Superlattice in collapsed graphene wrinkles

. 2019 Jul 10 ; 9 (1) : 9972. [epub] 20190710

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31292481

Grantová podpora
ERC-2016-STG-716265 EC | European Research Council (ERC)
ERC-2016-STG-716265 EC | European Research Council (ERC)
ERC-2016-STG-716265 EC | European Research Council (ERC)
GACR 17-18702S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
GACR 17-18702S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 31292481
PubMed Central PMC6620273
DOI 10.1038/s41598-019-46372-9
PII: 10.1038/s41598-019-46372-9
Knihovny.cz E-zdroje

Topographic corrugations, such as wrinkles, are known to introduce diverse physical phenomena that can significantly modify the electrical, optical and chemical properties of two-dimensional materials. This range of assets can be expanded even further when the crystal lattices of the walls of the wrinkle are aligned and form a superlattice, thereby creating a high aspect ratio analogue of a twisted bilayer or multilayer - the so-called twisted wrinkle. Here we present an experimental proof that such twisted wrinkles exist in graphene monolayers on the scale of several micrometres. Combining atomic force microscopy and Raman spectral mapping using a wide range of visible excitation energies, we show that the wrinkles are extremely narrow and their Raman spectra exhibit all the characteristic features of twisted bilayer or multilayer graphene. In light of a recent breakthrough - the superconductivity of a magic-angle graphene bilayer, the collapsed wrinkles represent naturally occurring systems with tuneable collective regimes.

Zobrazit více v PubMed

Cao Y, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature. 2018;556:43. doi: 10.1038/nature26160. PubMed DOI

Li G, et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2010;6:109–113. doi: 10.1038/nphys1463. DOI

Jorio A, et al. Optical-Phonon Resonances with Saddle-Point Excitons in Twisted-Bilayer Graphene. Nano Lett. 2014;14:5687–5692. doi: 10.1021/nl502412g. PubMed DOI

Carozo V, et al. Raman Signature of Graphene Superlattices. Nano Lett. 2011;11:4527–4534. doi: 10.1021/nl201370m. PubMed DOI

Gupta AK, Tang Y, Crespi VH, Eklund PC. Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene. Phys. Rev. B. 2010;82:241406. doi: 10.1103/PhysRevB.82.241406. DOI

Kim K, et al. Raman Spectroscopy Study of Rotated Double-Layer Graphene: Misorientation-Angle Dependence of Electronic Structure. Phys. Rev. Lett. 2012;108:246103. doi: 10.1103/PhysRevLett.108.246103. PubMed DOI

Jorio A, Cançado LG. Raman spectroscopy of twisted bilayer graphene. Solid State Commun. 2013;175–176:3–12. doi: 10.1016/j.ssc.2013.08.008. DOI

Luo Z, et al. Large-Scale Synthesis of Bi-layer Graphene in Strongly Coupled Stacking Order. Adv. Funct. Mater. 2011;21:911–917. doi: 10.1002/adfm.201002227. DOI

Chen X-D, et al. High-Precision Twist-Controlled Bilayer and Trilayer Graphene. Adv. Mater. 2016;28:2563–2570. doi: 10.1002/adma.201505129. PubMed DOI

Wu J-B, et al. Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes. ACS Nano. 2015;9:7440–7449. doi: 10.1021/acsnano.5b02502. PubMed DOI

Tan P-H, et al. Ultralow-frequency shear modes of 2-4 layer graphene observed in scroll structures at edges. Phys. Rev. B. 2014;89:235404. doi: 10.1103/PhysRevB.89.235404. DOI

Deng S, Berry V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today. 2016;19:197–212. doi: 10.1016/j.mattod.2015.10.002. DOI

Zhu W, et al. Structure and Electronic Transport in Graphene Wrinkles. Nano Lett. 2012;12:3431–3436. doi: 10.1021/nl300563h. PubMed DOI

Zhang K, Arroyo M. Adhesion and friction control localized folding in supported graphene. J. Appl. Phys. 2013;113:193501. doi: 10.1063/1.4804265. DOI

Zhang Y, Wei N, Zhao J, Gong Y, Rabczuk T. Quasi-analytical solution for the stable system of the multi-layer folded graphene wrinkles. J. Appl. Phys. 2013;114:063511. doi: 10.1063/1.4817768. DOI

Kim K, et al. Multiply folded graphene. Phys. Rev. B. 2011;83:245433. doi: 10.1103/PhysRevB.83.245433. DOI

Verhagen T, et al. Tuning the Interlayer Interaction of a Twisted Multilayer Wrinkle With Temperature. Phys. Status Solidi B. 2017;254:1700237. doi: 10.1002/pssb.201700237. DOI

Long F, et al. Characteristic Work Function Variations of Graphene Line Defects. ACS Appl. Mater. Interfaces. 2016;8:18360–18366. doi: 10.1021/acsami.6b04853. PubMed DOI

Hattab H, et al. Interplay of Wrinkles, Strain, and Lattice Parameter in Graphene on Iridium. Nano Lett. 2011;12:678–682. doi: 10.1021/nl203530t. PubMed DOI

Koenig SP, Boddeti NG, Dunn ML, Bunch JS. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 2011;6:543–546. doi: 10.1038/nnano.2011.123. PubMed DOI

Pacakova B, et al. Mastering the Wrinkling of Self-supported Graphene. Sci. Rep. 2017;7:10003. doi: 10.1038/s41598-017-10153-z. PubMed DOI PMC

Androulidakis C, Koukaras EN, Pastore Carbone MG, Hadjinicolaou M, Galiotis C. Wrinkling formation in simply-supported graphenes under tension and compression loadings. Nanoscale. 2017;9:18180–18188. doi: 10.1039/C7NR06463B. PubMed DOI

Schiefele J, Martin-Moreno L, Guinea F. Faraday effect in rippled graphene: Magneto-optics and random gauge fields. Phys. Rev. B. 2016;94:035401. doi: 10.1103/PhysRevB.94.035401. DOI

Boukhvalov DW, Katsnelson MI. Enhancement of Chemical Activity in Corrugated Graphene. J. Phys. Chem. C. 2009;113:14176–14178. doi: 10.1021/jp905702e. DOI

Kun P, et al. Large intravalley scattering due to pseudo-magnetic fields in crumpled graphene. NPJ 2D Mater Appl. 2019;3:11. doi: 10.1038/s41699-019-0094-6. DOI

Oroszlány L, Rakyta P, Kormányos A, Lambert CJ, Cserti J. Theory of snake states in graphene. Phys. Rev. B. 2008;77:081403. doi: 10.1103/PhysRevB.77.081403. DOI

Chacham H, et al. Universal deformation pathways and flexural hardening of nanoscale 2D-material standing folds. Nanotechnology. 2018;29:095704. doi: 10.1088/1361-6528/aaa51e. PubMed DOI

Androulidakis C, et al. Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer. ACS Appl. Mater. Interfaces. 2017;9:26593–26601. doi: 10.1021/acsami.7b07547. PubMed DOI

Hallam T, et al. Controlled Folding of Graphene: GraFold Printing. Nano Lett. 2015;15:857–863. doi: 10.1021/nl503460p. PubMed DOI

Campos-Delgado J, Algara-Siller G, Santos CN, Kaiser U, Raskin JP. Twisted Bi-Layer Graphene: Microscopic Rainbows. Small. 2013;9:3247–3251. PubMed

Rode JC, Smirnov D, Belke C, Schmidt H, Haug RJ. Twisted Bilayer Graphene: Interlayer Configuration and Magnetotransport Signatures. Ann. Phys. (Berlin) 2017;529:1700025. doi: 10.1002/andp.201700025. DOI

Carozo V, et al. Resonance effects on the Raman spectra of graphene superlattices. Phys. Rev. B. 2013;88:085401. doi: 10.1103/PhysRevB.88.085401. DOI

Verhagen T, Vales V, Frank O, Kalbac M, Vejpravova J. Temperature-induced strain release via rugae on the nanometer and micrometer scale in graphene monolayer. Carbon. 2017;119:483–491. doi: 10.1016/j.carbon.2017.04.041. DOI

Kuwabara M, Clarke DR, Smith DA. Anomalous superperiodicity in scanning tunneling microscope images of graphite. Appl. Phys. Lett. 1990;56:2396–2398. doi: 10.1063/1.102906. DOI

Gupta AK, Russin TJ, Gutiérrez HR, Eklund PC. Probing Graphene Edges via Raman Scattering. Acs Nano. 2009;3:45–52. doi: 10.1021/nn8003636. PubMed DOI

Li Z, et al. Deformation of Wrinkled Graphene. ACS Nano. 2015;9:3917–3925. doi: 10.1021/nn507202c. PubMed DOI PMC

Wu J-B, et al. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014;5:5309. doi: 10.1038/ncomms6309. PubMed DOI

Zang J, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013;12:321–325. doi: 10.1038/nmat3542. PubMed DOI PMC

Castellanos-Gomez A, et al. Local Strain Engineering in Atomically Thin MoS2. Nano Lett. 2013;13:5361–5366. doi: 10.1021/nl402875m. PubMed DOI

Dawood OM, et al. Predicted bandgap opening in highly-oriented wrinkles formed in chemical vapour deposition grown graphene. Mater. Res. Express. 2019;6:026311. doi: 10.1088/2053-1591/aaf0d1. DOI

del Corro E, et al. Fine tuning of optical transition energy of twisted bilayer graphene via interlayer distance modulation. Phys. Rev. B. 2017;95:085138. doi: 10.1103/PhysRevB.95.085138. DOI

Kalbac M, Frank O, Kavan L. Effects of Heat Treatment on Raman Spectra of Two-Layer 12C/13C Graphene. Chem. Eur. J. 2012;18:13877–13884. doi: 10.1002/chem.201202114. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...