Applying an Anti-Kasha Model Resolves Differences Between Photosynthetic and Artificial Pigments

. 2025 Aug 07 ; 129 (31) : 7884-7895. [epub] 20250723

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40701941

The current interpretation of excitation energy transfer (EET) processes in natural photosynthesis generally relies on Kasha's rule, suggesting that internal conversion (IC) processes usually outpace any EET between higher excited states. It is, however, known from research on artificial systems that Kasha's rule does not apply to many dyes, especially when found in assembled clusters analogous to photosynthetic chlorophyll (Chl)-protein complexes. In this contribution, a semiempirical Förster-type model is applied to otherwise well-investigated pigments of natural photosynthesis (Chls a, b, c1 and various carotenoids). Strong potential for anti-Kasha processes is identified in all investigated pigments, based on their high Coulomb coupling elements, similar to compounds with already known anti-Kasha properties. The pigments are further found to form strongly delocalized excitons, especially between the higher excited states usually responsible for anti-Kasha pathways. Test calculations with different pigment compositions for various natural light harvesting complexes (LHCII, CP24, CP26, CP29, FCP) demonstrate how the higher band EET network and absorbance could be affected by the presence of accessory pigments: Chl a-only networks should perform anti-Kasha EET, but this is suppressed by the presence of accessory pigments via several mechanisms (exciton disruption, spectral competition, energy sinks and fast, non-Chl a IC). The apparent "special" behavior of photosynthetic systems is thus resolved as the result of pigment mixtures.

Zobrazit více v PubMed

Scholes G. D., Fleming G. R., Olaya-Castro A., van Grondelle R.. Lessons from Nature about Solar Light Harvesting. Nat. Chem. 2011;3(10):763–774. doi: 10.1038/nchem.1145. PubMed DOI

Zhou X., Zeng Y., Lv F., Bai H., Wang S.. Organic Semiconductor–Organism Interfaces for Augmenting Natural and Artificial Photosynthesis. Acc. Chem. Res. 2022;55(2):156–170. doi: 10.1021/acs.accounts.1c00580. PubMed DOI

Jing H., Rong J., Taniguchi M., Lindsey J. S.. Phenylene-Linked Tetrapyrrole Arrays Containing Free Base and Diverse Metal Chelate Forms – Versatile Synthetic Architectures for Catalysis and Artificial Photosynthesis. Coord. Chem. Rev. 2022;456:214278. doi: 10.1016/j.ccr.2021.214278. DOI

Lokstein H., Renger G., Götze J.. Photosynthetic Light-Harvesting (Antenna) ComplexesStructures and Functions. Molecules. 2021;26(11):3378. doi: 10.3390/molecules26113378. PubMed DOI PMC

Kasha M.. Characterization of Electronic Transitions in Complex Molecules. Discuss. Faraday Soc. 1950;9:14. doi: 10.1039/df9500900014. DOI

Nakano A., Yasuda Y., Yamazaki T., Akimoto S., Yamazaki I., Miyasaka H., Itaya A., Murakami M., Osuka A.. Intramolecular Energy Transfer in S 1 - and S 2 -States of Porphyrin Trimers. J. Phys. Chem. A. 2001;105(20):4822–4833. doi: 10.1021/jp010596s. DOI

Nakano A., Osuka A., Yamazaki T., Nishimura Y., Akimoto S., Yamazaki I., Itaya A., Murakami M., Miyasaka H.. Modified Windmill Porphyrin Arrays: Coupled Light-Harvesting and Charge Separation, Conformational Relaxation in the S1 State, and S2-S2 Energy Transfer. Chem.A Eur. J. 2001;7(14):3134–3151. doi: 10.1002/1521-3765(20010716)7:14<3134::AID-CHEM3134>3.0.CO;2-3. PubMed DOI

Demchenko A. P., Tomin V. I., Chou P.-T.. Breaking the Kasha Rule for More Efficient Photochemistry. Chem. Rev. 2017;117(21):13353–13381. doi: 10.1021/acs.chemrev.7b00110. PubMed DOI

Mirkovic T., Ostroumov E. E., Anna J. M., van Grondelle R., Govindjee, Scholes G. D.. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. Chem. Rev. 2017;117(2):249–293. doi: 10.1021/acs.chemrev.6b00002. PubMed DOI

Shevela D., Kern J. F., Govindjee G., Messinger J.. Solar Energy Conversion by Photosystem II: Principles and Structures. Photosynth. Res. 2023;156(3):279–307. doi: 10.1007/s11120-022-00991-y. PubMed DOI PMC

Shi Y., Liu J.-Y., Han K.-L.. Investigation of the Internal Conversion Time of the Chlorophyll a from S3, S2 to S1. Chem. Phys. Lett. 2005;410(4–6):260–263. doi: 10.1016/j.cplett.2005.05.017. DOI

Zheng F., Fernandez-Alberti S., Tretiak S., Zhao Y.. Photoinduced Intra- and Intermolecular Energy Transfer in Chlorophyll a Dimer. J. Phys. Chem. B. 2017;121(21):5331–5339. doi: 10.1021/acs.jpcb.7b02021. PubMed DOI

Bricker W. P., Shenai P. M., Ghosh A., Liu Z., Enriquez M. G. M., Lambrev P. H., Tan H.-S., Lo C. S., Tretiak S., Fernandez-Alberti S.. et al. Non-Radiative Relaxation of Photoexcited Chlorophylls: Theoretical and Experimental Study. Sci. Rep. 2015;5(1):13625. doi: 10.1038/srep13625. PubMed DOI PMC

Telegina T. A., Vechtomova Y. L., Aybush A. V., Buglak A. A., Kritsky M. S.. Isomerization of Carotenoids in Photosynthesis and Metabolic Adaptation. Biophys. Rev. 2023;15(5):887–906. doi: 10.1007/s12551-023-01156-4. PubMed DOI PMC

Petry S., Götze J. P.. Effect of Protein Matrix on CP29 Spectra and Energy Transfer Pathways. Biochim. Biophys. Acta, Bioenergy. 2022;1863(2):148521. doi: 10.1016/j.bbabio.2021.148521. PubMed DOI

Petry S., Tremblay J. C., Götze J. P.. Impact of Structure, Coupling Scheme, and State of Interest on the Energy Transfer in CP29. J. Phys. Chem. B. 2023;127(33):7207–7219. doi: 10.1021/acs.jpcb.3c01012. PubMed DOI

Götze J. P., Lokstein H.. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 1. Carotenoids Intercept and Remove B Band Excitations. ACS Omega. 2023;8(43):40005–40014. doi: 10.1021/acsomega.3c05895. PubMed DOI PMC

Götze J. P., Lokstein H.. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 2. Chlorophyll b Is a B Band Excitation Trap. ACS Omega. 2023;8(43):40015–40023. doi: 10.1021/acsomega.3c05896. PubMed DOI PMC

Veys K., Escudero D.. Anti-Kasha Fluorescence in Molecular Entities: Central Role of Electron–Vibrational Coupling. Acc. Chem. Res. 2022;55(18):2698–2707. doi: 10.1021/acs.accounts.2c00453. PubMed DOI

Croce R., van Amerongen H.. Light-Harvesting in Photosystem I. Photosynth. Res. 2013;116(2–3):153–166. doi: 10.1007/s11120-013-9838-x. PubMed DOI PMC

Kühlbrandt W., Wang D. N., Fujiyoshi Y.. Atomic Model of Plant Light-Harvesting Complex by Electron Crystallography. Nature. 1994;367(6464):614–621. doi: 10.1038/367614a0. PubMed DOI

Tanaka A., Ito H., Tanaka R., Tanaka N. K., Yoshida K., Okada K.. Chlorophyll a Oxygenase (CAO) Is Involved in Chlorophyll b Formation from Chlorophyll A. Proc. Natl. Acad. Sci. U.S.A. 1998;95(21):12719–12723. doi: 10.1073/pnas.95.21.12719. PubMed DOI PMC

Kuczynska P., Jemiola-Rzeminska M., Strzalka K.. Photosynthetic Pigments in Diatoms. Mar. Drugs. 2015;13(9):5847–5881. doi: 10.3390/md13095847. PubMed DOI PMC

Büchel C.. Light Harvesting Complexes in Chlorophyll C-Containing Algae. Biochim. Biophys. Acta, Bioenergy. 2020;1861(4):148027. doi: 10.1016/j.bbabio.2019.05.003. PubMed DOI

Kashiyama Y., Miyashita H., Ohkubo S., Ogawa N. O., Chikaraishi Y., Takano Y., Suga H., Toyofuku T., Nomaki H., Kitazato H.. et al. Evidence of Global Chlorophyll D. Science. 2008;321(5889):658. doi: 10.1126/science.1158761. PubMed DOI

Gan F., Zhang S., Rockwell N. C., Martin S. S., Lagarias J. C., Bryant D. A.. Extensive Remodeling of a Cyanobacterial Photosynthetic Apparatus in Far-Red Light. Science. 2014;345(6202):1312–1317. doi: 10.1126/science.1256963. PubMed DOI

Novoderezhkin V. I., Romero E., Dekker J. P., van Grondelle R.. Multiple Charge-Separation Pathways in Photosystem II: Modeling of Transient Absorption Kinetics. ChemPhysChem. 2011;12(3):681–688. doi: 10.1002/cphc.201000830. PubMed DOI

Dekker J. P., Van Grondelle R.. Primary Charge Separation in Photosystem II. Photosynth. Res. 2000;63(3):195–208. doi: 10.1023/A:1006468024245. PubMed DOI

Ishikita H., Loll B., Biesiadka J., Saenger W., Knapp E.-W.. Redox Potentials of Chlorophylls in the Photosystem II Reaction Center. Biochemistry. 2005;44(10):4118–4124. doi: 10.1021/bi047922p. PubMed DOI

Shi T., Bibby T. S., Jiang L., Irwin A. J., Falkowski P. G.. Protein Interactions Limit the Rate of Evolution of Photosynthetic Genes in Cyanobacteria. Mol. Biol. Evol. 2005;22(11):2179–2189. doi: 10.1093/molbev/msi216. PubMed DOI

Drosou M., Bhattacharjee S., Pantazis D. A.. Combined Multireference–Multiscale Approach to the Description of Photosynthetic Reaction Centers. J. Chem. Theory Comput. 2024;20(16):7210–7226. doi: 10.1021/acs.jctc.4c00578. PubMed DOI PMC

Reiter S., Bäuml L., Hauer J., de Vivie-Riedle R.. Q-Band Relaxation in Chlorophyll: New Insights from Multireference Quantum Dynamics. Phys. Chem. Chem. Phys. 2022;24(44):27212–27223. doi: 10.1039/D2CP02914F. PubMed DOI

Gouterman M.. Spectra of Porphyrins. J. Mol. Spectrosc. 1961;6:138–163. doi: 10.1016/0022-2852(61)90236-3. DOI

Götze J. P., Anders F., Petry S., Witte J. F., Lokstein H.. Spectral Characterization of the Main Pigments in the Plant Photosynthetic Apparatus by Theory and Experiment. Chem. Phys. 2022;559(11):111517. doi: 10.1016/j.chemphys.2022.111517. DOI

Sirohiwal A., Berraud-Pache R., Neese F., Izsák R., Pantazis D. A.. Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. J. Phys. Chem. B. 2020;124(40):8761–8771. doi: 10.1021/acs.jpcb.0c05761. PubMed DOI PMC

Graczyk A., Żurek J. M., Paterson M. J.. On the Linear and Non-Linear Electronic Spectroscopy of Chlorophylls: A Computational Study. Photochem. Photobiol. Sci. 2013;13(1):103–111. doi: 10.1039/c3pp50262g. PubMed DOI

Macpherson A. N., Gillbro T.. Solvent Dependence of the Ultrafast S 2 – S 1 Internal Conversion Rate of β-Carotene. J. Phys. Chem. A. 1998;102(26):5049–5058. doi: 10.1021/jp980979z. DOI

Polívka T., Sundström V.. Dark Excited States of Carotenoids: Consensus and Controversy. Chem. Phys. Lett. 2009;477(1–3):1–11. doi: 10.1016/j.cplett.2009.06.011. DOI

Leupold D., Teuchner K., Ehlert J., Irrgang K.-D., Renger G., Lokstein H.. Two-Photon Excited Fluorescence from Higher Electronic States of Chlorophylls in Photosynthetic Antenna Complexes: A New Approach to Detect Strong Excitonic Chlorophyll a/b Coupling. Biophys. J. 2002;82(3):1580–1585. doi: 10.1016/S0006-3495(02)75509-4. PubMed DOI PMC

Leupold D., Teuchner K., Ehlert J., Irrgang K. D., Renger G., Lokstein H.. Stepwise Two-Photon Excited Fluorescence from Higher Excited States of Chlorophylls in Photosynthetic Antenna Complexes. J. Biol. Chem. 2006;281(35):25381–25387. doi: 10.1074/jbc.M600080200. PubMed DOI

Galanin M. D., Chizhikova Z. A.. Applications of Fluorescence from the Second Excited Electronic Level of Rhodamine 6G. J. Appl. Spectrosc. 1982;37(6):1440–1444. doi: 10.1007/BF00662486. DOI

Scholes G. D., Fleming G. R.. On the Mechanism of Light Harvesting in Photosynthetic Purple Bacteria: B800 to B850 Energy Transfer. J. Phys. Chem. B. 2000;104(8):1854–1868. doi: 10.1021/jp993435l. DOI

Jang S., Newton M. D., Silbey R. J.. Multichromophoric Förster Resonance Energy Transfer. Phys. Rev. Lett. 2004;92(21):218301. doi: 10.1103/PhysRevLett.92.218301. PubMed DOI

Forster T.. 10th Spiers Memorial Lecture. Transfer Mechanisms of Electronic Excitation. Discuss. Faraday Soc. 1959;27:7–17. doi: 10.1039/DF9592700007. DOI

Qi Q., Taniguchi M., Lindsey J. S.. Heuristics from Modeling of Spectral Overlap in Förster Resonance Energy Transfer (FRET) J. Chem. Inf. Model. 2019;59(2):652–667. doi: 10.1021/acs.jcim.8b00753. PubMed DOI

Su X., Ma J., Wei X., Cao P., Zhu D., Chang W., Liu Z., Zhang X., Li M.. Structure and Assembly Mechanism of Plant C 2 S 2 M 2 -Type PSII-LHCII Supercomplex. Science. 2017;357(6353):815–820. doi: 10.1126/science.aan0327. PubMed DOI

Nagao R., Kato K., Kumazawa M., Ifuku K., Yokono M., Suzuki T., Dohmae N., Akita F., Akimoto S., Miyazaki N.. et al. Structural Basis for Different Types of Hetero-Tetrameric Light-Harvesting Complexes in a Diatom PSII-FCPII Supercomplex. Nat. Commun. 2022;13(1):1764. doi: 10.1038/s41467-022-29294-5. PubMed DOI PMC

Barer R., Tkaczyk S.. Refractive Index of Concentrated Protein Solutions. Nature. 1954;173(4409):821–822. doi: 10.1038/173821b0. PubMed DOI

Krueger B. P., Scholes G. D., Fleming G. R.. Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the Ab Initio Transition Density Cube Method. J. Phys. Chem. B. 1998;102(27):5378–5386. doi: 10.1021/jp9811171. DOI

Madjet M. E., Abdurahman A., Renger T.. Intermolecular Coulomb Couplings from Ab Initio Electrostatic Potentials: Application to Optical Transitions of Strongly Coupled Pigments in Photosynthetic Antennae and Reaction Centers. J. Phys. Chem. B. 2006;110(34):17268–17281. doi: 10.1021/jp0615398. PubMed DOI

Keil E., Kumar A., Bauml L., Reiter S., Thyrhaug E., Moser S., Duffy C. D. P., Kumar A., de Vivie-Riedle R., Hauer J.. Reassessing the Role and Lifetime of Qx in the Energy Transfer Dynamics of Chlorophyll A. Chem. Sci. 2025;16(4):1684–1695. doi: 10.1039/D4SC06441K. PubMed DOI PMC

Knox R. S., Spring B. Q.. Dipole Strengths in the Chlorophylls. Photochem. Photobiol. 2003;77(5):497. doi: 10.1562/0031-8655(2003)077<0497:dsitc>2.0.co;2. PubMed DOI

Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Petersson, G. A. ; Nakatsuji, H. ; et al. Gaussian 16. Revision A.03; Guassian Inc., 2016.

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E.. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Götze J. P., Pi Y., Petry S., Langkabel F., Witte J. F., Lemke O.. A User-friendly, Python-based Quantum Mechanics/Gromacs Interface: Gmx2qmmm. Int. J. Quantum Chem. 2021;123(3):e26486. doi: 10.1002/qua.26486. DOI

Salomon-Ferrer R., Case D. A., Walker R. C.. An Overview of the Amber Biomolecular Simulation Package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013;3(2):198–210. doi: 10.1002/wcms.1121. DOI

Yanai T., Tew D. P., Handy N. C.. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP) Chem. Phys. Lett. 2004;393(1–3):51–57. doi: 10.1016/j.cplett.2004.06.011. DOI

Hariharan P. C., Pople J. A.. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta. 1973;28(3):213–222. doi: 10.1007/BF00533485. DOI

Casida M. E., Jamorski C., Casida K. C., Salahub D. R.. Molecular Excitation Energies to High-Lying Bound States from Time-Dependent Density-Functional Response Theory: Characterization and Correction of the Time-Dependent Local Density Approximation Ionization Threshold. J. Chem. Phys. 1998;108(11):4439–4449. doi: 10.1063/1.475855. DOI

Jamorski C., Casida M. E., Salahub D. R.. Dynamic Polarizabilities and Excitation Spectra from a Molecular Implementation of Time-dependent Density-functional Response Theory: N 2 as a Case Study. J. Chem. Phys. 1996;104(13):5134–5147. doi: 10.1063/1.471140. DOI

Casida M. E., Salahub D. R.. Asymptotic Correction Approach to Improving Approximate Exchange–Correlation Potentials: Time-Dependent Density-Functional Theory Calculations of Molecular Excitation Spectra. J. Chem. Phys. 2000;113(20):8918–8935. doi: 10.1063/1.1319649. DOI

Maity S., Daskalakis V., Jansen T. L. C., Kleinekathöfer U.. Electric Field Susceptibility of Chlorophyll c Leads to Unexpected Excitation Dynamics in the Major Light-Harvesting Complex of Diatoms. J. Phys. Chem. Lett. 2024;15(9):2499–2510. doi: 10.1021/acs.jpclett.3c03241. PubMed DOI PMC

FRET–Förster Resonance Energy Transfer; Medintz, I. , Hildebrandt, N. , Eds.; Wiley, 2013.

Zang L.-Y., Sommerburg O., van Kuijk F. J. G.. Absorbance Changes of Carotenoids in Different Solvents. Free Radical Biol. Med. 1997;23(7):1086–1089. doi: 10.1016/S0891-5849(97)00138-X. PubMed DOI

Götze J. P.. Vibrational Relaxation in Carotenoids as an Explanation for Their Rapid Optical Properties. J. Phys. Chem. B. 2019;123(10):2203–2209. doi: 10.1021/acs.jpcb.8b09841. PubMed DOI

Wegner F.. Inverse Participation Ratio in 2+? Dimensions. Z. Phys. B Condens. Matter. 1980;36(3):209–214. doi: 10.1007/BF01325284. DOI

Niedzwiedzki D. M., Blankenship R. E.. Singlet and Triplet Excited State Properties of Natural Chlorophylls and Bacteriochlorophylls. Photosynth. Res. 2010;106(3):227–238. doi: 10.1007/s11120-010-9598-9. PubMed DOI

Elias E., Liguori N., Croce R.. The Origin of Pigment-Binding Differences in CP29 and LHCII: The Role of Protein Structure and Dynamics. Photochem. Photobiol. Sci. 2023;22(6):1279–1297. doi: 10.1007/s43630-023-00368-7. PubMed DOI

Reiter S., Kiss F. L., Hauer J., de Vivie-Riedle R.. Thermal Site Energy Fluctuations in Photosystem I: New Insights from MD/QM/MM Calculations. Chem. Sci. 2023;14(12):3117–3131. doi: 10.1039/D2SC06160K. PubMed DOI PMC

Mataga N., Shibata Y., Chosrowjan H., Yoshida N., Osuka A.. Internal Conversion and Vibronic Relaxation from Higher Excited Electronic State of Porphyrins: Femtosecond Fluorescence Dynamics Studies. J. Phys. Chem. B. 2000;104(17):4001–4004. doi: 10.1021/jp9941256. DOI

Nielsen A., Kuzmanich G., Garcia-Garibay M. A.. Quantum Chain Reaction of Tethered Diarylcyclopropenones in the Solid State and Their Distance-Dependence in Solution Reveal a Dexter S 2 – S 2 Energy-Transfer Mechanism. J. Phys. Chem. A. 2014;118(10):1858–1863. doi: 10.1021/jp501216z. PubMed DOI

Khan I., Zada A., Jia T., Hu X.. Effect of the Enhanced Production of Chlorophyll b on the Light Acclimation of Tomato. Int. J. Mol. Sci. 2023;24(4):3377. doi: 10.3390/ijms24043377. PubMed DOI PMC

Jinkerson R. E., Poveda-Huertes D., Cooney E. C., Cho A., Ochoa-Fernandez R., Keeling P. J., Xiang T., Andersen-Ranberg J.. Biosynthesis of Chlorophyll c in a Dinoflagellate and Heterologous Production in Planta. Curr. Biol. 2024;34(3):594–605e4. doi: 10.1016/j.cub.2023.12.068. PubMed DOI

Young A. J., Frank H. A.. Energy Transfer Reactions Involving Carotenoids: Quenching of Chlorophyll Fluorescence. J. Photochem. Photobiol., B. 1996;36(1):3–15. doi: 10.1016/S1011-1344(96)07397-6. PubMed DOI

Polívka T., Frank H. A.. Molecular Factors Controlling Photosynthetic Light Harvesting by Carotenoids. Acc. Chem. Res. 2010;43(8):1125–1134. doi: 10.1021/ar100030m. PubMed DOI PMC

Fuhrman J. A., Davis A. A.. Widespread Archaea and Novel Bacteria from the Deep Sea as Shown by 16S RRNA Gene Sequences. Mar. Ecol.: Prog. Ser. 1997;150(1–3):275–285. doi: 10.3354/meps150275. DOI

Zavafer A.. A Theoretical Framework of the Hybrid Mechanism of Photosystem II Photodamage. Photosynth. Res. 2021;149(1–2):107–120. doi: 10.1007/s11120-021-00843-1. PubMed DOI

Zavafer A., Chow W. S., Cheah M. H.. The Action Spectrum of Photosystem II Photoinactivation in Visible Light. J. Photochem. Photobiol., B. 2015;152:247–260. doi: 10.1016/j.jphotobiol.2015.08.007. PubMed DOI

Götze J. P., Kröner D., Banerjee S., Karasulu B., Thiel W.. Carotenoids as a Shortcut for Chlorophyll Soret-to-Q Band Energy Flow. ChemPhysChem. 2014;15(15):3392–3401. doi: 10.1002/cphc.201402233. PubMed DOI

Taniguchi M., Lindsey J. S.. Absorption and Fluorescence Spectral Database of Chlorophylls and Analogues. Photochem. Photobiol. 2021;97(1):136–165. doi: 10.1111/php.13319. PubMed DOI

Mizoguchi T., Isaji M., Harada J., Tsukatani Y., Tamiaki H.. The 17-Propionate Esterifying Variants of Bacteriochlorophyll-a and Bacteriopheophytin-a in Purple Photosynthetic Bacteria. J. Photochem. Photobiol., B. 2015;142:244–249. doi: 10.1016/j.jphotobiol.2014.12.013. PubMed DOI

Connolly J. S., Samuel E. B., Janzen A. F.. EFFECTS OF SOLVENT ON THE FLUORESCENCE PROPERTIES OF BACTERIOCHLOROPHYLL A . Photochem. Photobiol. 1982;36(5):565–574. doi: 10.1111/j.1751-1097.1982.tb04417.x. DOI

Oelze, J. 9 Analysis of Bacteriochlorophylls. In Methods in Microbiology; Academic Press, 1985; Vol. 18, pp 257–284.

Stanier R. Y., Smith J. H. C.. The Chlorophylls of Green Bacteria. Biochim. Biophys. Acta. 1960;41(3):478–484. doi: 10.1016/0006-3002(60)90045-7. PubMed DOI

Pierson B. K., Castenholz R. W.. Studies of Pigments and Growth in Chloroflexus Aurantiacus, a Phototrophic Filamentous Bacterium. Arch. Microbiol. 1974;100(1):283–305. doi: 10.1007/BF00446324. PubMed DOI

Gloe A., Pfennig N., Brockmann H., Trowitzsch W. A.. New Bacteriochlorophyll from Brown-Colored Chlorobiaceae. Arch. Microbiol. 1975;102(1):103–109. doi: 10.1007/BF00428353. PubMed DOI

Borrego C. M., Arellano J. B., Abella C. A., Gillbro T., Garcia-Gil J.. The Molar Extinction Coefficient of Bacteriochlorophyll e and the Pigment Stoichiometry in Chlorobium Phaeobacteroides . Photosynth. Res. 1999;60(2–3):257–264. doi: 10.1023/A:1006230820007. DOI

Tamiaki H., Komada J., Kunieda M., Fukai K., Yoshitomi T., Harada J., Mizoguchi T.. In Vitro Synthesis and Characterization of Bacteriochlorophyll-f and Its Absence in Bacteriochlorophyll-e Producing Organisms. Photosynth. Res. 2011;107(2):133–138. doi: 10.1007/s11120-010-9603-3. PubMed DOI

Niedzwiedzki D. M., Orf G. S., Tank M., Vogl K., Bryant D. A., Blankenship R. E.. Photophysical Properties of the Excited States of Bacteriochlorophyll f in Solvents and in Chlorosomes. J. Phys. Chem. B. 2014;118(9):2295–2305. doi: 10.1021/jp409495m. PubMed DOI

van de Meent E. J., Kobayashi M., Erkelens C., van Veelen P. A., Amesz J., Watanabe T.. Identification of 81-Hydroxychlorophyll a as a Functional Reaction Center Pigment in Heliobacteria. Biochim. Biophys. Acta, Bioenergy. 1991;1058(3):356–362. doi: 10.1016/S0005-2728(05)80131-8. DOI

Kobayashi, M. ; Akiyama, M. ; Kano, H. ; Kise, H. . Spectroscopy and Structure Determination. In Chlorophylls and Bacteriochlorophylls; Springer Netherlands: Dordrecht, pp 79–94.

Strain H. H., Thomas M. R., Katz J. J.. Spectral Absorption Properties of Ordinary and Fully Deuteriated Chlorophylls a and b. Biochim. Biophys. Acta. 1963;75:306–311. doi: 10.1016/0006-3002(63)90617-6. PubMed DOI

Taniguchi M., Lindsey J. S.. Database of Absorption and Fluorescence Spectra of > 300 Common Compounds for Use in Photochem < scp > CAD</Scp&gt. Photochem. Photobiol. 2018;94(2):290–327. doi: 10.1111/php.12860. PubMed DOI

Goedheer, J. C. Visible Absorption and Fluorescence of Chlorophyll and Its Aggregates in Solution. In The Chlorophylls; Elsevier, 1966; pp 147–184.

Jeffrey S. W.. Preparation and Some Properties of Crystalline Chlorophyll C1 and C2 from Marine Algae. Biochim. Biophys. Acta, General Subj. 1972;279(1):15–33. doi: 10.1016/0304-4165(72)90238-3. PubMed DOI

Jeffrey, S. W. ; Mantoura, R. F. C. ; Bjørnland, T. . Data for the Identification of 47 Key Phytoplankton Pigments. In Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods; Jeffrey, S. W. , Mantoura, R. F. C. , Bjørnland, T. , Eds.; UNESCO Publishing: Paris, 1997; pp 449–559.

Jeffrey S. W., Wright S. W.. A New Spectrally Distinct Component in Preparations of Chlorophyll c from the Micro-Alga Emiliania Huxleyi (Prymnesiophycease) Biochim. Biophys. Acta, Bioenergy. 1987;894(2):180–188. doi: 10.1016/0005-2728(87)90188-5. DOI

Li Y., Scales N., Blankenship R. E., Willows R. D., Chen M.. Extinction Coefficient for Red-Shifted Chlorophylls: Chlorophyll d and Chlorophyll F. Biochim. Biophys. Acta, Bioenergy. 2012;1817(8):1292–1298. doi: 10.1016/j.bbabio.2012.02.026. PubMed DOI

Shedbalkar V. P., Rebeiz C. A.. Chloroplast Biogenesis: Determination of the Molar Extinction Coefficients of Divinyl Chlorophyll a and b and Their Pheophytins. Anal. Biochem. 1992;207(2):261–266. doi: 10.1016/0003-2697(92)90010-5. PubMed DOI

Steglich C., Mullineaux C. W., Teuchner K., Hess W. R., Lokstein H.. Photophysical Properties of Prochlorococcus Marinus SS120 Divinyl Chlorophylls and Phycoerythrin in Vitro and in Vivo. FEBS Lett. 2003;553(1–2):79–84. doi: 10.1016/S0014-5793(03)00971-2. PubMed DOI

Apell J. N., McNeill K.. Updated and Validated Solar Irradiance Reference Spectra for Estimating Environmental Photodegradation Rates. Environ. Sci. Process. Impacts. 2019;21(3):427–437. doi: 10.1039/C8EM00478A. PubMed DOI

Jaubert M., Bouly J.-P., Ribera d’Alcalà M., Falciatore A.. Light Sensing and Responses in Marine Microalgae. Curr. Opin. Plant Biol. 2017;37:70–77. doi: 10.1016/j.pbi.2017.03.005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...