Graphene-Based Temperature Sensors-Comparison of the Temperature and Humidity Dependences

. 2022 May 07 ; 12 (9) : . [epub] 20220507

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35564303

Grantová podpora
20-03913S Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_026/0008382 European Regional Development Fund Operational Programme Research, Development and Education (OP RDE)

Four different graphene-based temperature sensors were prepared, and their temperature and humidity dependences were tested. Sensor active layers prepared from reduced graphene oxide (rGO) and graphene nanoplatelets (Gnp) were deposited on the substrate from a dispersion by air brush spray coating. Another sensor layer was made by graphene growth from a plasma discharge (Gpl). The last graphene layer was prepared by chemical vapor deposition (Gcvd) and then transferred onto the substrate. The structures of rGO, Gnp, and Gpl were studied by scanning electron microscopy. The obtained results confirmed the different structures of these materials. Energy-dispersive X-ray diffraction was used to determine the elemental composition of the materials. Gcvd was characterized by X-ray photoelectron spectroscopy. Elemental analysis showed different oxygen contents in the structures of the materials. Sensors with a small flake structure, i.e., rGO and Gnp, showed the highest change in resistance as a function of temperature. The temperature coefficient of resistance was 5.16-3·K-1 for Gnp and 4.86-3·K-1 for rGO. These values exceed that for a standard platinum thermistor. The Gpl and Gcvd sensors showed the least dependence on relative humidity, which is attributable to the number of oxygen groups in their structures.

Zobrazit více v PubMed

Rudrapati R. Graphene Production and Application. IntechOpen; Rijeka, Croatia: 2020. Graphene: Fabrication Methods, Properties, and Applications in Modern Industries. DOI

Zhou Q., Wu M., Zhang M., Xu G., Yao B., Li C., Shi G. Graphene-based electrochemical capacitors with integrated high-performance. Mater. Today Energy. 2017;6:181–188. doi: 10.1016/j.mtener.2017.09.015. DOI

Neella N., Gaddam V., Nayak M.M., Dinesh N.S., Rajanna K. Scalable fabrication of highly sensitive flexible temperature sensors based on silver nanoparticles coated reduced graphene oxide nanocomposite thin films. Sens. Actuators A Phys. 2017;268:173–182. doi: 10.1016/j.sna.2017.11.011. DOI

Yang T., Zhao X., He Y., Zhu H. Graphene-Based Sensors. Elsevier Inc.; Amsterdam, The Netherlands: 2017.

Zhang Z., Cai R., Long F., Wang J. Development and application of tetrabromobisphenol A imprinted electrochemical sensor based on graphene/carbon nanotubes three-dimensional nanocomposites modified carbon electrode. Talanta. 2015;134:435–442. doi: 10.1016/j.talanta.2014.11.040. PubMed DOI

Coroş M., Pruneanu S., Stefan-van Staden R.-I. Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. J. Electrochem. Soc. 2020;167:037528. doi: 10.1149/2.0282003JES. DOI

Shimoi N., Komatsu M. Application of exfoliated graphene as conductive additive for lithium-ion secondary batteries. Powder Technol. 2021;390:268–272. doi: 10.1016/j.powtec.2021.05.039. DOI

Cai L., Zhang Z., Xiao H., Chen S., Fu J. An eco-friendly imprinted polymer based on graphene quantum dots for fluorescent detection of: P -nitroaniline. RSC Adv. 2019;9:41383–41391. doi: 10.1039/C9RA08726E. PubMed DOI PMC

Xiao L., Youji L., Feitai C., Peng X., Ming L. Facile synthesis of mesoporous titanium dioxide doped by Ag-coated graphene with enhanced visible-light photocatalytic performance for methylene blue degradation. RSC Adv. 2017;7:25314–25324. doi: 10.1039/C7RA02198D. DOI

Han S., Zhang X., Wang P., Dai J., Guo G., Meng Q., Ma J. Mechanically robust, highly sensitive and superior cycling performance nanocomposite strain sensors using 3-nm thick graphene platelets. Polym. Test. 2021;98:107178. doi: 10.1016/j.polymertesting.2021.107178. DOI

Shao Y., Wang J., Wu H., Liu J., Aksay I.A., Lin Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis. 2010;22:1027–1036. doi: 10.1002/elan.200900571. DOI

Romero F.J., Rivadeneyra A., Toral V., Castillo E., García-Ruiz F., Morales D.P., Rodriguez N. Design guidelines of laser reduced graphene oxide conformal thermistor for IoT applications. Sens. Actuators A Phys. 2018;274:148–154. doi: 10.1016/j.sna.2018.03.014. DOI

Adetayo A., Runsewe D. Synthesis and Fabrication of Graphene and Graphene Oxide: A Review. Open J. Compos. Mater. 2019;9:207–229. doi: 10.4236/ojcm.2019.92012. DOI

Kairi M.I., Dayou S., Kairi N.I., Bakar S.A., Vigolo B., Mohamed A.R. Toward high production of graphene flakes-a review on recent developments in their synthesis methods and scalability. J. Mater. Chem. A. 2018;6:15010–15026. doi: 10.1039/C8TA04255A. DOI

Zheng Q., Lee J., Shen X., Chen X., Kim J.-K. Graphene-based wearable piezoresistive physical sensors. Mater. Today. 2020;36:158–179. doi: 10.1016/j.mattod.2019.12.004. DOI

Mahmoud W.E., Al-Bluwi S.A. Development of highly sensitive temperature sensor made of graphene monolayers doped P(VDF-TrFE) nanocomposites. Sens. Actuators A Phys. 2020;312:112101. doi: 10.1016/j.sna.2020.112101. DOI

Kim Y.J., Le T.S.D., Nam H.K., Yang D., Kim B. Wood-based flexible graphene thermistor with an ultra-high sensitivity enabled by ultraviolet femtosecond laser pulses. CIRP Ann. 2021;70:443–446. doi: 10.1016/j.cirp.2021.04.031. DOI

Bolotin K.I., Sikes K.J., Hone J., Stormer H.L., Kim P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 2008;101:096802. doi: 10.1103/PhysRevLett.101.096802. PubMed DOI

Zhu C., Tao L.Q., Wang Y., Zheng K., Yu J., Li X., Chen X., Huang Y. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens. Actuators B Chem. 2020;325:128790. doi: 10.1016/j.snb.2020.128790. DOI

Salvo P., Calisi N., Melai B., Cortigiani B., Mannini M., Caneschi A., Lorenzetti G., Paoletti C., Lomonaco T., Paolicchi A., et al. Temperature and pH sensors based on graphenic materials. Biosens. Bioelectron. 2017;91:870–877. doi: 10.1016/j.bios.2017.01.062. PubMed DOI

Lv C., Hu C., Luo J., Liu S., Qiao Y., Zhang Z., Song J., Shi Y., Cai J., Watanabe A. Recent advances in graphene-based humidity sensors. Nanomaterials. 2019;9:422. doi: 10.3390/nano9030422. PubMed DOI PMC

Sagade A.A., Neumaier D., Schall D., Otto M., Pesquera A., Centeno A., Elorza A.Z., Kurz H. Highly air stable passivation of graphene based field effect devices. Nanoscale. 2015;7:3558–3564. doi: 10.1039/C4NR07457B. PubMed DOI

Toman J., Jasek O., Snirer M., Kudrle V., Jurmanova J. On the interplay between plasma discharge instability and formation of free-standing graphene nanosheets in a dual-channel microwave plasma torch at atmospheric pressure. J. Phys. D Appl. Phys. 2019;52:265205. doi: 10.1088/1361-6463/ab0f69. DOI

Kovaříček P., Drogowska K., Melníková Komínková Z., Blechta V., Bastl Z., Gromadzki D., Fridrichová M., Kalbáč M. EDOT polymerization at photolithographically patterned functionalized graphene. Carbon N. Y. 2017;113:33–39. doi: 10.1016/j.carbon.2016.11.018. DOI

Hallam T., Berner N.C., Yim C., Duesberg G.S. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer. Adv. Mater. Interfaces. 2014;1:1400115. doi: 10.1002/admi.201400115. DOI

Chua C.K., Pumera M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014;43:291–312. doi: 10.1039/C3CS60303B. PubMed DOI

Sehrawat P., Abid, Islam S.S., Mishra P. Reduced graphene oxide based temperature sensor: Extraordinary performance governed by lattice dynamics assisted carrier transport. Sens. Actuators B Chem. 2018;258:424–435. doi: 10.1016/j.snb.2017.11.112. DOI

Liu G., Tan Q., Kou H., Zhang L., Wang J., Lv W., Dong H., Xiong J. A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors. 2018;18:1400. doi: 10.3390/s18051400. PubMed DOI PMC

Yan C., Wang J., Lee P.S. Stretchable graphene thermistor with tunable thermal index. ACS Nano. 2015;9:2130–2137. doi: 10.1021/nn507441c. PubMed DOI

Muchharla B., Narayanan T.N., Balakrishnan K., Ajayan P.M., Talapatra S. Temperature dependent electrical transport of disordered reduced graphene oxide. 2D Mater. 2014;1:011008. doi: 10.1088/2053-1583/1/1/011008. DOI

Liang R., Luo A., Zhang Z., Li Z., Han C., Wu W. Research progress of graphene-based flexible humidity sensor. Sensors. 2020;20:5601. doi: 10.3390/s20195601. PubMed DOI PMC

Bi H., Yin K., Xie X., Ji J., Wan S., Sun L., Terrones M., Dresselhaus M.S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013;3:2714. doi: 10.1038/srep02714. PubMed DOI PMC

Popov V.I., Nikolaev D.V., Timofeev V.B., Smagulova S.A., Antonova I.V. Graphene Based Humidity Sensors: The Origin of Resistance Change. Nanotechnology. 2017;28:355501. doi: 10.1088/1361-6528/aa7b6e. PubMed DOI

Kula P., Szymanski W., Kolodziejczyk L., Atraszkiewicz R., Dybowski K., Grabarczyk J., Pietrasik R., Niedzielski P., Kaczmarek L., Clapa M. High strength metallurgical graphene—Mechanisms of growth and properties. Arch. Metall. Mater. 2015;60:2535–2541. doi: 10.1515/amm-2015-0273. DOI

Vasu K.S., Chakraborty B., Sampath S., Sood A.K. Probing top-gated field effect transistor of reduced graphene oxide monolayer made by dielectrophoresis. Solid State Commun. 2010;150:1295–1298. doi: 10.1016/j.ssc.2010.05.018. DOI

Kumar S., Bhatt K., Kumar P., Sharma S., Kumar A., Tripathi C.C. Laser patterned, high-power graphene paper resistor with dual temperature coefficient of resistance. RSC Adv. 2019;9:8262–8270. doi: 10.1039/C8RA10246E. PubMed DOI PMC

Michel M., Desai J.A., Biswas C., Vié R., Drahi E., Baudino O., Del S.K., Bornemann R., Bablich A., Michel M., et al. Graphene Resistor for Flexible Electronics. 2D Mater. 2017;4:025076. doi: 10.1088/2053-1583/aa66ff. DOI

Rajan G., Morgan J.J., Murphy C., Torres Alonso E., Wade J., Ott A.K., Russo S., Alves H., Craciun M.F., Neves A.I.S. Low Operating Voltage Carbon-Graphene Hybrid E-textile for Temperature Sensing. ACS Appl. Mater. Interfaces. 2020;12:29861–29867. doi: 10.1021/acsami.0c08397. PubMed DOI

Sibilia S., Bertocchi F., Chiodini S., Cristiano F., Ferrigno L., Giovinco G., Maffucci A. Temperature-dependent electrical resistivity of macroscopic graphene nanoplatelet strips. Nanotechnology. 2021;32:275701. doi: 10.1088/1361-6528/abef95. PubMed DOI

Bae J.J., Yoon J.H., Jeong S., Moon B.H., Han J.T., Jeong H.J., Lee G.W., Hwang H.R., Lee Y.H., Jeong S.Y., et al. Sensitive photo-thermal response of graphene oxide for mid-infrared detection. Nanoscale. 2015;7:15695–15700. doi: 10.1039/C5NR04039F. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Electrical Contact Resistance of Large-Area Graphene on Pre-Patterned Cu and Au Electrodes

. 2022 Dec 14 ; 12 (24) : . [epub] 20221214

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...