Electrical Contact Resistance of Large-Area Graphene on Pre-Patterned Cu and Au Electrodes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008382
Ministry of Education Youth and Sports
SGS-2021-003
University of West Bohemia
PubMed
36558297
PubMed Central
PMC9780872
DOI
10.3390/nano12244444
PII: nano12244444
Knihovny.cz E-zdroje
- Klíčová slova
- contact resistance, graphene, graphene–metal contact, transfer length method,
- Publikační typ
- časopisecké články MeSH
Contact resistance between electrically connected parts of electronic elements can negatively affect their resulting properties and parameters. The contact resistance is influenced by the physicochemical properties of the connected elements and, in most cases, the lowest possible value is required. The issue of contact resistance is also addressed in connection with the increasingly frequently used carbon allotropes. This work aimed to determine the factors that influence contact resistance between graphene prepared by chemical vapour deposition and pre-patterned Cu and Au electrodes onto which graphene is subsequently transferred. It was found that electrode surface treatment methods affect the resistance between Cu and graphene, where contact resistance varied greatly, with an average of 1.25 ± 1.54 kΩ, whereas for the Au electrodes, the deposition techniques did not influence the resulting contact resistance, which decreased by almost two orders of magnitude compared with the Cu electrodes, to 0.03 ± 0.01 kΩ.
Zobrazit více v PubMed
Lemme M.C., Li L.-J., Palacios T., Schwierz F. Two-Dimensional Materials for Electronic Applications. MRS Bull. 2014;39:711–718. doi: 10.1557/mrs.2014.138. DOI
Pereira P., Ferreira D.P., Araújo J.C., Ferreira A., Fangueiro R. The Potential of Graphene Nanoplatelets in the Development of Smart and Multifunctional Ecocomposites. Polymers. 2020;12:2189. doi: 10.3390/polym12102189. PubMed DOI PMC
Kamedulski P., Truszkowski S., Lukaszewicz J.P. Highly Effective Methods of Obtaining N-Doped Graphene by Gamma Irradiation. Materials. 2020;13:4975. doi: 10.3390/ma13214975. PubMed DOI PMC
Jiménez-Marín E., Moreno-Valenzuela J., Trejo-Valdez M., Martinez-Rivas A., Vargas-García J.R., Torres-Torres C. Laser-Induced Electrical Signal Filtering by Multilayer Reduced Graphene Oxide Decorated with Au Nanoparticles. Opt. Express. 2019;27:7330. doi: 10.1364/OE.27.007330. PubMed DOI
Islam M.R., Shifat A.S.M.Z., Liu K., Li Q., Yang C., Wang Z., Qu S., Wang Z. Impact of Contact Resistance on the Performances of Graphene Field-Effect Transistor through Analytical Study. AIP Adv. 2021;11:045220. doi: 10.1063/5.0039622. DOI
Giubileo F., Di Bartolomeo A. The Role of Contact Resistance in Graphene Field-Effect Devices. Prog. Surf. Sci. 2017;92:143–175. doi: 10.1016/j.progsurf.2017.05.002. DOI
Hsu A., Wang H., Kim K.K., Kong J., Palacios T. Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance. IEEE Electron Device Lett. 2011;32:1008–1010. doi: 10.1109/LED.2011.2155024. DOI
Passi V., Gahoi A., Marin E.G., Cusati T., Fortunelli A., Iannaccone G., Fiori G., Lemme M.C. Ultralow Specific Contact Resistivity in Metal–Graphene Junctions via Contact Engineering. Adv. Mater. Interfaces. 2019;6:1801285. doi: 10.1002/admi.201801285. DOI
Robinson J.A., LaBella M., Zhu M., Hollander M., Kasarda R., Hughes Z., Trumbull K., Cavalero R., Snyder D. Contacting Graphene. Appl. Phys. Lett. 2011;98:053103. doi: 10.1063/1.3549183. PubMed DOI
Nagashio K., Nishimura T., Kita K., Toriumi A. Contact Resistivity and Current Flow Path at Metal/Graphene Contact. Appl. Phys. Lett. 2010;97:143514. doi: 10.1063/1.3491804. DOI
Gahoi A., Kataria S., Lemme M.C. Temperature Dependence of Contact Resistance for Gold-Graphene Contacts; Proceedings of the 2017 47th European Solid-State Device Research Conference (ESSDERC); Leuven, Belgium. 11–14 September 2017; Leuven, Belgium: IEEE; 2017. pp. 110–113.
Liu J., Bao S., Wang X. Applications of Graphene-Based Materials in Sensors: A Review. Micromachines. 2022;13:184. doi: 10.3390/mi13020184. PubMed DOI PMC
Štulík J., Musil O., Josefík F., Kadlec P. Graphene-Based Temperature Sensors–Comparison of the Temperature and Humidity Dependences. Nanomaterials. 2022;12:1594. doi: 10.3390/nano12091594. PubMed DOI PMC
Huang H., Su S., Wu N., Wan H., Wan S., Bi H., Sun L. Graphene-Based Sensors for Human Health Monitoring. Front. Chem. 2019;7:399. doi: 10.3389/fchem.2019.00399. PubMed DOI PMC
Shahdeo D., Roberts A., Abbineni N., Gandhi S. Comprehensive Analytical Chemistry. Volume 91. Elsevier; Amsterdam, The Netherlands: 2020. Graphene Based Sensors; pp. 175–199.
Robert F. Prediction of Contact Length, Contact Pressure and Indentation Depth of Au/Carbon Nanotube Composite Micro Electrical Contact Using Finite Element Modeling. Appl. Surf. Sci. 2019;489:470–476. doi: 10.1016/j.apsusc.2019.05.169. DOI
Quellmalz A., Smith A.D., Elgammal K., Fan X., Delin A., Östling M., Lemme M., Gylfason K.B., Niklaus F. Influence of Humidity on Contact Resistance in Graphene Devices. ACS Appl. Mater. Interfaces. 2018;10:41738–41746. doi: 10.1021/acsami.8b10033. PubMed DOI PMC
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Berger C., Song Z., Li X., Wu X., Brown N., Naud C., Mayou D., Li T., Hass J., Marchenkov A.N., et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science. 2006;312:1191–1196. doi: 10.1126/science.1125925. PubMed DOI
Hernandez Y., Nicolosi V., Lotya M., Blighe F.M., Sun Z., De S., McGovern I.T., Holland B., Byrne M., Gun’Ko Y.K., et al. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008;3:563–568. doi: 10.1038/nnano.2008.215. PubMed DOI
González Z., Acevedo B., Predeanu G., Axinte S.M., Drăgoescu M.-F., Slăvescu V., Fernandez J.J., Granda M., Gryglewicz G., Melendi-Espina S. Graphene Materials from Microwave-Derived Carbon Precursors. Fuel Process. Technol. 2021;217:106803. doi: 10.1016/j.fuproc.2021.106803. DOI
Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245. PubMed DOI
Huet B., Raskin J.-P., Snyder D.W., Redwing J.M. Fundamental Limitations in Transferred CVD Graphene Caused by Cu Catalyst Surface Morphology. Carbon. 2020;163:95–104. doi: 10.1016/j.carbon.2020.02.074. DOI
Gahoi A., Wagner S., Bablich A., Kataria S., Passi V., Lemme M.C. Contact Resistance Study of Various Metal Electrodes with CVD Graphene. Solid-State Electron. 2016;125:234–239. doi: 10.1016/j.sse.2016.07.008. DOI
Park K., Lee J., Kim Y., Yoon S., Yoo B. Study of Cu Electrochemical Polishing Mechanism with Observation of Water Acceptor Diffusion. Front. Chem. 2021;9:763508. doi: 10.3389/fchem.2021.763508. PubMed DOI PMC
Kalbac M., Frank O., Kavan L. The Control of Graphene Double-Layer Formation in Copper-Catalyzed Chemical Vapor Deposition. Carbon. 2012;50:3682–3687. doi: 10.1016/j.carbon.2012.03.041. DOI
Bláha M., Bouša M., Valeš V., Frank O., Kalbáč M. Two-Dimensional CVD-Graphene/Polyaniline Supercapacitors: Synthesis Strategy and Electrochemical Operation. ACS Appl. Mater. Interfaces. 2021;13:34686–34695. doi: 10.1021/acsami.1c05054. PubMed DOI
Melníková-Komínková Z., Valeš V., Frank O., Kalbáč M. Evolution of the Raman 2D’ Mode in Monolayer Graphene during Electrochemical Doping. Microchem. J. 2022;181:107739. doi: 10.1016/j.microc.2022.107739. DOI
Hallam T., Berner N.C., Yim C., Duesberg G.S. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer. Adv. Mater. Interfaces. 2014;1:1400115. doi: 10.1002/admi.201400115. DOI
Cançado L.G., Jorio A., Ferreira E.H.M., Stavale F., Achete C.A., Capaz R.B., Moutinho M.V.O., Lombardo A., Kulmala T.S., Ferrari A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011;11:3190–3196. doi: 10.1021/nl201432g. PubMed DOI
Schriver M., Regan W., Gannett W.J., Zaniewski A.M., Crommie M.F., Zettl A. Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing. ACS Nano. 2013;7:5763–5768. doi: 10.1021/nn4014356. PubMed DOI
Liu N., Pan Z., Fu L., Zhang C., Dai B., Liu Z. The Origin of Wrinkles on Transferred Graphene. Nano Res. 2011;4:996–1004. doi: 10.1007/s12274-011-0156-3. DOI
Pacakova B., Verhagen T., Bousa M., Hübner U., Vejpravova J., Kalbac M., Frank O. Mastering the Wrinkling of Self-Supported Graphene. Sci. Rep. 2017;7:10003. doi: 10.1038/s41598-017-10153-z. PubMed DOI PMC
Ma B., Gong C., Wen Y., Chen R., Cho K., Shan B. Modulation of Contact Resistance between Metal and Graphene by Controlling the Graphene Edge, Contact Area, and Point Defects: An Ab Initio Study. J. Appl. Phys. 2014;115:183708. doi: 10.1063/1.4876738. DOI
Anzi L., Mansouri A., Pedrinazzi P., Guerriero E., Fiocco M., Pesquera A., Centeno A., Zurutuza A., Behnam A., Carrion E.A., et al. Ultra-Low Contact Resistance in Graphene Devices at the Dirac Point. 2D Mater. 2018;5:025014. doi: 10.1088/2053-1583/aaab96. DOI
Smith J.T., Franklin A.D., Farmer D.B., Dimitrakopoulos C.D. Reducing Contact Resistance in Graphene Devices through Contact Area Patterning. ACS Nano. 2013;7:3661–3667. doi: 10.1021/nn400671z. PubMed DOI
Cusati T., Fiori G., Gahoi A., Passi V., Lemme M.C., Fortunelli A., Iannaccone G. Electrical Properties of Graphene-Metal Contacts. Sci. Rep. 2017;7:5109. doi: 10.1038/s41598-017-05069-7. PubMed DOI PMC
Vlassiouk I., Smirnov S., Ivanov I., Fulvio P.F., Dai S., Meyer H., Chi M., Hensley D., Datskos P., Lavrik N.V. Electrical and Thermal Conductivity of Low Temperature CVD Graphene: The Effect of Disorder. Nanotechnology. 2011;22:275716. doi: 10.1088/0957-4484/22/27/275716. PubMed DOI
Shlimak I., Haran A., Zion E., Havdala T., Kaganovskii Y., Butenko A.V., Wolfson L., Richter V., Naveh D., Sharoni A., et al. Raman Scattering and Electrical Resistance of Highly Disordered Graphene. Phys. Rev. B. 2015;91:045414. doi: 10.1103/PhysRevB.91.045414. DOI
Eckmann A., Felten A., Verzhbitskiy I., Davey R., Casiraghi C. Raman Study on Defective Graphene: Effect of the Excitation Energy, Type, and Amount of Defects. Phys. Rev. B. 2013;88:035426. doi: 10.1103/PhysRevB.88.035426. DOI
Eckmann A., Felten A., Mishchenko A., Britnell L., Krupke R., Novoselov K.S., Casiraghi C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012;12:3925–3930. doi: 10.1021/nl300901a. PubMed DOI
Sundaram R.S., Steiner M., Chiu H.-Y., Engel M., Bol A.A., Krupke R., Burghard M., Kern K., Avouris P. The Graphene–Gold Interface and Its Implications for Nanoelectronics. Nano Lett. 2011;11:3833–3837. doi: 10.1021/nl201907u. PubMed DOI
Costa S.D., Ek Weis J., Frank O., Kalbac M. Temperature and Face Dependent Copper–Graphene Interactions. Carbon. 2015;93:793–799. doi: 10.1016/j.carbon.2015.06.002. DOI
Watanabe E., Conwill A., Tsuya D., Koide Y. Low Contact Resistance Metals for Graphene Based Devices. Diam. Relat. Mat. 2012;24:171–174. doi: 10.1016/j.diamond.2012.01.019. DOI