Zhang M., Dong L., Zhang R., et al. Effects of simulated digestion on the phenolic composition and antioxidant activity of different cultivars of lychee pericarp. BMC Chem. 2019;13:27. doi: 10.1186/s13065-019-0544-4. PubMed DOI PMC
Sun Y., Tao W., Huang H., Ye X., Sun P. Flavonoids, phenolic acids, carotenoids and antioxidant activity of fresh eating citrus fruits, using the coupled in vitro digestion and human intestinal HepG2 cells model. Food Chem. 2019;279:321–327. doi: 10.1016/j.foodchem.2018.12.019. PubMed DOI
Djaoudene O., Mansinhos I., Gonçalves S., Jara-Palacios M.J., Bey M.B., Romano A. Phenolic profile, antioxidant activity and enzyme inhibitory capacities of fruit and seed extracts from different Algerian cultivars of date (Phoenix dactylifera L.) were affected by in vitro simulated gastrointestinal digestion. S. Afr. J. Bot. 2021;137:133–148. doi: 10.1016/j.sajb.2020.10.015. DOI
Panagopoulou E.A., Chiou A., Kasimatis T.-D., Bismpikis M., Mouraka P., Karathanos V.T. Dried dates: Polar phenols and their fate during in vitro digestion. J. Food Meas. Charact. 2021;15:1899–1906. doi: 10.1007/s11694-020-00785-7. DOI
Barros R.G.C., Pereira U.C., Andrade J.K.S., Santo de Oliveira C., Vasconcelos S.V., Narain N. In vitro gastrointestinal digestion and probiotics fermentation impact on bioaccessbility of phenolics compounds and antioxidant capacity of some native and exotic fruit residues with potential antidiabetic effects. Food Res. Int. 2020;136:109614. doi: 10.1016/j.foodres.2020.109614. PubMed DOI
Chen G.L., Chen S.G., Xie Y.Q., Chen F., Zhao Y., Luo C.X., Gao Y.Q. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods. 2015;17:243–259. doi: 10.1016/j.jff.2015.05.028. DOI
Li Y., Li M., Wang L., Li Z. Effect of particle size on the release behavior and functional properties of wheat bran phenolic compounds during in vitro gastrointestinal digestion. Food Chem. 2022;367:130751. doi: 10.1016/j.foodchem.2021.130751. PubMed DOI
Świeca M., Baraniak B., Gawlik-Dziki U. In vitro digestibility and starch content, predicted glycemic index and potential in vitro antidiabetic effect of lentil sprouts obtained by different germination techniques. Food Chem. 2013;138:1414–1420. doi: 10.1016/j.foodchem.2012.09.122. PubMed DOI
Hunt R.W.G., Pointer M.R. Measuring Colour. 4th ed. John Wiley & Sons; Chichester, UK: 2011. pp. 41–72. DOI
Sochor J., Ryvolová M., Krystofova O., Salas P., Hubalek J., Adam V., Trnkova L., Havel L., Beklova M., Zehnalek J., et al. Fully automated spectrometric protocols for determination of antioxidant activity: Advantages and disadvantages. Molecules. 2010;15:8618–8640. doi: 10.3390/molecules15128618. PubMed DOI PMC
Baba S., Malik S. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 2018;9:449–454. doi: 10.1016/j.jtusci.2014.11.001. DOI
Pękal A., Pyrzynska K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods. 2014;7:1776–1782. doi: 10.1007/s12161-014-9814-x. DOI
Sun B., da Silva J.R., Spranger I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998;46:4267–4274. doi: 10.1021/jf980366j. DOI