Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26530787
PubMed Central
PMC4632107
DOI
10.1038/srep15061
PII: srep15061
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Controlled wrinkling of single-layer graphene (1-LG) at nanometer scale was achieved by introducing monodisperse nanoparticles (NPs), with size comparable to the strain coherence length, underneath the 1-LG. Typical fingerprint of the delaminated fraction is identified as substantial contribution to the principal Raman modes of the 1-LG (G and G'). Correlation analysis of the Raman shift of the G and G' modes clearly resolved the 1-LG in contact and delaminated from the substrate, respectively. Intensity of Raman features of the delaminated 1-LG increases linearly with the amount of the wrinkles, as determined by advanced processing of atomic force microscopy data. Our study thus offers universal approach for both fine tuning and facile quantification of the graphene topography up to ~60% of wrinkling.
Zobrazit více v PubMed
Levy N. et al.. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010). PubMed
Low T. & Guinea F. Strain-induced pseudomagnetic field for novel graphene electronics. Nano Lett. 10, 3551–3554 (2010). PubMed
Nguyen V. H., Nguyen H. V. & Dollfus P. Improved performance of graphene transistors by strain engineering. Nanotechnology 25, 165201 (2014). PubMed
Kliros G. S. Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors. Nanoscale Res. Lett. 9, 65 (2014). PubMed PMC
Yan C. et al.. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022–2027 (2014). PubMed
Tian H. et al.. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6, 699–705 (2014). PubMed
Wang Y. et al.. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5, 3645–3650 (2011). PubMed
Kuang J. et al.. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale 5, 12171–12177 (2013). PubMed
Qu W., Zhang L. & & Chen G. Magnetic loading of graphene-nickel nanoparticle hybrid for electrochemical sensing of carbohydrates. Biosens. Bioelectron. 42, 430–433 (2013). PubMed
Yin Z. Y. et al.. Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale 4, 293–297 (2012). PubMed
Myung S. et al.. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv. Mater. 23, 2221–2225 (2011). PubMed PMC
Choi S. M., Jhi S. H. & Son Y. W. Controlling energy gap of bilayer graphene by strain. Nano Lett. 10, 3486–3489 (2010). PubMed
Mohiuddin T. M. G. et al.. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).
Frank O. et al.. Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano 5, 2231–2239 (2011). PubMed
Androulidakis C. et al.. Failure Processes in Embedded Monolayer Graphene under Axial Compression. Sci. Rep. 4, 5271 (2014). PubMed PMC
Bissett M. A., Konabe S., Okada S., Tsuji M. & Ago H. Enhanced chemical reactivity of graphene induced by mechanical strain. ACS Nano 7, 10335–10343 (2013). PubMed
Sarkar S. et al.. Organometallic Hexahapto Functionalization of Single Layer Graphene as a Route to High Mobility Graphene Devices. Adv. Mater. 25, 1131–1136 (2013). PubMed
Liu N. et al.. The Origin of Wrinkles on Transferred Graphene. Nano Res. 4, 996–1004 (2011).
Li X. S. et al.. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 9, 4359–4363 (2009). PubMed
Duan W. H., Gong K. & Wang Q. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear. Carbon 49, 3107–3112 (2011).
Pereira V. M. & Castro Neto A. H. Strain Engineering of Graphene's Electronic Structure. Phys. Rev. Lett. 103, 046801 (2009). PubMed
Guinea F., Horovitz B. & Le Doussal P. Gauge fields, ripples and wrinkles in graphene layers. Solid State Commun. 149, 1140–1143 (2009).
Scharfenberg S. et al.. Probing the mechanical properties of graphene using a corrugated elastic substrate. Appl. Phys. Lett. 98, 091908 (2011).
Osvath Z. et al.. Controlling the nanoscale rippling of graphene with SiO2 nanoparticles. Nanoscale 6, 6030–6036 (2014). PubMed
Yamamoto M. et al.. "The Princess and the Pea" at the Nanoscale: Wrinkling and Delamination of Graphene on Nanoparticles. Phys. Rev. X 2, 041018 (2012).
Neek-Amal M., Covaci L. & Peeters F. M. Nanoengineered nonuniform strain in graphene using nanopillars. Phys. Rev. B 86, 041405(R) (2012).
Reserbat-Plantey A. et al.. Strain Superlattices and Macroscale Suspension of Graphene Induced by Corrugated Substrates. Nano Lett. 14, 5044–5051 (2014). PubMed
Lee J. E., Ahn G., Shim J., Lee Y. S. & Ryu S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012). PubMed
Teague M. L. et al.. Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2. Nano Lett. 9, 2542–2546 (2009). PubMed
Frank O., Vejpravova J., Holy V., Kavan L. & Kalbac M. Interaction between graphene and copper substrate: The role of lattice orientation. Carbon 68, 440–451 (2014).
Robinson J. A., Puls C. P., Staley N. E., Stitt J. P. & Fanton M. A. Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett. 9, 964–968 (2009). PubMed
Huang M., Yan H., Heinz T. F. & Hone J. Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 10, 4074–4079 (2010). PubMed
Malard L. M., Pimenta M. A., Dresselhaus G. & Dresselhaus M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).
Ferrari A. C. & Basko D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013). PubMed
Pacakova B., Vejpravova J., Repko A. & Kalbac M. Formation of wrinkles on graphene induced by nanoparticles: atomic force microscopy study. Carbon 95, 573–579 (2015).
Couto N. J. G. et al.. Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices. Phys. Rev. X 4, 041019 (2014).
Lu K., Accorsi M. & Leonard J. Finite element analysis of membrane wrinkling. Int. J. Numer. Meth. Eng. 50, 1017–1038 (2001).
Metzger C. et al.. Biaxial strain in graphene adhered to shallow depressions. Nano. Lett. 10, 6–10 (2010). PubMed
Zabel J. et al.. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano. Lett. 12, 617–621 (2012). PubMed
Mohr M., Maultzsch J. & Thomsen C. Splitting of the Raman 2D band of graphene subjected to strain. Phys. Rev. B 82, 201409 (2010).
Das A. et al.. Phonon renormalization in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009).
Casiraghi C. Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys. Status Solidi-Rapid Res. Lett. 3, 175–177 (2009).
Salas G. et al.. Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J. Mater. Chem. 22, 21065–21075 (2012).
Necas D. & Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).
Introducing Well-Defined Nanowrinkles in CVD Grown Graphene