The Effect of Vibratory Grinding Time on Moisture Sorption, Particle Size Distribution, and Phenolic Bioaccessibility of Carob Powder

. 2022 Nov 09 ; 27 (22) : . [epub] 20221109

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36431790

Carob pod powder, an excellent source of health-promoting substances, has found its use in a wide range of food products. Grinding conditions affect the physical and chemical properties of the powder, but their influence on the bioaccessibility of phenolic compounds in carob pod powder has not yet been determined. The carob pods were ground for 30-180 s in a vibratory grinder. The median values (D50) of particle size decreased after 60 s of grinding (87.9 μm), then increased to 135.1 μm. Lightness showed a negative correlation with D50 and aw, while the values of redness and yellowness decreased with the reduction in particle size and water activity. The smaller the value of D50, the higher the equilibrium moisture content of carob powder. Phenolic acids (vanillic, ferulic, cinnamic) and flavonoids (luteolin, naringenin, apigenin) were found in all samples of carob powder. The grinding time influenced their content in carob powder, with maximum values at 180 s. Similar observations were made when assessing antioxidant capacity. The in vitro digestion process only improved the bioaccessibility of catechin content in all samples. However, the bioaccessibility of the phenolic compounds and the total phenolic and flavonoid contents decreased with the increase in grinding time. Our findings revealed that the grinding of carob pods for 180 s improved the extractability of phenolics; however, their bioaccessibility was reduced. It is sufficient to ground the carob pod for 30 s, ensuring good availability of nutraceuticals and lower energy cost for grinding.

Zobrazit více v PubMed

Ayaz F.A., Torun H., Glew R.H., Bak Z.D., Chuang L.T., Presley J.M., Andrews R. Nutrient content of carob pod (Ceratonia siliqua L.) flour prepared commercially and domestically. Plant Foods Hum. Nutr. 2009;64:286–292. doi: 10.1007/s11130-009-0130-3. PubMed DOI

Stavrou I.J., Christou A., Kapnissi-Christodoulou C.P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 2018;269:355–374. doi: 10.1016/j.foodchem.2018.06.152. PubMed DOI

Boublenza I., El Haitoum A., Ghezlaoui S., Mahdad M., Vasai F., Chemat F. Algerian carob (Ceratonia siliqua L.) populations. Morphological and chemical variability of their fruits and seeds. Sci. Hortic. 2019;256:e108537. doi: 10.1016/j.scienta.2019.05.064. DOI

Gioxari A., Amerikanou C., Nestoridi I., Gourgari E., Pratsinis H., Kalogeropoulos N., Adrikopoulos N.A., Kaliora A.C. Carob: A sustainable opportunity for metabolic health. Foods. 2022;11:2154. doi: 10.3390/foods11142154. PubMed DOI PMC

Issaoui M., Flamini G., Delgado A. Sustainability opportunities for Mediterranean food products through new formulations based on carob flour (Ceratonia siliqua L.) Sustainability. 2021;13:8026. doi: 10.3390/su13148026. DOI

Červenka L., Frühbauerová M., Velichová H. Functional properties of muffin as affected by substituting wheat flour with carob powder. Potravinarstvo. 2019;13:212–217. doi: 10.5219/1033. DOI

Pawlowska K., Kuligowski M., Jasinska-Kuligowska I., Kidon M., Siger A., Rudzinska M., Nowak J. Effect of replacing cocoa powder by carob powder in the muffins on sensory and physicochemical properties. Plant Foods Hum. Nutr. 2018;73:196–202. doi: 10.1007/s11130-018-0675-0. PubMed DOI PMC

Biernacka B., Dziki D., Gawlik-Dziki U., Różyło R. Physical, sensorial, and antioxidant properties of common wheat pasta enriched with carob fiber. LWT-Food Sci. Technol. 2017;77:186–192. doi: 10.1016/j.lwt.2016.11.042. DOI

Román L., González A., Espina T., Gómez M. Degree of roasting of carob flour affecting the properties of gluten-free cakes and cookies. J. Food Sci. Technol. 2017;54:2094–2103. doi: 10.1007/s13197-017-2649-x. PubMed DOI PMC

Akdeniz E., Yakışı E., Pirouzian H.R., Akkın S., Turan B., Tipigil E., Toker O.S., Ozcan O. Carob powder as cocoa substitute in milk and dark compound chocolate formulation. J. Food. Sci. Technol. 2021;58:4558–4566. doi: 10.1007/s13197-020-04943-z. PubMed DOI PMC

Tounsi L., Mkaouar S., Bredai S., Kechaou N. Valorization of carob by-product for producing an added value powder: Characterization and incorporation into Halva formulation. J. Food Meas. Charact. 2022;16:3957–3966. doi: 10.1007/s11694-022-01494-z. DOI

Benković M., Radić K., Čepo D.V., Jaškūnas E., Janutis L., Morkunaite M., Srečec S. Production of cocoa and carob-based drink powders by foam mat drying. J. Food Process Eng. 2018;41:e12825. doi: 10.1111/jfpe.12825. DOI

Rodríguez-Solana R., Coelho N., Santos-Rufo A., Gonçalves S., Pérez-Santín E., Romano A. The influence of in vitro gastrointestinal digestion on the chemical composition and antioxidant and enzyme inhibitory capacities of carob liqueurs obtained with different elaboration techniques. Antioxidants. 2019;8:563. doi: 10.3390/antiox8110563. PubMed DOI PMC

Liu S., Yu J., Zou J., Yang Y., Cui L., Chang X. Effects of different drying and milling methods on the physicochemical properties and phenolic content of hawthorn fruit powders. J. Food Process Preserv. 2020;44:e14460. doi: 10.1111/jfpp.14460. DOI

Araújo A.L., Silva Pena R. Effect of particle size and temperature on the hygroscopic behaviour of cassava flour from dry group and storage time estimation. CyTA J. Food. 2020;18:178–186. doi: 10.1080/19476337.2020.1717635. DOI

Drakos A., Kyriakakis G., Evageliou V., Protonotariou S., Mandala I., Ritzoulis C. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours. Food Chem. 2017;215:326–332. doi: 10.1016/j.foodchem.2016.07.169. PubMed DOI

Gao X., Zhu D., Liu Y., Zha L., Chen D., Guo H. Physicochemical properties and anthocyanin bioaccessibility of downy rose-myrtle powder prepared by superfine grinding. Int. J. Food Prop. 2019;22:2022–2032. doi: 10.1080/10942912.2019.1702999. DOI

Sun X., Zhang Y., Li J., Aslam N., Sun H., Zhao J., Wu Z., He S. Effects of particle size on physicochemical and functional properties of superfine black kidney bean (Phaseolus vulgaris L.) powder. PeerJ. 2019;7:e6369. doi: 10.7717/peerj.6369. PubMed DOI PMC

An Y., Sun Y., Zhang M., Adhikari B., Li Z. Effect of ball milling time on physicochemical properties of Cordyceps militaris ultrafine particles. J. Food Process Preserv. 2019;42:e13065. doi: 10.1111/jfpe.13065. DOI

Jiang G., Ramachandraiah K., Wu Z., Li S., Eun J.-B. Impact of ball-milling time on the physical properties, bioactive compounds, and structural characteristics of onion peel powder. Food Biosci. 2020;36:100630. doi: 10.1016/j.fbio.2020.100630. DOI

Norhidayah A., Noriham A., Rusop M. Changes in physical and antioxidant properties of nanostructured Zingiber officinale (ginger) rhizome as affected by milling time. Adv. Mater. Res. 2013;667:144–149. doi: 10.4028/www.scientific.net/AMR.667.144. DOI

Wang J., Zhang M., Devahastin S., Liu Y. Influence of low-temperature ball milling time on physicochemical properties, flavor, bioactive compounds contents and antioxidant activity of horseradish powder. Adv. Powder Technol. 2020;31:914–921. doi: 10.1016/j.apt.2019.12.011. DOI

Zhao X., Sun L., Zhang X., Liu H., Zhu Y. Effect of ultrafine grinding time on the functional and flavor properties of soybean isolates. Colloids Surf. B. 2020;196:111345. doi: 10.1016/j.colsurfb.2020.111345. PubMed DOI

Benković M., Belščak-Cvitanović A., Bauman I., Komes D., Srečec S. Flow properties and chemical composition of carob (Ceratonia siliqua L.) flours as related to particle size and seed presence. Food Res. Int. 2017;100:211–218. doi: 10.1016/j.foodres.2017.08.048. PubMed DOI

Labanca R.A., Svelander C., Alminger M. Effect of particle size of chia seeds on bioaccessibility of phenolic compounds during in vitro digestion. Cogent Food Agric. 2019;5:1694775. doi: 10.1080/23311932.2019.1694775. DOI

Savlak N., Türker B., Yeşilkanat N. Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour. Food Chem. 2016;213:180–186. doi: 10.1016/j.foodchem.2016.06.064. PubMed DOI

Capuano E., Pellegrini N. An integrated look at the effect of structure on nutrient bioavailability in plant foods. J. Sci. Food Agric. 2019;99:493–498. doi: 10.1002/jsfa.9298. PubMed DOI

Chait Y.A., Gunenc A., Bendali F., Hosseinian F. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity. LWT-Food Sci. Technol. 2020;117:108623. doi: 10.1016/j.lwt.2019.108623. DOI

Goulas V., Hadjisolomou A. Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion. LWT-Food Sci. Technol. 2019;101:269–275. doi: 10.1016/j.lwt.2018.11.003. DOI

Frühbauerová M., Červenka L., Hájek T., Pouzar M., Palarčík J. Bioaccessibility of phenolics from carob (Ceratonia siliqua L.) pod powder prepared by cryogenic and vibratory grinding. Food Chem. 2022;377:131968. doi: 10.1016/j.foodchem.2021.131968. PubMed DOI

Boublenza I., Lazouni H.A., Ghaffari L., Ruiz K., Fabiano-Tixier A.S., Chemat F. Influence of roasting on sensory, antioxidant, aromas, and physicochemical properties of carob pod powder (Ceratonia siliqua L.) J. Food Qual. 2017;2017:4193672. doi: 10.1155/2017/4193672. DOI

Ali H., Al-Khalifa A.R., Aboelsood W., Bareh G., Farouk A. Influence of spray-drying on improving the quality of dried carob juice. Qual. Assur. Saf. Crop. 2019;11:391–399. doi: 10.3920/QAS2018.1524. DOI

Donohue M.D., Aranovich G.L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998;76–77:137–152. doi: 10.1016/S0001-8686(98)00044-X. DOI

Vega-Gálvez A., López J., Ah-Hen K., Torres M.J., Lemus-Mondaca R. Thermodynamic properties, sorption isotherms and glass transition temperature of cape gooseberry (Physalis peruviana L.) Food Technol. Biotechnol. 2014;52:83–92.

Czubinski J., Wroblewska K., Czyzniejewski M., Górnaś P., Kachlicki P., Siger A. Bioaccessibility of defatted lupin seed phenolic compounds in a standardized static in vitro digestion system. Food Res. Int. 2019;19:1126–1134. doi: 10.1016/j.foodres.2018.09.057. PubMed DOI

Zeng Q., Xu Z., Dai M., Cao X., Xiong X., He S., Yuan Y., Zhang M., Dong L., Zhang R., et al. Effects of simulated digestion on the phenolic composition and antioxidant activity of different cultivars of lychee pericarp. BMC Chem. 2019;13:27. doi: 10.1186/s13065-019-0544-4. PubMed DOI PMC

Sun Y., Tao W., Huang H., Ye X., Sun P. Flavonoids, phenolic acids, carotenoids and antioxidant activity of fresh eating citrus fruits, using the coupled in vitro digestion and human intestinal HepG2 cells model. Food Chem. 2019;279:321–327. doi: 10.1016/j.foodchem.2018.12.019. PubMed DOI

Djaoudene O., Mansinhos I., Gonçalves S., Jara-Palacios M.J., Bey M.B., Romano A. Phenolic profile, antioxidant activity and enzyme inhibitory capacities of fruit and seed extracts from different Algerian cultivars of date (Phoenix dactylifera L.) were affected by in vitro simulated gastrointestinal digestion. S. Afr. J. Bot. 2021;137:133–148. doi: 10.1016/j.sajb.2020.10.015. DOI

Panagopoulou E.A., Chiou A., Kasimatis T.-D., Bismpikis M., Mouraka P., Karathanos V.T. Dried dates: Polar phenols and their fate during in vitro digestion. J. Food Meas. Charact. 2021;15:1899–1906. doi: 10.1007/s11694-020-00785-7. DOI

Barros R.G.C., Pereira U.C., Andrade J.K.S., Santo de Oliveira C., Vasconcelos S.V., Narain N. In vitro gastrointestinal digestion and probiotics fermentation impact on bioaccessbility of phenolics compounds and antioxidant capacity of some native and exotic fruit residues with potential antidiabetic effects. Food Res. Int. 2020;136:109614. doi: 10.1016/j.foodres.2020.109614. PubMed DOI

Chen G.L., Chen S.G., Xie Y.Q., Chen F., Zhao Y., Luo C.X., Gao Y.Q. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods. 2015;17:243–259. doi: 10.1016/j.jff.2015.05.028. DOI

Li Y., Li M., Wang L., Li Z. Effect of particle size on the release behavior and functional properties of wheat bran phenolic compounds during in vitro gastrointestinal digestion. Food Chem. 2022;367:130751. doi: 10.1016/j.foodchem.2021.130751. PubMed DOI

Świeca M., Baraniak B., Gawlik-Dziki U. In vitro digestibility and starch content, predicted glycemic index and potential in vitro antidiabetic effect of lentil sprouts obtained by different germination techniques. Food Chem. 2013;138:1414–1420. doi: 10.1016/j.foodchem.2012.09.122. PubMed DOI

Hunt R.W.G., Pointer M.R. Measuring Colour. 4th ed. John Wiley & Sons; Chichester, UK: 2011. pp. 41–72. DOI

Sochor J., Ryvolová M., Krystofova O., Salas P., Hubalek J., Adam V., Trnkova L., Havel L., Beklova M., Zehnalek J., et al. Fully automated spectrometric protocols for determination of antioxidant activity: Advantages and disadvantages. Molecules. 2010;15:8618–8640. doi: 10.3390/molecules15128618. PubMed DOI PMC

Baba S., Malik S. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 2018;9:449–454. doi: 10.1016/j.jtusci.2014.11.001. DOI

Pękal A., Pyrzynska K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods. 2014;7:1776–1782. doi: 10.1007/s12161-014-9814-x. DOI

Sun B., da Silva J.R., Spranger I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998;46:4267–4274. doi: 10.1021/jf980366j. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...