Introducing Well-Defined Nanowrinkles in CVD Grown Graphene

. 2019 Mar 04 ; 9 (3) : . [epub] 20190304

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30836599

Grantová podpora
716265 H2020 European Research Council
CZ.02.1.01/0.0/0.0/16_026/0008382 Ministerstvo Školství, Mládeže a Tělovýchovy

The control of graphene's topography at the nanoscale level opens up the possibility to greatly improve the surface functionalization, change the doping level or create nanoscale reservoirs. However, the ability to control the modification of the topography of graphene on a wafer scale is still rather challenging. Here we present an approach to create well-defined nanowrinkles on a wafer scale using nitrocellulose as the polymer to transfer chemical vapor deposition grown graphene from the copper foil to a substrate. During the transfer process, the complex tertiary nitrocellulose structure is imprinted into the graphene area layer. When the graphene layer is put onto a substrate this will result in a well-defined nanowrinkle pattern, which can be subsequently further processed. Using atomic force and Raman microscopy, we characterized the generated nanowrinkles in graphene.

Zobrazit více v PubMed

Deng S., Berry V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today. 2016;19:197. doi: 10.1016/j.mattod.2015.10.002. DOI

Zhao G., Li X., Huang M., Zhen Z., Zhong Y., Chen Q., Zhao X., He Y., Hu R., Yang T., et al. The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 2017;46:4417. doi: 10.1039/C7CS00256D. PubMed DOI

Chen M., Haddon R.C., Yana R., Bekyarova E. Advances in transferring chemical vapour deposition graphene: A review. Mater. Horiz. 2017;4:1054. doi: 10.1039/C7MH00485K. DOI

Wang L., Meric I., Huang P.Y., Gao Q., Gao Y., Tran H., Taniguchi T., Watanabe K., Campos L.M., Muller D.A., et al. One-dimensional electrical contact to a two-dimensional material. Science. 2013;342:614. doi: 10.1126/science.1244358. PubMed DOI

Banszerus L., Schmitz M., Engels S., Dauber J., Oellers M., Haupt F., Watanabe K., Taniguchi T., Beschoten B., Stampfer C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 2015;1:e1500222. doi: 10.1126/sciadv.1500222. PubMed DOI PMC

Park S., Srivastava D., Cho K. Generalized, Chemical reactivity of curved Surfaces: Carbon nanotubes. Nano. Lett. 2003;3:1273. doi: 10.1021/nl0342747. DOI

Haddon R.C. π-Electrons in three dimensions. Acc. Chem. Res. 1988;21:243. doi: 10.1021/ar00150a005. DOI

Niyogi S., Hamon M.A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M.E., Haddon R.C. Chemistry of Single-Walled Carbon Nanotubes. Acc. Chem. Res. 2002;35:1105. doi: 10.1021/ar010155r. PubMed DOI

Wang Q.H., Jin Z., Kim K.K., Hilmer A.J., Paulus G.L., Shih C.C.-J., Ham M.-H., Sanchez-Yamagishi J.D., Watanabe K., Taniguchi T., et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 2012;7:724. doi: 10.1038/nchem.1421. PubMed DOI

Levy N., Burke S.A., Meaker K.L., Panlasigui M., Zettl A., Guinea F., Castro Neto A.H., Crommie M.F. Strain-induced pseudo magnetic fields greater than 300 tesla in graphene nanobubbles. Science. 2010;329:544. doi: 10.1126/science.1191700. PubMed DOI

Zhu W., Low T., Perebeinos V., Bol A.A., Zhu Y., Yan H., Tersoff J., Avouris P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012;12:3431. doi: 10.1021/nl300563h. PubMed DOI

Khestanova E., Guinea F., Fumagalli L., Geim A.K., Grigorieva I.V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 2016;7:2587. doi: 10.1038/ncomms12587. PubMed DOI PMC

Vasu K.S., Prestat E., Abraham J., Dix J., Kashtiban R.J., Beheshtian J., Sloan J., Carbone P., Neek-Amal M., Haigh S.J., et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 2016;7:12168. doi: 10.1038/ncomms12168. PubMed DOI PMC

Algara-Siller G., Lehtinen O., Wang F.C., Nair R.R., Kaiser U., Wu H.A., Geim A.K., Grigorieva I.V. Square ice in graphene nanocapillaries. Nature. 2015;519:443. doi: 10.1038/nature14295. PubMed DOI

Hallam T., Berner N.C., Yim C., Duesberg G.S. Strain, bubbles, dirt, and folds: A study of graphene polymer-assisted transfer. Adv. Mater. Interfaces. 2014;1:1400115. doi: 10.1002/admi.201400115. DOI

Diab M., Kim K.-S. Ruga-formation instabilities of a graded stiffness boundary layer in a neo-Hookean solid. Proc. R. Soc. A. 2014;470:20140218. doi: 10.1098/rspa.2014.0218. DOI

Wang Q., Zhao X. A three-dimensional phase diagram of growth-induced surface instabilities. Sci. Rep. 2015;5:8887. doi: 10.1038/srep08887. PubMed DOI PMC

Kalbac M., Frank O., Kavan L. Effects of heat treatment on raman spectra of two-layer 12C/13C grapheme. Chem. Eur. J. 2012;18:13877. doi: 10.1002/chem.201202114. PubMed DOI

Vejpravova J., Pacakova B., Endres J., Mantlikova A., Verhagen T., Vales V., Frank O., Kalbac M. Graphene wrinkling induced by monodisperse nanoparticles: Facile control and quantification. Sci. Rep. 2015;5:15061. doi: 10.1038/srep15061. PubMed DOI PMC

Necas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181. doi: 10.2478/s11534-011-0096-2. DOI

Frank O., Vejpravova J., Holy V., Kavan L., Kalbac M. Interaction between graphene and copper substrate: The role of lattice orientation. Carbon. 2014;68:440. doi: 10.1016/j.carbon.2013.11.020. DOI

Verhagen T.G.A., Drogowska K., Kalbac M., Vejpravova J. Temperature-induced strain and doping in monolayer and bilayer isotopically labeled graphene. Phys. Rev. B. 2015;92:125437. doi: 10.1103/PhysRevB.92.125437. DOI

Lee J.E., Ahn G., Shim J., Lee Y.S., Ryu S. Optical separation of mechanical strain from charge doping in grapheme. Nat. Commun. 2012;3:1024. doi: 10.1038/ncomms2022. PubMed DOI

Neumann C., Reichardt S., Venezuela P., Drogeler M., Banszerus L., Schmitz M., Watanabe K., Taniguchi T., Mauri F., Beschoten B., et al. Raman spectroscopy as probe of nanometre-scale strain variations in grapheme. Nat. Commun. 2015;6:8429. doi: 10.1038/ncomms9429. PubMed DOI PMC

Frank O., Mohr M., Maultzsch J., Thomsen C., Riaz I., Jalil R., Novoselov K.S., Tsoukleri G., Parthenios J., Papagelis K., et al. Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano. 2011;5:2231. doi: 10.1021/nn103493g. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...