Introducing Well-Defined Nanowrinkles in CVD Grown Graphene
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
716265
H2020 European Research Council
CZ.02.1.01/0.0/0.0/16_026/0008382
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30836599
PubMed Central
PMC6474139
DOI
10.3390/nano9030353
PII: nano9030353
Knihovny.cz E-zdroje
- Klíčová slova
- AFM, CVD graphene, Raman spectroscopy, ripple, ruga, transfer, wrinkle,
- Publikační typ
- časopisecké články MeSH
The control of graphene's topography at the nanoscale level opens up the possibility to greatly improve the surface functionalization, change the doping level or create nanoscale reservoirs. However, the ability to control the modification of the topography of graphene on a wafer scale is still rather challenging. Here we present an approach to create well-defined nanowrinkles on a wafer scale using nitrocellulose as the polymer to transfer chemical vapor deposition grown graphene from the copper foil to a substrate. During the transfer process, the complex tertiary nitrocellulose structure is imprinted into the graphene area layer. When the graphene layer is put onto a substrate this will result in a well-defined nanowrinkle pattern, which can be subsequently further processed. Using atomic force and Raman microscopy, we characterized the generated nanowrinkles in graphene.
Zobrazit více v PubMed
Deng S., Berry V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today. 2016;19:197. doi: 10.1016/j.mattod.2015.10.002. DOI
Zhao G., Li X., Huang M., Zhen Z., Zhong Y., Chen Q., Zhao X., He Y., Hu R., Yang T., et al. The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 2017;46:4417. doi: 10.1039/C7CS00256D. PubMed DOI
Chen M., Haddon R.C., Yana R., Bekyarova E. Advances in transferring chemical vapour deposition graphene: A review. Mater. Horiz. 2017;4:1054. doi: 10.1039/C7MH00485K. DOI
Wang L., Meric I., Huang P.Y., Gao Q., Gao Y., Tran H., Taniguchi T., Watanabe K., Campos L.M., Muller D.A., et al. One-dimensional electrical contact to a two-dimensional material. Science. 2013;342:614. doi: 10.1126/science.1244358. PubMed DOI
Banszerus L., Schmitz M., Engels S., Dauber J., Oellers M., Haupt F., Watanabe K., Taniguchi T., Beschoten B., Stampfer C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 2015;1:e1500222. doi: 10.1126/sciadv.1500222. PubMed DOI PMC
Park S., Srivastava D., Cho K. Generalized, Chemical reactivity of curved Surfaces: Carbon nanotubes. Nano. Lett. 2003;3:1273. doi: 10.1021/nl0342747. DOI
Haddon R.C. π-Electrons in three dimensions. Acc. Chem. Res. 1988;21:243. doi: 10.1021/ar00150a005. DOI
Niyogi S., Hamon M.A., Hu H., Zhao B., Bhowmik P., Sen R., Itkis M.E., Haddon R.C. Chemistry of Single-Walled Carbon Nanotubes. Acc. Chem. Res. 2002;35:1105. doi: 10.1021/ar010155r. PubMed DOI
Wang Q.H., Jin Z., Kim K.K., Hilmer A.J., Paulus G.L., Shih C.C.-J., Ham M.-H., Sanchez-Yamagishi J.D., Watanabe K., Taniguchi T., et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 2012;7:724. doi: 10.1038/nchem.1421. PubMed DOI
Levy N., Burke S.A., Meaker K.L., Panlasigui M., Zettl A., Guinea F., Castro Neto A.H., Crommie M.F. Strain-induced pseudo magnetic fields greater than 300 tesla in graphene nanobubbles. Science. 2010;329:544. doi: 10.1126/science.1191700. PubMed DOI
Zhu W., Low T., Perebeinos V., Bol A.A., Zhu Y., Yan H., Tersoff J., Avouris P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012;12:3431. doi: 10.1021/nl300563h. PubMed DOI
Khestanova E., Guinea F., Fumagalli L., Geim A.K., Grigorieva I.V. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 2016;7:2587. doi: 10.1038/ncomms12587. PubMed DOI PMC
Vasu K.S., Prestat E., Abraham J., Dix J., Kashtiban R.J., Beheshtian J., Sloan J., Carbone P., Neek-Amal M., Haigh S.J., et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 2016;7:12168. doi: 10.1038/ncomms12168. PubMed DOI PMC
Algara-Siller G., Lehtinen O., Wang F.C., Nair R.R., Kaiser U., Wu H.A., Geim A.K., Grigorieva I.V. Square ice in graphene nanocapillaries. Nature. 2015;519:443. doi: 10.1038/nature14295. PubMed DOI
Hallam T., Berner N.C., Yim C., Duesberg G.S. Strain, bubbles, dirt, and folds: A study of graphene polymer-assisted transfer. Adv. Mater. Interfaces. 2014;1:1400115. doi: 10.1002/admi.201400115. DOI
Diab M., Kim K.-S. Ruga-formation instabilities of a graded stiffness boundary layer in a neo-Hookean solid. Proc. R. Soc. A. 2014;470:20140218. doi: 10.1098/rspa.2014.0218. DOI
Wang Q., Zhao X. A three-dimensional phase diagram of growth-induced surface instabilities. Sci. Rep. 2015;5:8887. doi: 10.1038/srep08887. PubMed DOI PMC
Kalbac M., Frank O., Kavan L. Effects of heat treatment on raman spectra of two-layer 12C/13C grapheme. Chem. Eur. J. 2012;18:13877. doi: 10.1002/chem.201202114. PubMed DOI
Vejpravova J., Pacakova B., Endres J., Mantlikova A., Verhagen T., Vales V., Frank O., Kalbac M. Graphene wrinkling induced by monodisperse nanoparticles: Facile control and quantification. Sci. Rep. 2015;5:15061. doi: 10.1038/srep15061. PubMed DOI PMC
Necas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181. doi: 10.2478/s11534-011-0096-2. DOI
Frank O., Vejpravova J., Holy V., Kavan L., Kalbac M. Interaction between graphene and copper substrate: The role of lattice orientation. Carbon. 2014;68:440. doi: 10.1016/j.carbon.2013.11.020. DOI
Verhagen T.G.A., Drogowska K., Kalbac M., Vejpravova J. Temperature-induced strain and doping in monolayer and bilayer isotopically labeled graphene. Phys. Rev. B. 2015;92:125437. doi: 10.1103/PhysRevB.92.125437. DOI
Lee J.E., Ahn G., Shim J., Lee Y.S., Ryu S. Optical separation of mechanical strain from charge doping in grapheme. Nat. Commun. 2012;3:1024. doi: 10.1038/ncomms2022. PubMed DOI
Neumann C., Reichardt S., Venezuela P., Drogeler M., Banszerus L., Schmitz M., Watanabe K., Taniguchi T., Mauri F., Beschoten B., et al. Raman spectroscopy as probe of nanometre-scale strain variations in grapheme. Nat. Commun. 2015;6:8429. doi: 10.1038/ncomms9429. PubMed DOI PMC
Frank O., Mohr M., Maultzsch J., Thomsen C., Riaz I., Jalil R., Novoselov K.S., Tsoukleri G., Parthenios J., Papagelis K., et al. Raman 2D-Band Splitting in Graphene: Theory and Experiment. ACS Nano. 2011;5:2231. doi: 10.1021/nn103493g. PubMed DOI