Mastering the Wrinkling of Self-supported Graphene

. 2017 Aug 30 ; 7 (1) : 10003. [epub] 20170830

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28855558
Odkazy

PubMed 28855558
PubMed Central PMC5577149
DOI 10.1038/s41598-017-10153-z
PII: 10.1038/s41598-017-10153-z
Knihovny.cz E-zdroje

We present an approach that allows for the preparation of well-defined large arrays of graphene wrinkles with predictable geometry. Chemical vapor deposition grown graphene transferred onto hexagonal pillar arrays of SiO2 with sufficiently small interpillar distance forms a complex network of two main types of wrinkle arrangements. The first type is composed of arrays of aligned equidistantly separated parallel wrinkles propagating over large distances, and originates from line interfaces in the graphene, such as thin, long wrinkles and graphene grain boundaries. The second type of wrinkle arrangement is composed of non-aligned short wrinkles, formed in areas without line interfaces. Besides the presented hybrid graphene topography with distinct wrinkle geometries induced by the pre-patterned substrate, the graphene layers are suspended and self-supporting, exhibiting large surface area and negligible doping effects from the substrate. All these properties make this wrinkled graphene a promising candidate for a material with enhanced chemical reactivity useful in nanoelectronic applications.

Zobrazit více v PubMed

Meyer JC, et al. The structure of suspended graphene sheets. Nature. 2007;446:60–63. doi: 10.1038/nature05545. PubMed DOI

Nicholl RJT, et al. The effect of intrinsic crumpling on the mechanics of free-standing graphene. Nat. Commun. 2015;6 doi: 10.1038/ncomms9789. PubMed DOI PMC

Deng S, Berry V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today. 2016;19:197–212. doi: 10.1016/j.mattod.2015.10.002. DOI

Duan WH, Gong K, Wang Q. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear. Carbon. 2011;49:3107–3112. doi: 10.1016/j.carbon.2011.03.033. DOI

Zhu WJ, et al. Structure and Electronic Transport in Graphene Wrinkles. Nano Lett. 2012;12:3431–3436. doi: 10.1021/nl300563h. PubMed DOI

Wang C, Liu Y, Lan L, Tan H. Graphene wrinkling: formation, evolution and collapse. Nanoscale. 2013;5:4454–61. doi: 10.1039/c3nr00462g. PubMed DOI

Pereira VM, Castro Neto AH, Liang HY, Mahadevan L. Geometry, Mechanics, and Electronics of Singular Structures and Wrinkles in Graphene. Phys. Rev. Lett. 2010;105 doi: 10.1103/PhysRevLett.105.156603. PubMed DOI

Gholami, M. F., Severin, N. & Rabe, J. P. in On Folding: Towards a New Field of Interdisciplinary Research (eds FRIEDMAN, M. & SCHÄFFNER, W.) 1, 211–237 (Transcript-Verlag, 2016).

Katsnelson MI, Geim AK. Electron scattering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A. 2008;366:195–204. doi: 10.1098/rsta.2007.2157. PubMed DOI

Castro Neto AH, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109–162. doi: 10.1103/RevModPhys.81.109. DOI

Morozov SV, et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 2006;97 doi: 10.1103/PhysRevLett.97.016801. PubMed DOI

Guinea F, Katsnelson MI, Vozmediano MAH. Midgap states and charge inhomogeneities in corrugated graphene. Phys. Rev. B. 2008;77 doi: 10.1103/PhysRevB.77.075422. DOI

Falko VI, et al. Weak localization in graphene. Solid State Commun. 2007;143:33–38. doi: 10.1016/j.ssc.2007.03.049. DOI

Katsnelson MI, Novoselov KS, Geim AK. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006;2:620–625. doi: 10.1038/nphys384. DOI

Gierz I, et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 2013;12:1119–1124. doi: 10.1038/nmat3757. PubMed DOI

Lim H, Jung J, Ruoff RS, Kim Y. Structurally driven one-dimensional electron confinement in sub-5-nm graphene nanowrinkles. Nat. Commun. 2015;6 doi: 10.1038/ncomms9601. PubMed DOI PMC

Costa AT, Ferreira MS, Hallam T, Duesberg GS, Neto AHC. Origami-based spintronics in graphene. Europhys. Lett. 2013;104 doi: 10.1209/0295-5075/104/47001. DOI

Tapaszto L, et al. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat. Phys. 2012;8:739–742. doi: 10.1038/nphys2389. DOI

Androulidakis C, et al. Failure Processes in Embedded Monolayer Graphene under Axial Compression. Sci. Rep. 2014;4 doi: 10.1038/srep05271. PubMed DOI PMC

Dong Y, He Y, Wang Y, Li H. A theoretical study of ripple propagation in defective graphene. Carbon. 2014;68:742–747. doi: 10.1016/j.carbon.2013.11.060. DOI

Han J, Ryu S, Sohn D, Im S. Mechanical strength characteristics of asymmetric tilt grain boundaries in graphene. Carbon. 2014;68:250–257. doi: 10.1016/j.carbon.2013.10.085. DOI

Yazyev OV, Chen YP. Polycrystalline graphene and other two-dimensional materials. Nat. Nanotechnol. 2014;9:755–767. doi: 10.1038/nnano.2014.166. PubMed DOI

Wu H, Liu X. Tuning electromechanics of dynamic ripple pattern in graphene monolayer. Carbon. 2016;98:510–518. doi: 10.1016/j.carbon.2015.11.010. DOI

Yang B, et al. Strength and failure behavior of a graphene sheet containing bi-grain-boundaries. RSC Adv. 2014;4:54677–54683. doi: 10.1039/C4RA10126J. DOI

Liu N, et al. The origin of wrinkles on transferred graphene. Nano Res. 2011;4:996–1004. doi: 10.1007/s12274-011-0156-3. DOI

Zhang T, Li X, Gao H. Designing graphene structures with controlled distributions of topological defects: A case study of toughness enhancement in graphene ruga. Extrem. Mech. Lett. 2014;1:3–8. doi: 10.1016/j.eml.2014.12.007. DOI

Cranford SW, Buehler MJ. Packing efficiency and accessible surface area of crumpled graphene. Phys. Rev. B. 2011;84 doi: 10.1103/PhysRevB.84.205451. DOI

Zang J, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013;12:321–5. doi: 10.1038/nmat3542. PubMed DOI PMC

El-Kady MF, Shao Y, Kaner RB. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016;1 doi: 10.1038/natrevmats.2016.33. DOI

Ferrari AC, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2014;7:4598–4810. doi: 10.1039/C4NR01600A. PubMed DOI

Hallam T, et al. Controlled folding of graphene: GraFold printing. Nano Lett. 2015;15:857–863. doi: 10.1021/nl503460p. PubMed DOI

Bao W, et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 2009;4:562–6. doi: 10.1038/nnano.2009.191. PubMed DOI

Lee W, et al. Multiscale, Hierarchical Patterning of Graphene using Conformal Wrinkling. Nano Lett. 2016;16:7121–7127. doi: 10.1021/acs.nanolett.6b03415. PubMed DOI

Li G, et al. Adhesion of graphene sheet on nano-patterned substrates with nano-pillar array. J. Appl. Phys. 2013;113 doi: 10.1063/1.4811718. DOI

Wang QH, et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 2012;4:724–732. doi: 10.1038/nchem.1421. PubMed DOI

Lee J, et al. Modification of Electrical Properties of Graphene by Substrate- Induced Nanomodulation. Nano Lett. 2013;13:3494–3500. doi: 10.1021/nl400827p. PubMed DOI

Wu Q, et al. Selective surface functionalization at regions of high local curvature in graphene. Chem. Commun. 2013;49:677–679. doi: 10.1039/C2CC36747E. PubMed DOI

Vejpravova J, et al. Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification. Sci. Rep. 2015;5 doi: 10.1038/srep15061. PubMed DOI PMC

Valeš V, et al. Self-orderding of iron oxide nanoparticles covered by graphene. Phys. Status Solidi. 2014;6:2499–2504.

Pacakova B, Vejpravova J, Repko A, Mantlikova A, Kalbac M. Formation of wrinkles on graphene induced by nanoparticles: Atomic force microscopy study. Carbon. 2015;95:573–579. doi: 10.1016/j.carbon.2015.08.043. DOI

Yamamoto M, et al. Princess and the Pea at the nanoscale: Wrinkling and delamination of graphene on nanoparticles. Phys. Rev. X. 2012;2

Lee JM, et al. Vertical pillar-superlattice array and graphene hybrid light emitting diodes. Nano Lett. 2010;10:2783–2788. doi: 10.1021/nl100648y. PubMed DOI

Reserbat-Plantey A, et al. Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 2014;14:5044–5051. doi: 10.1021/nl5016552. PubMed DOI

Tomori H, et al. Introducing nonuniform strain to graphene using dielectric nanopillars. Appl. Phys. Express. 2011;4 doi: 10.1143/APEX.4.075102. DOI

Neek-Amal M, Covaci L, Peeters FM. Nanoengineered nonuniform strain in graphene using nanopillars. Phys. Rev. B. 2012;86 doi: 10.1103/PhysRevB.86.041405. DOI

Lee C, Kim B-J, Ren F, Pearton SJ, Kim J. Large-area suspended graphene on GaN nanopillars. J. Vac. Sci. Technol. B. 2011;29 doi: 10.1116/1.3654042. DOI

Capasso A, et al. Graphene ripples generated by grain boundaries in highly ordered pyrolytic graphite. Carbon. 2014;68:330–336. doi: 10.1016/j.carbon.2013.11.009. DOI

Galiotis C, Frank O, Koukaras EN, Sfyris D. Graphene Mechanics: Current Status and Perspectives. Annu. Rev. Chem. Biomol. Eng. 2015;6:121–140. doi: 10.1146/annurev-chembioeng-061114-123216. PubMed DOI

Roylance, D. Mechanics of Materials. (John Wiley & Sons, Inc., 1996). doi:10.1007/978-94-007-4342-7.

Calado VE, Schneider GF, Theulings AMMG, Dekker C, Vandersypen LMK. Formation and control of wrinkles in graphene by the wedging transfer method. Appl. Phys. Lett. 2012;101 doi: 10.1063/1.4751982. DOI

Kim HH, Lee SK, Lee SG, Lee E, Cho K. Wetting-Assisted Crack- and Wrinkle-Free Transfer of Wafer-Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies. Adv. Funct. Mater. 2016;26:2070–2077. doi: 10.1002/adfm.201504551. DOI

Chen W, et al. Controllable Fabrication of Large-Area Wrinkled Graphene on a Solution Surface. ACS Appl. Mater. Interfaces. 2016;8:10977–10984. doi: 10.1021/acsami.6b00137. PubMed DOI

Britton J, et al. A graphene surface force balance. Langmuir. 2014;30:11485–11492. doi: 10.1021/la5028493. PubMed DOI PMC

Choi J, et al. Three-Dimensional Integration of Graphene via Swelling, Shrinking, and Adaptation. Nano Lett. 2015;15:4525–4531. doi: 10.1021/acs.nanolett.5b01036. PubMed DOI

Chen Y, Gong XL, Gai JG. Progress and Challenges in Transfer of Large-Area Graphene Films. Adv. Sci. 2016;3 doi: 10.1002/advs.201500343. PubMed DOI PMC

Vandeparre H, et al. Wrinkling Hierarchy in Constrained Thin Sheets from Suspended Graphene to Curtains. Phys. Rev. Lett. 2011;106 doi: 10.1103/PhysRevLett.106.224301. PubMed DOI

Zhang J, et al. Free folding of suspended graphene sheets by random mechanical stimulation. Phys. Rev. Lett. 2010;104 doi: 10.1103/PhysRevLett.104.166805. PubMed DOI

Wang CG, Lan L, Liu YP, Tan HF. Defect-guided wrinkling in graphene. Comput. Mater. Sci. 2013;77:250–253. doi: 10.1016/j.commatsci.2013.04.051. DOI

Cerda E, Mahadevan L. Geometry and physics of wrinkling. Phys. Rev. Lett. 2003;90 doi: 10.1103/PhysRevLett.90.074302. PubMed DOI

Sharon E, Roman B, Marder M, Shin G. Buckling cascades in free sheets. Nature. 2002;419 doi: 10.1038/419579a. PubMed DOI

Huang PY, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature. 2011;469:389–92. doi: 10.1038/nature09718. PubMed DOI

Chae SJ, et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009;21:2328–2333. doi: 10.1002/adma.200803016. DOI

Budrikis Z, Sellerio AL, Bertalan Z, Zapperi S. Wrinkle motifs in thin films. Sci. Rep. 2015;5 doi: 10.1038/srep08938. PubMed DOI PMC

Cocco G, Cadelano E, Colombo L. Gap opening in graphene by shear strain. Phys. Rev. B. 2010;81 doi: 10.1103/PhysRevB.81.241412. DOI

Zhu S, et al. Pseudomagnetic fields in a locally strained graphene drumhead. Phys. Rev. B. 2014;90 doi: 10.1103/PhysRevB.90.075426. DOI

San-Jose P, Gutiérrez Á, Sturla M, Guinea F. Electronic structure of spontaneously strained graphene on hexagonal Boron Nitride. Phys. Rev. B. 2014;90 doi: 10.1103/PhysRevB.90.115152. DOI

Guinea F, Katsnelson MI, Geim AK. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 2010;6:30–33. doi: 10.1038/nphys1420. DOI

Kalbac M, et al. The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene. ACS Nano. 2010;4:6055–6063. doi: 10.1021/nn1010914. PubMed DOI

Hallam T, Berner NC, Yim C, Duesberg GS. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer. Adv. Mater. Interfaces. 2014;1 doi: 10.1002/admi.201400115. DOI

Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Electrical Contact Resistance of Large-Area Graphene on Pre-Patterned Cu and Au Electrodes

. 2022 Dec 14 ; 12 (24) : . [epub] 20221214

Carbon Nanostructures, Nanolayers, and Their Composites

. 2021 Sep 12 ; 11 (9) : . [epub] 20210912

Superlattice in collapsed graphene wrinkles

. 2019 Jul 10 ; 9 (1) : 9972. [epub] 20190710

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...