Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification

. 2015 Nov 04 ; 5 () : 15061. [epub] 20151104

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26530787

Controlled wrinkling of single-layer graphene (1-LG) at nanometer scale was achieved by introducing monodisperse nanoparticles (NPs), with size comparable to the strain coherence length, underneath the 1-LG. Typical fingerprint of the delaminated fraction is identified as substantial contribution to the principal Raman modes of the 1-LG (G and G'). Correlation analysis of the Raman shift of the G and G' modes clearly resolved the 1-LG in contact and delaminated from the substrate, respectively. Intensity of Raman features of the delaminated 1-LG increases linearly with the amount of the wrinkles, as determined by advanced processing of atomic force microscopy data. Our study thus offers universal approach for both fine tuning and facile quantification of the graphene topography up to ~60% of wrinkling.

Zobrazit více v PubMed

Levy N. et al.. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010). PubMed

Low T. & Guinea F. Strain-induced pseudomagnetic field for novel graphene electronics. Nano Lett. 10, 3551–3554 (2010). PubMed

Nguyen V. H., Nguyen H. V. & Dollfus P. Improved performance of graphene transistors by strain engineering. Nanotechnology 25, 165201 (2014). PubMed

Kliros G. S. Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors. Nanoscale Res. Lett. 9, 65 (2014). PubMed PMC

Yan C. et al.. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022–2027 (2014). PubMed

Tian H. et al.. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6, 699–705 (2014). PubMed

Wang Y. et al.. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5, 3645–3650 (2011). PubMed

Kuang J. et al.. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale 5, 12171–12177 (2013). PubMed

Qu W., Zhang L. & & Chen G. Magnetic loading of graphene-nickel nanoparticle hybrid for electrochemical sensing of carbohydrates. Biosens. Bioelectron. 42, 430–433 (2013). PubMed

Yin Z. Y. et al.. Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale 4, 293–297 (2012). PubMed

Myung S. et al.. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv. Mater. 23, 2221–2225 (2011). PubMed PMC

Choi S. M., Jhi S. H. & Son Y. W. Controlling energy gap of bilayer graphene by strain. Nano Lett. 10, 3486–3489 (2010). PubMed

Mohiuddin T. M. G. et al.. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

Frank O. et al.. Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano 5, 2231–2239 (2011). PubMed

Androulidakis C. et al.. Failure Processes in Embedded Monolayer Graphene under Axial Compression. Sci. Rep. 4, 5271 (2014). PubMed PMC

Bissett M. A., Konabe S., Okada S., Tsuji M. & Ago H. Enhanced chemical reactivity of graphene induced by mechanical strain. ACS Nano 7, 10335–10343 (2013). PubMed

Sarkar S. et al.. Organometallic Hexahapto Functionalization of Single Layer Graphene as a Route to High Mobility Graphene Devices. Adv. Mater. 25, 1131–1136 (2013). PubMed

Liu N. et al.. The Origin of Wrinkles on Transferred Graphene. Nano Res. 4, 996–1004 (2011).

Li X. S. et al.. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 9, 4359–4363 (2009). PubMed

Duan W. H., Gong K. & Wang Q. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear. Carbon 49, 3107–3112 (2011).

Pereira V. M. & Castro Neto A. H. Strain Engineering of Graphene's Electronic Structure. Phys. Rev. Lett. 103, 046801 (2009). PubMed

Guinea F., Horovitz B. & Le Doussal P. Gauge fields, ripples and wrinkles in graphene layers. Solid State Commun. 149, 1140–1143 (2009).

Scharfenberg S. et al.. Probing the mechanical properties of graphene using a corrugated elastic substrate. Appl. Phys. Lett. 98, 091908 (2011).

Osvath Z. et al.. Controlling the nanoscale rippling of graphene with SiO2 nanoparticles. Nanoscale 6, 6030–6036 (2014). PubMed

Yamamoto M. et al.. "The Princess and the Pea" at the Nanoscale: Wrinkling and Delamination of Graphene on Nanoparticles. Phys. Rev. X 2, 041018 (2012).

Neek-Amal M., Covaci L. & Peeters F. M. Nanoengineered nonuniform strain in graphene using nanopillars. Phys. Rev. B 86, 041405(R) (2012).

Reserbat-Plantey A. et al.. Strain Superlattices and Macroscale Suspension of Graphene Induced by Corrugated Substrates. Nano Lett. 14, 5044–5051 (2014). PubMed

Lee J. E., Ahn G., Shim J., Lee Y. S. & Ryu S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012). PubMed

Teague M. L. et al.. Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2. Nano Lett. 9, 2542–2546 (2009). PubMed

Frank O., Vejpravova J., Holy V., Kavan L. & Kalbac M. Interaction between graphene and copper substrate: The role of lattice orientation. Carbon 68, 440–451 (2014).

Robinson J. A., Puls C. P., Staley N. E., Stitt J. P. & Fanton M. A. Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett. 9, 964–968 (2009). PubMed

Huang M., Yan H., Heinz T. F. & Hone J. Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10, 4074–4079 (2010). PubMed

Malard L. M., Pimenta M. A., Dresselhaus G. & Dresselhaus M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

Ferrari A. C. & Basko D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). PubMed

Pacakova B., Vejpravova J., Repko A. & Kalbac M. Formation of wrinkles on graphene induced by nanoparticles: atomic force microscopy study. Carbon 95, 573–579 (2015).

Couto N. J. G. et al.. Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices. Phys. Rev. X 4, 041019 (2014).

Lu K., Accorsi M. & Leonard J. Finite element analysis of membrane wrinkling. Int. J. Numer. Meth. Eng. 50, 1017–1038 (2001).

Metzger C. et al.. Biaxial strain in graphene adhered to shallow depressions. Nano. Lett. 10, 6–10 (2010). PubMed

Zabel J. et al.. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano. Lett. 12, 617–621 (2012). PubMed

Mohr M., Maultzsch J. & Thomsen C. Splitting of the Raman 2D band of graphene subjected to strain. Phys. Rev. B 82, 201409 (2010).

Das A. et al.. Phonon renormalization in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009).

Casiraghi C. Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys. Status Solidi-Rapid Res. Lett. 3, 175–177 (2009).

Salas G. et al.. Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J. Mater. Chem. 22, 21065–21075 (2012).

Necas D. & Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Graphene-enhanced Raman scattering on single layer and bilayers of pristine and hydrogenated graphene

. 2020 Mar 11 ; 10 (1) : 4516. [epub] 20200311

Introducing Well-Defined Nanowrinkles in CVD Grown Graphene

. 2019 Mar 04 ; 9 (3) : . [epub] 20190304

Mastering the Wrinkling of Self-supported Graphene

. 2017 Aug 30 ; 7 (1) : 10003. [epub] 20170830

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...