Superlattice in collapsed graphene wrinkles
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ERC-2016-STG-716265
EC | European Research Council (ERC)
ERC-2016-STG-716265
EC | European Research Council (ERC)
ERC-2016-STG-716265
EC | European Research Council (ERC)
GACR 17-18702S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
GACR 17-18702S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
31292481
PubMed Central
PMC6620273
DOI
10.1038/s41598-019-46372-9
PII: 10.1038/s41598-019-46372-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Topographic corrugations, such as wrinkles, are known to introduce diverse physical phenomena that can significantly modify the electrical, optical and chemical properties of two-dimensional materials. This range of assets can be expanded even further when the crystal lattices of the walls of the wrinkle are aligned and form a superlattice, thereby creating a high aspect ratio analogue of a twisted bilayer or multilayer - the so-called twisted wrinkle. Here we present an experimental proof that such twisted wrinkles exist in graphene monolayers on the scale of several micrometres. Combining atomic force microscopy and Raman spectral mapping using a wide range of visible excitation energies, we show that the wrinkles are extremely narrow and their Raman spectra exhibit all the characteristic features of twisted bilayer or multilayer graphene. In light of a recent breakthrough - the superconductivity of a magic-angle graphene bilayer, the collapsed wrinkles represent naturally occurring systems with tuneable collective regimes.
Zobrazit více v PubMed
Cao Y, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature. 2018;556:43. doi: 10.1038/nature26160. PubMed DOI
Li G, et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2010;6:109–113. doi: 10.1038/nphys1463. DOI
Jorio A, et al. Optical-Phonon Resonances with Saddle-Point Excitons in Twisted-Bilayer Graphene. Nano Lett. 2014;14:5687–5692. doi: 10.1021/nl502412g. PubMed DOI
Carozo V, et al. Raman Signature of Graphene Superlattices. Nano Lett. 2011;11:4527–4534. doi: 10.1021/nl201370m. PubMed DOI
Gupta AK, Tang Y, Crespi VH, Eklund PC. Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Phys. Rev. B. 2010;82:241406. doi: 10.1103/PhysRevB.82.241406. DOI
Kim K, et al. Raman Spectroscopy Study of Rotated Double-Layer Graphene: Misorientation-Angle Dependence of Electronic Structure. Phys. Rev. Lett. 2012;108:246103. doi: 10.1103/PhysRevLett.108.246103. PubMed DOI
Jorio A, Cançado LG. Raman spectroscopy of twisted bilayer graphene. Solid State Commun. 2013;175–176:3–12. doi: 10.1016/j.ssc.2013.08.008. DOI
Luo Z, et al. Large-Scale Synthesis of Bi-layer Graphene in Strongly Coupled Stacking Order. Adv. Funct. Mater. 2011;21:911–917. doi: 10.1002/adfm.201002227. DOI
Chen X-D, et al. High-Precision Twist-Controlled Bilayer and Trilayer Graphene. Adv. Mater. 2016;28:2563–2570. doi: 10.1002/adma.201505129. PubMed DOI
Wu J-B, et al. Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes. ACS Nano. 2015;9:7440–7449. doi: 10.1021/acsnano.5b02502. PubMed DOI
Tan P-H, et al. Ultralow-frequency shear modes of 2-4 layer graphene observed in scroll structures at edges. Phys. Rev. B. 2014;89:235404. doi: 10.1103/PhysRevB.89.235404. DOI
Deng S, Berry V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today. 2016;19:197–212. doi: 10.1016/j.mattod.2015.10.002. DOI
Zhu W, et al. Structure and Electronic Transport in Graphene Wrinkles. Nano Lett. 2012;12:3431–3436. doi: 10.1021/nl300563h. PubMed DOI
Zhang K, Arroyo M. Adhesion and friction control localized folding in supported graphene. J. Appl. Phys. 2013;113:193501. doi: 10.1063/1.4804265. DOI
Zhang Y, Wei N, Zhao J, Gong Y, Rabczuk T. Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles. J. Appl. Phys. 2013;114:063511. doi: 10.1063/1.4817768. DOI
Kim K, et al. Multiply folded graphene. Phys. Rev. B. 2011;83:245433. doi: 10.1103/PhysRevB.83.245433. DOI
Verhagen T, et al. Tuning the Interlayer Interaction of a Twisted Multilayer Wrinkle With Temperature. Phys. Status Solidi B. 2017;254:1700237. doi: 10.1002/pssb.201700237. DOI
Long F, et al. Characteristic Work Function Variations of Graphene Line Defects. ACS Appl. Mater. Interfaces. 2016;8:18360–18366. doi: 10.1021/acsami.6b04853. PubMed DOI
Hattab H, et al. Interplay of Wrinkles, Strain, and Lattice Parameter in Graphene on Iridium. Nano Lett. 2011;12:678–682. doi: 10.1021/nl203530t. PubMed DOI
Koenig SP, Boddeti NG, Dunn ML, Bunch JS. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 2011;6:543–546. doi: 10.1038/nnano.2011.123. PubMed DOI
Pacakova B, et al. Mastering the Wrinkling of Self-supported Graphene. Sci. Rep. 2017;7:10003. doi: 10.1038/s41598-017-10153-z. PubMed DOI PMC
Androulidakis C, Koukaras EN, Pastore Carbone MG, Hadjinicolaou M, Galiotis C. Wrinkling formation in simply-supported graphenes under tension and compression loadings. Nanoscale. 2017;9:18180–18188. doi: 10.1039/C7NR06463B. PubMed DOI
Schiefele J, Martin-Moreno L, Guinea F. Faraday effect in rippled graphene: Magneto-optics and random gauge fields. Phys. Rev. B. 2016;94:035401. doi: 10.1103/PhysRevB.94.035401. DOI
Boukhvalov DW, Katsnelson MI. Enhancement of Chemical Activity in Corrugated Graphene. J. Phys. Chem. C. 2009;113:14176–14178. doi: 10.1021/jp905702e. DOI
Kun P, et al. Large intravalley scattering due to pseudo-magnetic fields in crumpled graphene. NPJ 2D Mater Appl. 2019;3:11. doi: 10.1038/s41699-019-0094-6. DOI
Oroszlány L, Rakyta P, Kormányos A, Lambert CJ, Cserti J. Theory of snake states in graphene. Phys. Rev. B. 2008;77:081403. doi: 10.1103/PhysRevB.77.081403. DOI
Chacham H, et al. Universal deformation pathways and flexural hardening of nanoscale 2D-material standing folds. Nanotechnology. 2018;29:095704. doi: 10.1088/1361-6528/aaa51e. PubMed DOI
Androulidakis C, et al. Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer. ACS Appl. Mater. Interfaces. 2017;9:26593–26601. doi: 10.1021/acsami.7b07547. PubMed DOI
Hallam T, et al. Controlled Folding of Graphene: GraFold Printing. Nano Lett. 2015;15:857–863. doi: 10.1021/nl503460p. PubMed DOI
Campos-Delgado J, Algara-Siller G, Santos CN, Kaiser U, Raskin JP. Twisted Bi-Layer Graphene: Microscopic Rainbows. Small. 2013;9:3247–3251. PubMed
Rode JC, Smirnov D, Belke C, Schmidt H, Haug RJ. Twisted Bilayer Graphene: Interlayer Configuration and Magnetotransport Signatures. Ann. Phys. (Berlin) 2017;529:1700025. doi: 10.1002/andp.201700025. DOI
Carozo V, et al. Resonance effects on the Raman spectra of graphene superlattices. Phys. Rev. B. 2013;88:085401. doi: 10.1103/PhysRevB.88.085401. DOI
Verhagen T, Vales V, Frank O, Kalbac M, Vejpravova J. Temperature-induced strain release via rugae on the nanometer and micrometer scale in graphene monolayer. Carbon. 2017;119:483–491. doi: 10.1016/j.carbon.2017.04.041. DOI
Kuwabara M, Clarke DR, Smith DA. Anomalous superperiodicity in scanning tunneling microscope images of graphite. Appl. Phys. Lett. 1990;56:2396–2398. doi: 10.1063/1.102906. DOI
Gupta AK, Russin TJ, Gutiérrez HR, Eklund PC. Probing Graphene Edges via Raman Scattering. Acs Nano. 2009;3:45–52. doi: 10.1021/nn8003636. PubMed DOI
Li Z, et al. Deformation of Wrinkled Graphene. ACS Nano. 2015;9:3917–3925. doi: 10.1021/nn507202c. PubMed DOI PMC
Wu J-B, et al. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014;5:5309. doi: 10.1038/ncomms6309. PubMed DOI
Zang J, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013;12:321–325. doi: 10.1038/nmat3542. PubMed DOI PMC
Castellanos-Gomez A, et al. Local Strain Engineering in Atomically Thin MoS2. Nano Lett. 2013;13:5361–5366. doi: 10.1021/nl402875m. PubMed DOI
Dawood OM, et al. Predicted bandgap opening in highly-oriented wrinkles formed in chemical vapour deposition grown graphene. Mater. Res. Express. 2019;6:026311. doi: 10.1088/2053-1591/aaf0d1. DOI
del Corro E, et al. Fine tuning of optical transition energy of twisted bilayer graphene via interlayer distance modulation. Phys. Rev. B. 2017;95:085138. doi: 10.1103/PhysRevB.95.085138. DOI
Kalbac M, Frank O, Kavan L. Effects of Heat Treatment on Raman Spectra of Two-Layer 12C/13C Graphene. Chem. Eur. J. 2012;18:13877–13884. doi: 10.1002/chem.201202114. PubMed DOI