Electrical Contact Resistance of Large-Area Graphene on Pre-Patterned Cu and Au Electrodes

. 2022 Dec 14 ; 12 (24) : . [epub] 20221214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36558297

Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008382 Ministry of Education Youth and Sports
SGS-2021-003 University of West Bohemia

Contact resistance between electrically connected parts of electronic elements can negatively affect their resulting properties and parameters. The contact resistance is influenced by the physicochemical properties of the connected elements and, in most cases, the lowest possible value is required. The issue of contact resistance is also addressed in connection with the increasingly frequently used carbon allotropes. This work aimed to determine the factors that influence contact resistance between graphene prepared by chemical vapour deposition and pre-patterned Cu and Au electrodes onto which graphene is subsequently transferred. It was found that electrode surface treatment methods affect the resistance between Cu and graphene, where contact resistance varied greatly, with an average of 1.25 ± 1.54 kΩ, whereas for the Au electrodes, the deposition techniques did not influence the resulting contact resistance, which decreased by almost two orders of magnitude compared with the Cu electrodes, to 0.03 ± 0.01 kΩ.

Zobrazit více v PubMed

Lemme M.C., Li L.-J., Palacios T., Schwierz F. Two-Dimensional Materials for Electronic Applications. MRS Bull. 2014;39:711–718. doi: 10.1557/mrs.2014.138. DOI

Pereira P., Ferreira D.P., Araújo J.C., Ferreira A., Fangueiro R. The Potential of Graphene Nanoplatelets in the Development of Smart and Multifunctional Ecocomposites. Polymers. 2020;12:2189. doi: 10.3390/polym12102189. PubMed DOI PMC

Kamedulski P., Truszkowski S., Lukaszewicz J.P. Highly Effective Methods of Obtaining N-Doped Graphene by Gamma Irradiation. Materials. 2020;13:4975. doi: 10.3390/ma13214975. PubMed DOI PMC

Jiménez-Marín E., Moreno-Valenzuela J., Trejo-Valdez M., Martinez-Rivas A., Vargas-García J.R., Torres-Torres C. Laser-Induced Electrical Signal Filtering by Multilayer Reduced Graphene Oxide Decorated with Au Nanoparticles. Opt. Express. 2019;27:7330. doi: 10.1364/OE.27.007330. PubMed DOI

Islam M.R., Shifat A.S.M.Z., Liu K., Li Q., Yang C., Wang Z., Qu S., Wang Z. Impact of Contact Resistance on the Performances of Graphene Field-Effect Transistor through Analytical Study. AIP Adv. 2021;11:045220. doi: 10.1063/5.0039622. DOI

Giubileo F., Di Bartolomeo A. The Role of Contact Resistance in Graphene Field-Effect Devices. Prog. Surf. Sci. 2017;92:143–175. doi: 10.1016/j.progsurf.2017.05.002. DOI

Hsu A., Wang H., Kim K.K., Kong J., Palacios T. Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance. IEEE Electron Device Lett. 2011;32:1008–1010. doi: 10.1109/LED.2011.2155024. DOI

Passi V., Gahoi A., Marin E.G., Cusati T., Fortunelli A., Iannaccone G., Fiori G., Lemme M.C. Ultralow Specific Contact Resistivity in Metal–Graphene Junctions via Contact Engineering. Adv. Mater. Interfaces. 2019;6:1801285. doi: 10.1002/admi.201801285. DOI

Robinson J.A., LaBella M., Zhu M., Hollander M., Kasarda R., Hughes Z., Trumbull K., Cavalero R., Snyder D. Contacting Graphene. Appl. Phys. Lett. 2011;98:053103. doi: 10.1063/1.3549183. PubMed DOI

Nagashio K., Nishimura T., Kita K., Toriumi A. Contact Resistivity and Current Flow Path at Metal/Graphene Contact. Appl. Phys. Lett. 2010;97:143514. doi: 10.1063/1.3491804. DOI

Gahoi A., Kataria S., Lemme M.C. Temperature Dependence of Contact Resistance for Gold-Graphene Contacts; Proceedings of the 2017 47th European Solid-State Device Research Conference (ESSDERC); Leuven, Belgium. 11–14 September 2017; Leuven, Belgium: IEEE; 2017. pp. 110–113.

Liu J., Bao S., Wang X. Applications of Graphene-Based Materials in Sensors: A Review. Micromachines. 2022;13:184. doi: 10.3390/mi13020184. PubMed DOI PMC

Štulík J., Musil O., Josefík F., Kadlec P. Graphene-Based Temperature Sensors–Comparison of the Temperature and Humidity Dependences. Nanomaterials. 2022;12:1594. doi: 10.3390/nano12091594. PubMed DOI PMC

Huang H., Su S., Wu N., Wan H., Wan S., Bi H., Sun L. Graphene-Based Sensors for Human Health Monitoring. Front. Chem. 2019;7:399. doi: 10.3389/fchem.2019.00399. PubMed DOI PMC

Shahdeo D., Roberts A., Abbineni N., Gandhi S. Comprehensive Analytical Chemistry. Volume 91. Elsevier; Amsterdam, The Netherlands: 2020. Graphene Based Sensors; pp. 175–199.

Robert F. Prediction of Contact Length, Contact Pressure and Indentation Depth of Au/Carbon Nanotube Composite Micro Electrical Contact Using Finite Element Modeling. Appl. Surf. Sci. 2019;489:470–476. doi: 10.1016/j.apsusc.2019.05.169. DOI

Quellmalz A., Smith A.D., Elgammal K., Fan X., Delin A., Östling M., Lemme M., Gylfason K.B., Niklaus F. Influence of Humidity on Contact Resistance in Graphene Devices. ACS Appl. Mater. Interfaces. 2018;10:41738–41746. doi: 10.1021/acsami.8b10033. PubMed DOI PMC

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Berger C., Song Z., Li X., Wu X., Brown N., Naud C., Mayou D., Li T., Hass J., Marchenkov A.N., et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science. 2006;312:1191–1196. doi: 10.1126/science.1125925. PubMed DOI

Hernandez Y., Nicolosi V., Lotya M., Blighe F.M., Sun Z., De S., McGovern I.T., Holland B., Byrne M., Gun’Ko Y.K., et al. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008;3:563–568. doi: 10.1038/nnano.2008.215. PubMed DOI

González Z., Acevedo B., Predeanu G., Axinte S.M., Drăgoescu M.-F., Slăvescu V., Fernandez J.J., Granda M., Gryglewicz G., Melendi-Espina S. Graphene Materials from Microwave-Derived Carbon Precursors. Fuel Process. Technol. 2021;217:106803. doi: 10.1016/j.fuproc.2021.106803. DOI

Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science. 2009;324:1312–1314. doi: 10.1126/science.1171245. PubMed DOI

Huet B., Raskin J.-P., Snyder D.W., Redwing J.M. Fundamental Limitations in Transferred CVD Graphene Caused by Cu Catalyst Surface Morphology. Carbon. 2020;163:95–104. doi: 10.1016/j.carbon.2020.02.074. DOI

Gahoi A., Wagner S., Bablich A., Kataria S., Passi V., Lemme M.C. Contact Resistance Study of Various Metal Electrodes with CVD Graphene. Solid-State Electron. 2016;125:234–239. doi: 10.1016/j.sse.2016.07.008. DOI

Park K., Lee J., Kim Y., Yoon S., Yoo B. Study of Cu Electrochemical Polishing Mechanism with Observation of Water Acceptor Diffusion. Front. Chem. 2021;9:763508. doi: 10.3389/fchem.2021.763508. PubMed DOI PMC

Kalbac M., Frank O., Kavan L. The Control of Graphene Double-Layer Formation in Copper-Catalyzed Chemical Vapor Deposition. Carbon. 2012;50:3682–3687. doi: 10.1016/j.carbon.2012.03.041. DOI

Bláha M., Bouša M., Valeš V., Frank O., Kalbáč M. Two-Dimensional CVD-Graphene/Polyaniline Supercapacitors: Synthesis Strategy and Electrochemical Operation. ACS Appl. Mater. Interfaces. 2021;13:34686–34695. doi: 10.1021/acsami.1c05054. PubMed DOI

Melníková-Komínková Z., Valeš V., Frank O., Kalbáč M. Evolution of the Raman 2D’ Mode in Monolayer Graphene during Electrochemical Doping. Microchem. J. 2022;181:107739. doi: 10.1016/j.microc.2022.107739. DOI

Hallam T., Berner N.C., Yim C., Duesberg G.S. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer. Adv. Mater. Interfaces. 2014;1:1400115. doi: 10.1002/admi.201400115. DOI

Cançado L.G., Jorio A., Ferreira E.H.M., Stavale F., Achete C.A., Capaz R.B., Moutinho M.V.O., Lombardo A., Kulmala T.S., Ferrari A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011;11:3190–3196. doi: 10.1021/nl201432g. PubMed DOI

Schriver M., Regan W., Gannett W.J., Zaniewski A.M., Crommie M.F., Zettl A. Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing. ACS Nano. 2013;7:5763–5768. doi: 10.1021/nn4014356. PubMed DOI

Liu N., Pan Z., Fu L., Zhang C., Dai B., Liu Z. The Origin of Wrinkles on Transferred Graphene. Nano Res. 2011;4:996–1004. doi: 10.1007/s12274-011-0156-3. DOI

Pacakova B., Verhagen T., Bousa M., Hübner U., Vejpravova J., Kalbac M., Frank O. Mastering the Wrinkling of Self-Supported Graphene. Sci. Rep. 2017;7:10003. doi: 10.1038/s41598-017-10153-z. PubMed DOI PMC

Ma B., Gong C., Wen Y., Chen R., Cho K., Shan B. Modulation of Contact Resistance between Metal and Graphene by Controlling the Graphene Edge, Contact Area, and Point Defects: An Ab Initio Study. J. Appl. Phys. 2014;115:183708. doi: 10.1063/1.4876738. DOI

Anzi L., Mansouri A., Pedrinazzi P., Guerriero E., Fiocco M., Pesquera A., Centeno A., Zurutuza A., Behnam A., Carrion E.A., et al. Ultra-Low Contact Resistance in Graphene Devices at the Dirac Point. 2D Mater. 2018;5:025014. doi: 10.1088/2053-1583/aaab96. DOI

Smith J.T., Franklin A.D., Farmer D.B., Dimitrakopoulos C.D. Reducing Contact Resistance in Graphene Devices through Contact Area Patterning. ACS Nano. 2013;7:3661–3667. doi: 10.1021/nn400671z. PubMed DOI

Cusati T., Fiori G., Gahoi A., Passi V., Lemme M.C., Fortunelli A., Iannaccone G. Electrical Properties of Graphene-Metal Contacts. Sci. Rep. 2017;7:5109. doi: 10.1038/s41598-017-05069-7. PubMed DOI PMC

Vlassiouk I., Smirnov S., Ivanov I., Fulvio P.F., Dai S., Meyer H., Chi M., Hensley D., Datskos P., Lavrik N.V. Electrical and Thermal Conductivity of Low Temperature CVD Graphene: The Effect of Disorder. Nanotechnology. 2011;22:275716. doi: 10.1088/0957-4484/22/27/275716. PubMed DOI

Shlimak I., Haran A., Zion E., Havdala T., Kaganovskii Y., Butenko A.V., Wolfson L., Richter V., Naveh D., Sharoni A., et al. Raman Scattering and Electrical Resistance of Highly Disordered Graphene. Phys. Rev. B. 2015;91:045414. doi: 10.1103/PhysRevB.91.045414. DOI

Eckmann A., Felten A., Verzhbitskiy I., Davey R., Casiraghi C. Raman Study on Defective Graphene: Effect of the Excitation Energy, Type, and Amount of Defects. Phys. Rev. B. 2013;88:035426. doi: 10.1103/PhysRevB.88.035426. DOI

Eckmann A., Felten A., Mishchenko A., Britnell L., Krupke R., Novoselov K.S., Casiraghi C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012;12:3925–3930. doi: 10.1021/nl300901a. PubMed DOI

Sundaram R.S., Steiner M., Chiu H.-Y., Engel M., Bol A.A., Krupke R., Burghard M., Kern K., Avouris P. The Graphene–Gold Interface and Its Implications for Nanoelectronics. Nano Lett. 2011;11:3833–3837. doi: 10.1021/nl201907u. PubMed DOI

Costa S.D., Ek Weis J., Frank O., Kalbac M. Temperature and Face Dependent Copper–Graphene Interactions. Carbon. 2015;93:793–799. doi: 10.1016/j.carbon.2015.06.002. DOI

Watanabe E., Conwill A., Tsuya D., Koide Y. Low Contact Resistance Metals for Graphene Based Devices. Diam. Relat. Mat. 2012;24:171–174. doi: 10.1016/j.diamond.2012.01.019. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace