Graphene-Based Temperature Sensors-Comparison of the Temperature and Humidity Dependences
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-03913S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_026/0008382
European Regional Development Fund Operational Programme Research, Development and Education (OP RDE)
PubMed
35564303
PubMed Central
PMC9102891
DOI
10.3390/nano12091594
PII: nano12091594
Knihovny.cz E-zdroje
- Klíčová slova
- graphene, graphene production methods, humidity dependence, temperature sensor,
- Publikační typ
- časopisecké články MeSH
Four different graphene-based temperature sensors were prepared, and their temperature and humidity dependences were tested. Sensor active layers prepared from reduced graphene oxide (rGO) and graphene nanoplatelets (Gnp) were deposited on the substrate from a dispersion by air brush spray coating. Another sensor layer was made by graphene growth from a plasma discharge (Gpl). The last graphene layer was prepared by chemical vapor deposition (Gcvd) and then transferred onto the substrate. The structures of rGO, Gnp, and Gpl were studied by scanning electron microscopy. The obtained results confirmed the different structures of these materials. Energy-dispersive X-ray diffraction was used to determine the elemental composition of the materials. Gcvd was characterized by X-ray photoelectron spectroscopy. Elemental analysis showed different oxygen contents in the structures of the materials. Sensors with a small flake structure, i.e., rGO and Gnp, showed the highest change in resistance as a function of temperature. The temperature coefficient of resistance was 5.16-3·K-1 for Gnp and 4.86-3·K-1 for rGO. These values exceed that for a standard platinum thermistor. The Gpl and Gcvd sensors showed the least dependence on relative humidity, which is attributable to the number of oxygen groups in their structures.
Zobrazit více v PubMed
Rudrapati R. Graphene Production and Application. IntechOpen; Rijeka, Croatia: 2020. Graphene: Fabrication Methods, Properties, and Applications in Modern Industries. DOI
Zhou Q., Wu M., Zhang M., Xu G., Yao B., Li C., Shi G. Graphene-based electrochemical capacitors with integrated high-performance. Mater. Today Energy. 2017;6:181–188. doi: 10.1016/j.mtener.2017.09.015. DOI
Neella N., Gaddam V., Nayak M.M., Dinesh N.S., Rajanna K. Scalable fabrication of highly sensitive flexible temperature sensors based on silver nanoparticles coated reduced graphene oxide nanocomposite thin films. Sens. Actuators A Phys. 2017;268:173–182. doi: 10.1016/j.sna.2017.11.011. DOI
Yang T., Zhao X., He Y., Zhu H. Graphene-Based Sensors. Elsevier Inc.; Amsterdam, The Netherlands: 2017.
Zhang Z., Cai R., Long F., Wang J. Development and application of tetrabromobisphenol A imprinted electrochemical sensor based on graphene/carbon nanotubes three-dimensional nanocomposites modified carbon electrode. Talanta. 2015;134:435–442. doi: 10.1016/j.talanta.2014.11.040. PubMed DOI
Coroş M., Pruneanu S., Stefan-van Staden R.-I. Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. J. Electrochem. Soc. 2020;167:037528. doi: 10.1149/2.0282003JES. DOI
Shimoi N., Komatsu M. Application of exfoliated graphene as conductive additive for lithium-ion secondary batteries. Powder Technol. 2021;390:268–272. doi: 10.1016/j.powtec.2021.05.039. DOI
Cai L., Zhang Z., Xiao H., Chen S., Fu J. An eco-friendly imprinted polymer based on graphene quantum dots for fluorescent detection of: P -nitroaniline. RSC Adv. 2019;9:41383–41391. doi: 10.1039/C9RA08726E. PubMed DOI PMC
Xiao L., Youji L., Feitai C., Peng X., Ming L. Facile synthesis of mesoporous titanium dioxide doped by Ag-coated graphene with enhanced visible-light photocatalytic performance for methylene blue degradation. RSC Adv. 2017;7:25314–25324. doi: 10.1039/C7RA02198D. DOI
Han S., Zhang X., Wang P., Dai J., Guo G., Meng Q., Ma J. Mechanically robust, highly sensitive and superior cycling performance nanocomposite strain sensors using 3-nm thick graphene platelets. Polym. Test. 2021;98:107178. doi: 10.1016/j.polymertesting.2021.107178. DOI
Shao Y., Wang J., Wu H., Liu J., Aksay I.A., Lin Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis. 2010;22:1027–1036. doi: 10.1002/elan.200900571. DOI
Romero F.J., Rivadeneyra A., Toral V., Castillo E., García-Ruiz F., Morales D.P., Rodriguez N. Design guidelines of laser reduced graphene oxide conformal thermistor for IoT applications. Sens. Actuators A Phys. 2018;274:148–154. doi: 10.1016/j.sna.2018.03.014. DOI
Adetayo A., Runsewe D. Synthesis and Fabrication of Graphene and Graphene Oxide: A Review. Open J. Compos. Mater. 2019;9:207–229. doi: 10.4236/ojcm.2019.92012. DOI
Kairi M.I., Dayou S., Kairi N.I., Bakar S.A., Vigolo B., Mohamed A.R. Toward high production of graphene flakes-a review on recent developments in their synthesis methods and scalability. J. Mater. Chem. A. 2018;6:15010–15026. doi: 10.1039/C8TA04255A. DOI
Zheng Q., Lee J., Shen X., Chen X., Kim J.-K. Graphene-based wearable piezoresistive physical sensors. Mater. Today. 2020;36:158–179. doi: 10.1016/j.mattod.2019.12.004. DOI
Mahmoud W.E., Al-Bluwi S.A. Development of highly sensitive temperature sensor made of graphene monolayers doped P(VDF-TrFE) nanocomposites. Sens. Actuators A Phys. 2020;312:112101. doi: 10.1016/j.sna.2020.112101. DOI
Kim Y.J., Le T.S.D., Nam H.K., Yang D., Kim B. Wood-based flexible graphene thermistor with an ultra-high sensitivity enabled by ultraviolet femtosecond laser pulses. CIRP Ann. 2021;70:443–446. doi: 10.1016/j.cirp.2021.04.031. DOI
Bolotin K.I., Sikes K.J., Hone J., Stormer H.L., Kim P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 2008;101:096802. doi: 10.1103/PhysRevLett.101.096802. PubMed DOI
Zhu C., Tao L.Q., Wang Y., Zheng K., Yu J., Li X., Chen X., Huang Y. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens. Actuators B Chem. 2020;325:128790. doi: 10.1016/j.snb.2020.128790. DOI
Salvo P., Calisi N., Melai B., Cortigiani B., Mannini M., Caneschi A., Lorenzetti G., Paoletti C., Lomonaco T., Paolicchi A., et al. Temperature and pH sensors based on graphenic materials. Biosens. Bioelectron. 2017;91:870–877. doi: 10.1016/j.bios.2017.01.062. PubMed DOI
Lv C., Hu C., Luo J., Liu S., Qiao Y., Zhang Z., Song J., Shi Y., Cai J., Watanabe A. Recent advances in graphene-based humidity sensors. Nanomaterials. 2019;9:422. doi: 10.3390/nano9030422. PubMed DOI PMC
Sagade A.A., Neumaier D., Schall D., Otto M., Pesquera A., Centeno A., Elorza A.Z., Kurz H. Highly air stable passivation of graphene based field effect devices. Nanoscale. 2015;7:3558–3564. doi: 10.1039/C4NR07457B. PubMed DOI
Toman J., Jasek O., Snirer M., Kudrle V., Jurmanova J. On the interplay between plasma discharge instability and formation of free-standing graphene nanosheets in a dual-channel microwave plasma torch at atmospheric pressure. J. Phys. D Appl. Phys. 2019;52:265205. doi: 10.1088/1361-6463/ab0f69. DOI
Kovaříček P., Drogowska K., Melníková Komínková Z., Blechta V., Bastl Z., Gromadzki D., Fridrichová M., Kalbáč M. EDOT polymerization at photolithographically patterned functionalized graphene. Carbon N. Y. 2017;113:33–39. doi: 10.1016/j.carbon.2016.11.018. DOI
Hallam T., Berner N.C., Yim C., Duesberg G.S. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer. Adv. Mater. Interfaces. 2014;1:1400115. doi: 10.1002/admi.201400115. DOI
Chua C.K., Pumera M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014;43:291–312. doi: 10.1039/C3CS60303B. PubMed DOI
Sehrawat P., Abid, Islam S.S., Mishra P. Reduced graphene oxide based temperature sensor: Extraordinary performance governed by lattice dynamics assisted carrier transport. Sens. Actuators B Chem. 2018;258:424–435. doi: 10.1016/j.snb.2017.11.112. DOI
Liu G., Tan Q., Kou H., Zhang L., Wang J., Lv W., Dong H., Xiong J. A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors. 2018;18:1400. doi: 10.3390/s18051400. PubMed DOI PMC
Yan C., Wang J., Lee P.S. Stretchable graphene thermistor with tunable thermal index. ACS Nano. 2015;9:2130–2137. doi: 10.1021/nn507441c. PubMed DOI
Muchharla B., Narayanan T.N., Balakrishnan K., Ajayan P.M., Talapatra S. Temperature dependent electrical transport of disordered reduced graphene oxide. 2D Mater. 2014;1:011008. doi: 10.1088/2053-1583/1/1/011008. DOI
Liang R., Luo A., Zhang Z., Li Z., Han C., Wu W. Research progress of graphene-based flexible humidity sensor. Sensors. 2020;20:5601. doi: 10.3390/s20195601. PubMed DOI PMC
Bi H., Yin K., Xie X., Ji J., Wan S., Sun L., Terrones M., Dresselhaus M.S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013;3:2714. doi: 10.1038/srep02714. PubMed DOI PMC
Popov V.I., Nikolaev D.V., Timofeev V.B., Smagulova S.A., Antonova I.V. Graphene Based Humidity Sensors: The Origin of Resistance Change. Nanotechnology. 2017;28:355501. doi: 10.1088/1361-6528/aa7b6e. PubMed DOI
Kula P., Szymanski W., Kolodziejczyk L., Atraszkiewicz R., Dybowski K., Grabarczyk J., Pietrasik R., Niedzielski P., Kaczmarek L., Clapa M. High strength metallurgical graphene—Mechanisms of growth and properties. Arch. Metall. Mater. 2015;60:2535–2541. doi: 10.1515/amm-2015-0273. DOI
Vasu K.S., Chakraborty B., Sampath S., Sood A.K. Probing top-gated field effect transistor of reduced graphene oxide monolayer made by dielectrophoresis. Solid State Commun. 2010;150:1295–1298. doi: 10.1016/j.ssc.2010.05.018. DOI
Kumar S., Bhatt K., Kumar P., Sharma S., Kumar A., Tripathi C.C. Laser patterned, high-power graphene paper resistor with dual temperature coefficient of resistance. RSC Adv. 2019;9:8262–8270. doi: 10.1039/C8RA10246E. PubMed DOI PMC
Michel M., Desai J.A., Biswas C., Vié R., Drahi E., Baudino O., Del S.K., Bornemann R., Bablich A., Michel M., et al. Graphene Resistor for Flexible Electronics. 2D Mater. 2017;4:025076. doi: 10.1088/2053-1583/aa66ff. DOI
Rajan G., Morgan J.J., Murphy C., Torres Alonso E., Wade J., Ott A.K., Russo S., Alves H., Craciun M.F., Neves A.I.S. Low Operating Voltage Carbon-Graphene Hybrid E-textile for Temperature Sensing. ACS Appl. Mater. Interfaces. 2020;12:29861–29867. doi: 10.1021/acsami.0c08397. PubMed DOI
Sibilia S., Bertocchi F., Chiodini S., Cristiano F., Ferrigno L., Giovinco G., Maffucci A. Temperature-dependent electrical resistivity of macroscopic graphene nanoplatelet strips. Nanotechnology. 2021;32:275701. doi: 10.1088/1361-6528/abef95. PubMed DOI
Bae J.J., Yoon J.H., Jeong S., Moon B.H., Han J.T., Jeong H.J., Lee G.W., Hwang H.R., Lee Y.H., Jeong S.Y., et al. Sensitive photo-thermal response of graphene oxide for mid-infrared detection. Nanoscale. 2015;7:15695–15700. doi: 10.1039/C5NR04039F. PubMed DOI
Electrical Contact Resistance of Large-Area Graphene on Pre-Patterned Cu and Au Electrodes