Graphene-enhanced Raman scattering on single layer and bilayers of pristine and hydrogenated graphene
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
32161329
PubMed Central
PMC7066185
DOI
10.1038/s41598-020-60857-y
PII: 10.1038/s41598-020-60857-y
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Graphene-enhanced Raman scattering (GERS) on isotopically labelled bilayer and a single layer of pristine and partially hydrogenated graphene has been studied. The hydrogenated graphene sample showed a change in relative intensities of Raman bands of Rhodamine 6 G (R6G) with different vibrational energies deposited on a single layer and bilayer graphene. The change corresponds qualitatively to different doping of graphene in both areas. Pristine graphene sample exhibited no difference in doping nor relative intensities of R6G Raman peaks in the single layer and bilayer areas. Therefore, it was concluded that strain and strain inhomogeneities do not affect the GERS. Because of analyzing relative intensities of selected peaks of the R6G probe molecules, it is possible to obtain these results without determining the enhancement factor and without assuming homogeneous coverage of the molecules. Furthermore, we tested the approach on copper phtalocyanine molecules.
See more in PubMed
Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998;27:241. doi: 10.1039/a827241z. DOI
Cañamares MV, Chenal C, Birke RL, Lombardi JR. DFT, SERS, and Single-Molecule SERS of Crystal Violet. J. Phys. Chem. C. 2008;112:20295–20300. doi: 10.1021/jp807807j. DOI
Sharma B, Frontiera RR, Henry A, Ringe E, Duyne RPV. SERS: Materials, applications, and the future Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational. Mater. Today. 2012;15:16–25. doi: 10.1016/S1369-7021(12)70017-2. DOI
Xie L, Ling X, Fang Y, Zhang J, Liu Z. Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy. J. Am. Chem. Soc. 2009;131:9890–9891. doi: 10.1021/ja9037593. PubMed DOI
Ling X, Wu J, Xie L, Zhang J. Graphene-Thickness-Dependent Graphene-Enhanced Raman Scattering. J. Phys. Chem. C. 2013;117:2369–2376. doi: 10.1021/jp310564d. DOI
Ling X, Moura LG, Pimenta MA, Zhang J. Charge-Transfer Mechanism in Graphene-Enhanced Raman Scattering. J. Phys. Chem. C. 2012;116:25112–25118. doi: 10.1021/jp3088447. DOI
Sutrová V, et al. Excitation Wavelength Dependence of Combined Surface- and Graphene-Enhanced Raman Scattering Experienced by Free-Base Phthalocyanine Localized on Single-Layer Graphene-Covered Ag Nanoparticle Arrays. J. Phys. Chem. C. 2018;122:20850–20860. doi: 10.1021/acs.jpcc.8b06218. DOI
Ling X, et al. Can Graphene be used as a Substrate for Raman Enhancement? Nano Lett. 2010;10:553–561. doi: 10.1021/nl903414x. PubMed DOI
Ling X, et al. Lighting Up the Raman Signal of Molecules in the Vicinity of Graphene Related Materials. Acc. Chem. Res. 2015;48:1862–1870. doi: 10.1021/ar500466u. PubMed DOI
Huang S, et al. Molecular Selectivity of Graphene-Enhanced Raman Scattering. Nano Lett. 2015;15:2892–2901. doi: 10.1021/nl5045988. PubMed DOI
Lopes M, et al. Surface-Enhanced Raman Signal for Terbium Single-Molecule Magnets Grafted on Graphene. ACS Nano. 2010;4:7531–7537. doi: 10.1021/nn1018363. PubMed DOI
Sun L, et al. Plasma Modified MoS 2 Nanoflakes for Surface Enhanced Raman Scattering. Small. 2014;10:1090–1095. doi: 10.1002/smll.201300798. PubMed DOI
Xu H, Xie L, Zhang H, Zhang J. Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene. ACS Nano. 2011;5:5338–5344. doi: 10.1021/nn103237x. PubMed DOI
Feng S, et al. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Sci. Adv. 2016;2:e1600322. doi: 10.1126/sciadv.1600322. PubMed DOI PMC
Lv R, et al. Large-Area Si-Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing. Adv. Mater. 2014;26:7593–7599. doi: 10.1002/adma.201403537. PubMed DOI
Valeš V, et al. Enhanced Raman scattering on functionalized graphene substrates. 2D Mater. 2017;4:025087. doi: 10.1088/2053-1583/aa6b6e. DOI
Huh S, et al. UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. ACS Nano. 2011;5:9799–9806. doi: 10.1021/nn204156n. PubMed DOI
Barros EB, Dresselhaus MS. Theory of Raman enhancement by two-dimensional materials: Applications for graphene-enhanced Raman spectroscopy. Phys. Rev. B. 2014;90:035443. doi: 10.1103/PhysRevB.90.035443. DOI
Kalbac M, Kong J, Dresselhaus M. Raman Spectroscopy as a Tool to Address Individual Graphene Layers in Few Layer Graphene. J. Phys. Chem. C. 2012;116:19046. doi: 10.1021/jp307324u. DOI
Ryu S, et al. Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO 2 Substrate. Nano Lett. 2010;10:4944–4951. doi: 10.1021/nl1029607. PubMed DOI
Goniszewski S, et al. Correlation of p-doping in CVD Graphene with Substrate Surface Charges. Sci. Rep. 2016;6:22858. doi: 10.1038/srep22858. PubMed DOI PMC
Lee Y-R, Huang J-X, Lin J-C, Lee J-R. Study of the Substrate-Induced Strain of As-Grown Graphene on Cu(100) Using Temperature-Dependent Raman Spectroscopy: Estimating the Mode Grüneisen Parameter with Temperature. J. Phys. Chem. C. 2017;121:27427–27436. doi: 10.1021/acs.jpcc.7b08170. DOI
Yin Y, Cervenka J, Medhekar NV. Tunable Hybridization Between Electronic States of Graphene and Physisorbed Hexacene. J. Phys. Chem. C. 2015;119:19526–19534. doi: 10.1021/acs.jpcc.5b05428. DOI
Ek Weis J, Costa SD, Frank O, Bastl Z, Kalbac M. Fluorination of Isotopically Labeled Turbostratic and Bernal Stacked Bilayer Graphene. Chem. - A Eur. J. 2015;21:1081–1087. doi: 10.1002/chem.201404813. PubMed DOI
Frank O, Dresselhaus MS, Kalbac M. Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Isotopically Engineered Graphene Systems. Acc. Chem. Res. 2015;48:111–118. doi: 10.1021/ar500384p. PubMed DOI
Huang S, Pandey R, Barman I, Kong J, Dresselhaus M. Raman Enhancement of Blood Constituent Proteins Using Graphene. ACS Photonics. 2018;5:2978–2982. doi: 10.1021/acsphotonics.8b00456. DOI
Blechta V, Drogowska KA, Vales V, Kalbac M. Adsorption Site-Dependent Mobility Behavior in Graphene Exposed to Gas Oxygen. J. Phys. Chem. C. 2018;122:21493–21499. doi: 10.1021/acs.jpcc.8b06906. DOI
Zu B, et al. Gas Adsorption Thermodynamics Deduced from the Electrical Responses in Gas-Gated Field-Effect Nanosensors. J. Phys. Chem. C. 2014;118:14703–14710. doi: 10.1021/jp505279m. DOI
Yavari F, Castillo E, Gullapalli H, Ajayan PM, Koratkar N. High sensitivity detection of NO 2 and NH 3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 2012;100:203120. doi: 10.1063/1.4720074. DOI
Blechta V, Mergl M, Drogowska K, Valeš V, Kalbáč M. NO2 sensor with a graphite nanopowder working electrode. Sensors Actuators B Chem. 2016;226:299–304. doi: 10.1016/j.snb.2015.11.130. DOI
Kang W, Li S. Preparation of fluorinated graphene to study its gas sensitivity. RSC Adv. 2018;8:23459–23467. doi: 10.1039/C8RA03451F. PubMed DOI PMC
Park S, et al. NO 2 gas sensor based on hydrogenated graphene. Appl. Phys. Lett. 2017;111:213102. doi: 10.1063/1.4999263. DOI
Jiang L, Fu W, Birdja YY, Koper MTM, Schneider GF. Quantum and electrochemical interplays in hydrogenated graphene. Nat. Commun. 2018;9:793. doi: 10.1038/s41467-018-03026-0. PubMed DOI PMC
Drogowska K, Kovaříček P, Kalbáč M. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions. Chem. - A Eur. J. 2017;23:4073–4078. doi: 10.1002/chem.201605385. PubMed DOI
Malard LM, Pimenta Ma, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. Phys. Rep. 2009;473:51–87. doi: 10.1016/j.physrep.2009.02.003. DOI
Elias DC, et al. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science (80-.). 2009;323:610–613. doi: 10.1126/science.1167130. PubMed DOI
Valeš, V. et al. Quenching of photoluminescence of Rhodamine 6G molecules on functionalized graphene. Phys. Status Solidi B.
Valeš V, Melníková Z, Verhagen T, Vejpravová J, Kalbáč M. Reversibility of Graphene-Enhanced Raman Scattering with Fluorinated Graphene. Phys. status solidi. 2017;254:1700177. doi: 10.1002/pssb.201700177. DOI
Kalbac M, Frank O, Kavan L. Effects of heat treatment on Raman spectra of two-layer 12C/13C graphene. Chemistry. 2012;18:13877–84. doi: 10.1002/chem.201202114. PubMed DOI
Lee JE, Ahn G, Shim J, Lee YS, Ryu S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 2012;3:1024. doi: 10.1038/ncomms2022. PubMed DOI
Zabel J, et al. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano Lett. 2012;12:617–21. doi: 10.1021/nl203359n. PubMed DOI
Lazzeri M, Mauri F. Nonadiabatic Kohn Anomaly in a Doped Graphene Monolayer. Phys. Rev. Lett. 2006;97:266407. doi: 10.1103/PhysRevLett.97.266407. PubMed DOI
Das A, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008;3:210–5. doi: 10.1038/nnano.2008.67. PubMed DOI
Ni Z, Wang Y, Yu T, You Y, Shen Z. Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys. Rev. B. 2008;77:235403. doi: 10.1103/PhysRevB.77.235403. DOI
Verhagen TGa, Drogowska K, Kalbac M, Vejpravova J. Temperature-induced strain and doping in monolayer and bilayer isotopically labeled graphene. Phys. Rev. B. 2015;92:125437. doi: 10.1103/PhysRevB.92.125437. DOI
Jeon H, Teraji T, Watanabe K, Taniguchi T, Ryu S. Lattice vibrations of single and multi-layer isotopologic graphene. Carbon N. Y. 2018;140:449–457. doi: 10.1016/j.carbon.2018.08.054. DOI
Neumann C, et al. Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nat. Commun. 2015;6:8429. doi: 10.1038/ncomms9429. PubMed DOI PMC
Valeš V, Verhagen T, Vejpravová J, Frank O, Kalbáč M. Addressing asymmetry of the charge and strain in a two-dimensional fullerene peapod. Nanoscale. 2016;8:735–740. doi: 10.1039/C5NR06271C. PubMed DOI
Verhagen TGA, Vales V, Kalbac M, Vejpravova J. Evolution of temperature-induced strain and doping of double-layer graphene: An in situ Raman spectral mapping study. Phys. status solidi. 2015;252:2401–2406. doi: 10.1002/pssb.201552223. DOI
Vejpravova J, et al. Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification. Sci. Rep. 2015;5:15061. doi: 10.1038/srep15061. PubMed DOI PMC
Ryu S, et al. Reversible Basal Plane Hydrogenation of Graphene. Nano Lett. 2008;8:4597–4602. doi: 10.1021/nl802940s. PubMed DOI
Kovaříček P, et al. EDOT polymerization at photolithographically patterned functionalized graphene. Carbon N. Y. 2017;113:33–39. doi: 10.1016/j.carbon.2016.11.018. DOI
Hallam T, Berner NC, Yim C, Duesberg GS. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer. Adv. Mater. Interfaces. 2014;1:1400115. doi: 10.1002/admi.201400115. DOI