Lipid and carotenoid cooperation-driven adaptation to light and temperature stress in Synechocystis sp. PCC6803

. 2017 May ; 1858 (5) : 337-350. [epub] 20170208

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid28188782

Grantová podpora
P20 GM103418 NIGMS NIH HHS - United States

Odkazy

PubMed 28188782
PubMed Central PMC5877414
DOI 10.1016/j.bbabio.2017.02.002
PII: S0005-2728(17)30024-5
Knihovny.cz E-zdroje

Polyunsaturated lipids are important components of photosynthetic membranes. Xanthophylls are the main photoprotective agents, can assist in protection against light stress, and are crucial in the recovery from photoinhibition. We generated the xanthophyll- and polyunsaturated lipid-deficient ROAD mutant of Synechocystis sp. PCC6803 (Synechocystis) in order to study the little-known cooperative effects of lipids and carotenoids (Cars). Electron microscopic investigations confirmed that in the absence of xanthophylls the S-layer of the cellular envelope is missing. In wild-type (WT) cells, as well as the xanthophyll-less (RO), polyunsaturated lipid-less (AD), and the newly constructed ROAD mutants the lipid and Car compositions were determined by MS and HPLC, respectively. We found that, relative to the WT, the lipid composition of the mutants was remodeled and the Car content changed accordingly. In the mutants the ratio of non-bilayer-forming (NBL) to bilayer-forming (BL) lipids was found considerably lower. Xanthophyll to β-carotene ratio increased in the AD mutant. In vitro and in vivo methods demonstrated that saturated, monounsaturated lipids and xanthophylls may stabilize the trimerization of Photosystem I (PSI). Fluorescence induction and oxygen-evolving activity measurements revealed increased light sensitivity of RO cells compared to those of the WT. ROAD showed a robust increase in light susceptibility and reduced recovery capability, especially at moderate low (ML) and moderate high (MH) temperatures, indicating a cooperative effect of xanthophylls and polyunsaturated lipids. We suggest that both lipid unsaturation and xanthophylls are required for providing the proper structure and functioning of the membrane environment that protects against light and temperature stress.

Zobrazit více v PubMed

Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. P Natl Acad Sci USA. 1999;96(10):5862–5867. doi: 10.1073/pnas.96.10.5862. PubMed DOI PMC

Allen MM. Simple Conditions for Growth of Unicellular Blue-Green Algae on Plates(1, 2) J Phycol. 1968;4(1):1–4. doi: 10.1111/j.1529-8817.1968.tb04667.x. PubMed DOI

Awai K, Ohta H, Sato N. Oxygenic photosynthesis without galactolipids. P Natl Acad Sci USA. 2014;111(37):13571–13575. doi: 10.1073/pnas.1403708111. PubMed DOI PMC

Beckova M, Gardian Z, Yu J, Konik P, Nixon PJ, Komenda J. Association of Psb28 and Psb27 Proteins with PSII-PSI Supercomplexes upon Exposure of Synechocystis sp. PCC 6803 to High Light. Mol Plant. 2016 doi: 10.1016/j.molp.2016.08.001. PubMed DOI

Chintalapati S, Prakash JS, Gupta P, Ohtani S, Suzuki I, Sakamoto T, Murata N, Shivaji S. A novel Delta9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn-2 position of glycerolipids. Biochem J. 2006;398(2):207–214. doi: 10.1042/BJ20060039. PubMed DOI PMC

Chitnis PR. Photosystem I. Plant Physiol. 1996;111(3):661–669. doi: 10.1104/pp.111.3.661. PubMed DOI PMC

Deme B, Cataye C, Block MA, Marechal E, Jouhet J. Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. Faseb J. 2014;28(8):3373–3383. doi: 10.1096/fj.13-247395. PubMed DOI

Dobakova M, Sobotka R, Tichy M, Komenda J. Psb28 Protein Is Involved in the Biogenesis of the Photosystem II Inner Antenna CP47 (PsbB) in the Cyanobacterium Synechocystis sp PCC 6803. Plant Physiol. 2009;149(2):1076–1086. doi: 10.1104/pp.108.130039. PubMed DOI PMC

Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res. 2013;52(4):539–561. doi: 10.1016/j.plipres.2013.07.001. PubMed DOI

Domonkos I, Laczko-Dobos H, Gombos Z. Lipid-assisted protein-protein interactions that support photosynthetic and other cellular activities. Prog Lipid Res. 2008;47(6):422–435. doi: 10.1016/j.plipres.2008.05.003. PubMed DOI

Domonkos I, Malec P, Laczko-Dobos H, Sozer O, Klodawska K, Wada H, Strzalka K, Gombos Z. Phosphatidylglycerol Depletion Induces an Increase in Myxoxanthophyll Biosynthetic Activity in Synechocystis PCC6803 Cells. Plant and Cell Physiology. 2009;50(2):374–382. doi: 10.1093/pcp/pcn204. PubMed DOI

Domonkos I, Malec P, Sallai A, Kovacs L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T, Gombos Z. Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol. 2004;134(4):1471–1478. doi: 10.1104/pp.103.037754. PubMed DOI PMC

Falcone DL, Ogas JP, Somerville CR. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 2004;4:17. doi: 10.1186/1471-2229-4-17. PubMed DOI PMC

Gombos Z, Varkonyi Z, Hagio M, Iwaki M, Kovacs L, Masamoto K, Itoh S, Wada H. Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone Q(B) in the photosystem II reaction center. Biochemistry. 2002;41(11):3796–3802. PubMed

Gombos Z, Wada H, Hideg E, Murata N. The Unsaturation of Membrane Lipids Stabilizes Photosynthesis against Heat Stress. Plant Physiol. 1994a;104(2):563–567. PubMed PMC

Gombos Z, Wada H, Murata N. The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci U S A. 1994b;91(19):8787–8791. PubMed PMC

Grotjohann I, Fromme P. Structure of cyanobacterial photosystem I. Photosynth Res. 2005;85(1):51–72. doi: 10.1007/s11120-005-1440-4. PubMed DOI

Gruszecki WI, Strzalka K. Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta. 2005;1740(2):108–115. doi: 10.1016/j.bbadis.2004.11.015. PubMed DOI

Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol. 2009;16(3):334–342. doi: 10.1038/nsmb.1559. PubMed DOI

Israelachvili JN, Marcelja S, Horn RG. Physical principles of membrane organization. Q Rev Biophys. 1980;13(2):121–200. PubMed

Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature. 2001;411(6840):909–917. doi: 10.1038/35082000. PubMed DOI

Jouhet J. Importance of the hexagonal lipid phase in biological membrane organization. Front Plant Sci. 2013;4:494. doi: 10.3389/fpls.2013.00494. PubMed DOI PMC

Kerfeld CA. Water-soluble carotenoid proteins of cyanobacteria. Arch Biochem Biophys. 2004;430(1):2–9. doi: 10.1016/j.abb.2004.03.018. PubMed DOI

Kern J, Guskov A. Lipids in photosystem II: multifunctional cofactors. J Photochem Photobiol B. 2011;104(1–2):19–34. doi: 10.1016/j.jphotobiol.2011.02.025. PubMed DOI

Klodawska K, Kovacs L, Varkonyi Z, Kis M, Sozer O, Laczko-Dobos H, Kobori O, Domonkos I, Strzalka K, Gombos Z, Malec P. Elevated Growth Temperature Can Enhance Photosystem I Trimer Formation and Affects Xanthophyll Biosynthesis in Cyanobacterium Synechocystis sp PCC6803 Cells. Plant and Cell Physiology. 2015;56(3):558–571. doi: 10.1093/pcp/pcu199. PubMed DOI

Kobayashi K. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. J Plant Res. 2016;129(4):565–580. doi: 10.1007/s10265-016-0827-y. PubMed DOI PMC

Kobayashi K, Fujii S, Sato M, Toyooka K, Wada H. Specific role of phosphatidylglycerol and functional overlaps with other thylakoid lipids in Arabidopsis chloroplast biogenesis. Plant Cell Rep. 2015;34(4):631–642. doi: 10.1007/s00299-014-1719-z. PubMed DOI

Komenda J, Knoppova J, Kopecna J, Sobotka R, Halada P, Yu JF, Nickelsen J, Boehm M, Nixon PJ. The Psb27 Assembly Factor Binds to the CP43 Complex of Photosystem II in the Cyanobacterium Synechocystis sp PCC 6803. Plant Physiol. 2012;158(1):476–486. doi: 10.1104/pp.111.184184. PubMed DOI PMC

Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH, Barber J. Phosphatidylglycerol is involved in the dimerization of photosystem II. J Biol Chem. 2000;275(9):6509–6514. PubMed

Kusama Y, Inoue S, Jimbo H, Takaichi S, Sonoike K, Hihara Y, Nishiyama Y. Zeaxanthin and Echinenone Protect the Repair of Photosystem II from Inhibition by Singlet Oxygen in Synechocystis sp PCC 6803. Plant and Cell Physiology. 2015;56(5):906–916. doi: 10.1093/pcp/pcv018. PubMed DOI

Laczko-Dobos H, Frycak P, Ughy B, Domonkos I, Wada H, Prokai L, Gombos Z. Remodeling of phosphatidylglycerol in Synechocystis PCC6803. Biochim Biophys Acta. 2010;1801(2):163–170. doi: 10.1016/j.bbalip.2009.10.009. PubMed DOI

Laczko-Dobos H, Ughy B, Toth SZ, Komenda J, Zsiros O, Domonkos I, Parducz A, Bogos B, Komura M, Itoh S, Gombos Z. Role of phosphatidylglycerol in the function and assembly of Photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes. Biochim Biophys Acta. 2008;1777(9):1184–1194. doi: 10.1016/j.bbabio.2008.06.003. PubMed DOI

Li M, Semchonok DA, Boekema EJ, Bruce BD. Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821. Plant Cell. 2014;26(3):1230–1245. doi: 10.1105/tpc.113.120782. PubMed DOI PMC

Liberton M, Pakrasi H. Membrane Systems in Cyanobacteria. In: Herrero A, Flores E, editors. The Cyanobacteria : Molecular Biology, Genomics and Evolution. Caister Academic Press; Norfolk, UK: 2008. pp. 271–285.

Los DA, Mironov KS. Modes of Fatty Acid desaturation in cyanobacteria: an update. Life (Basel) 2015;5(1):554–567. doi: 10.3390/life5010554. PubMed DOI PMC

Los DA, Murata N. Structure and expression of fatty acid desaturases. Biochim Biophys Acta. 1998;1394(1):3–15. PubMed

Los DA, Zinchenko VV. Regulatory Role of Membrane Fluidity in Gene Expression. In: Wada H, Murata N, editors. Advances in Photosynthesis and Respiration: Lipids in Photosynthesis, Essential and Regulatory Functions. Vol. 30. Springer; Dordrecht, the Netherlands: 2009. pp. 329–348.

Mantoura RFC, Llewellyn CA. The Rapid-Determination of Algal Chlorophyll and Carotenoid-Pigments and Their Breakdown Products in Natural-Waters by Reverse-Phase High-Performance Liquid-Chromatography. Anal Chim Acta. 1983;151(2):297–314. doi: 10.1016/S0003-2670(00)80092-6. DOI

Meeks JC, Castenholz RW. Growth and photosynthesis in an extreme thermophile, Synechococcus lividus (Cyanophyta) Arch Mikrobiol. 1971;78(1):25–41. PubMed

Melnicki MR, Leverenz RL, Sutter M, Lopez-Igual R, Wilson A, Pawlowski EG, Perreau F, Kirilovsky D, Kerfeld CA. Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria. Mol Plant. 2016;9(10):1379–1394. doi: 10.1016/j.molp.2016.06.009. PubMed DOI

Mizusawa N, Wada H. The role of lipids in photosystem II. Biochim Biophys Acta. 2012;1817(1):194–208. doi: 10.1016/j.bbabio.2011.04.008. PubMed DOI

Mohamed HE, van de Meene AML, Roberson RW, Vermaas WFJ. Myxoxanthophyll is required for normal cell wall structure and thylakoid organization in the cyanobacterium, Synechocystis sp strain PCC 6803. J Bacteriol. 2005;187(20):6883–6892. doi: 10.1128/Jb.187.20.6883-6892.2005. PubMed DOI PMC

Murata N, Wada H, Gombos Z. Modes of Fatty-Acid Desaturation in Cyanobacteria. Plant and Cell Physiology. 1992;33(7):933–941.

Nevo R, Chuartzman SG, Tsabari O, Reich Z, Charuvi D, Shimoni E. Architecture of Thylakoid Membrane Networks. In: Wada H, Murata N, editors. Advances in Photosynthesis and Respiration: Lipids in Photosynthesis, Essential and Regulatory Functions. Vol. 30. Springer; Dordrecht, The Netherlands: 2009. pp. 295–328.

Nishida I, Murata N. CHILLING SENSITIVITY IN PLANTS AND CYANOBACTERIA: The Crucial Contribution of Membrane Lipids. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:541–568. doi: 10.1146/annurev.arplant.47.1.541. PubMed DOI

Plohnke N, Seidel T, Kahmann U, Rogner M, Schneider D, Rexroth S. The Proteome and Lipidome of Synechocystis sp PCC 6803 Cells Grown under Light-Activated Heterotrophic Conditions. Mol Cell Proteomics. 2015;14(3):572–584. doi: 10.1074/mcp.M114.042382. PubMed DOI PMC

Rogner M, Nixon PJ, Diner BA. Purification and Characterization of Photosystem-I and Photosystem-Ii Core Complexes from Wild-Type and Phycocyanin-Deficient Strains of the Cyanobacterium Synechocystis Pcc-6803. J Biol Chem. 1990;265(11):6189–6196. PubMed

Sadre R, Frentzen M. Lipids in Plant Mitochondria. In: Wada H, Murata N, editors. Advances in Photosynthesis and Respiration: Lipids in Photosynthesis, Essential and Regulatory Functions. Vol. 30. Springer; Dordrecht, The Netherlands: 2009. pp. 57–70.

Sakiyama T, Ueno H, Homma H, Numata O, Kuwabara T. Purification and characterization of a hemolysin-like protein, Sll1951, a nontoxic member of the RTX protein family from the cyanobacterium Synechocystis sp strain PCC 6803. J Bacteriol. 2006;188(10):3535–3542. doi: 10.1128/Jb.188.10.3535-3542.2006. PubMed DOI PMC

Sakurai I, Shen JR, Leng J, Ohashi S, Kobayashi M, Wada H. Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J Biochem. 2006;140(2):201–209. doi: 10.1093/jb/mvj141. PubMed DOI

Sato N. Is Monoglucosyldiacylglycerol a Precursor to Monogalactosyldiacylglycerol in All Cyanobacteria? Plant Cell Physiol. 2015;56(10):1890–1899. doi: 10.1093/pcp/pcv116. PubMed DOI

Sato N, Wada H. Lipid Biosynthesis and its Regulation in Cyanobacteria. In: Wada H, Murata N, editors. Advances in Photosynthesis and Respiration: Lipids in Photosynthesis, Essential and Regulatory Functions. Vol. 30. Springer; Dordrecht, The Netherlands: 2009. pp. 157–177.

Schafer L, Vioque A, Sandmann G. Functional in situ evaluation of photo synthesis-protecting carotenoids in mutants of the cyanobacterium Synechocystis PCC6803. J Photoch Photobio B. 2005;78(3):195–201. doi: 10.1016/j.jphotobiol.2004.11.007. PubMed DOI

Sedoud A, Lopez-Igual R, Rehman AU, Wilson A, Perreau F, Boulay C, Vass I, Krieger-Liszkay A, Kirilovsky D. The Cyanobacterial Photoactive Orange Carotenoid Protein Is an Excellent Singlet Oxygen Quencher. Plant Cell. 2014;26(4):1781–1791. doi: 10.1105/tpc.114.123802. PubMed DOI PMC

Semchonok DA, Li M, Bruce BD, Oostergetel GT, Boekema EJ. Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. Biochim Biophys Acta. 2016;1857(9):1619–1626. doi: 10.1016/j.bbabio.2016.06.012. PubMed DOI

Shipley GG, Green JP, Nichols BW. The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim Biophys Acta. 1973;311(4):531–544. PubMed

Smarda J, Smajs D, Komrska J, Krzyzanek V. S-layers on cell walls of cyanobacteria. Micron. 2002;33(3):257–277. Pii S0968-4328(01)00031-2. PubMed

Sozer O, Kis M, Gombos Z, Ughy B. Proteins, glycerolipids and carotenoids in the functional photosystem II architecture. Front Biosci-Landmrk. 2011;16:619–643. doi: 10.2741/3710. PubMed DOI

Sozer O, Komenda J, Ughy B, Domonkos I, Laczko-Dobos H, Malec P, Gombos Z, Kis M. Involvement of Carotenoids in the Synthesis and Assembly of Protein Subunits of Photosynthetic Reaction Centers of Synechocystis sp PCC 6803. Plant and Cell Physiology. 2010;51(5):823–835. doi: 10.1093/pcp/pcq031. PubMed DOI

Stamatakis K, Tsimilli-Michael M, Papageorgiou GC. On the question of the light-harvesting role of beta-carotene in photosystem II and photosystem I core complexes. Plant Physiol Biochem. 2014;81:121–127. doi: 10.1016/j.plaphy.2014.01.014. PubMed DOI

Szalontai B, Nishiyama Y, Gombos Z, Murata N. Membrane dynamics as seen by Fourier transform infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803 - The effects of lipid unsaturation and the protein-to-lipid ratio. Bba-Biomembranes. 2000;1509(1–2):409–419. doi: 10.1016/S0005-2736(00)00323-0. PubMed DOI

Takaichi S, Mochimaru M. Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cell Mol Life Sci. 2007;64(19–20):2607–2619. doi: 10.1007/s00018-007-7190-z. PubMed DOI PMC

Tardy F, Havaux M. Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim Biophys Acta. 1997;1330(2):179–193. PubMed

Tasaka Y, Gombos Z, Nishiyama Y, Mohanty P, Ohba T, Ohki K, Murata N. Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: Evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. Embo J. 1996;15(23):6416–6425. PubMed PMC

Toth TN, Chukhutsina V, Domonkos I, Knoppova J, Komenda J, Kis M, Lenart Z, Garab G, Kovacs L, Gombos Z, van Amerongen H. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. Bba-Bioenergetics. 2015;1847(10):1153–1165. doi: 10.1016/j.bbabio.2015.05.020. PubMed DOI

Trautner C, Vermaas WFJ. The sll1951 Gene Encodes the Surface Layer Protein of Synechocystis sp Strain PCC 6803. J Bacteriol. 2013;195(23):5370–5380. doi: 10.1128/Jb.00615-13. PubMed DOI PMC

Ueno M, Sae-Tang P, Kusama Y, Hihara Y, Matsuda M, Hasunuma T, Nishiyama Y. Moderate Heat Stress Stimulates Repair of Photosystem II During Photoinhibition in Synechocystis sp. PCC 6803. Plant Cell Physiol. 2016;57(11):2417–2426. doi: 10.1093/pcp/pcw153. PubMed DOI

Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 angstrom. Nature. 2011;473(7345):55–U65. doi: 10.1038/nature09913. PubMed DOI

Vajravel S, Kovacs L, Kis M, Rehman AU, Vass I, Gombos Z, Toth TN. beta-Carotene influences the phycobilisome antenna of cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res. 2016 doi: 10.1007/s11120-016-0273-7. PubMed DOI

van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Bba-Biomembranes. 2015;1848(6):1319–1330. doi: 10.1016/j.bbamem.2015.02.025. PubMed DOI

van Eerden FJ, van den Berg T, Frederix PW, de Jong DH, Periole X, Marrink SJ. Molecular Dynamics of Photosystem II Embedded in the Thylakoid Membrane. J Phys Chem B. 2016 doi: 10.1021/acs.jpcb.6b06865. PubMed DOI

Varkonyi Z, Masamoto K, Debreczeny M, Zsiros O, Ughy B, Gombos Z, Domonkos I, Farkas T, Wada H, Szalontai B. Low-temperature-induced accumulation of xanthophylls and its structural consequences in the photosynthetic membranes of the cyanobacterium Cylindrospermopsis raciborskii: an FTIR spectroscopic study. Proc Natl Acad Sci U S A. 2002;99(4):2410–2415. doi: 10.1073/pnas.042698799. PubMed DOI PMC

Welti R, Li WQ, Li MY, Sang YM, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang XM. Profiling membrane lipids in plant stress responses - Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem. 2002;277(35):31994–32002. doi: 10.1074/jbc.M205375200. PubMed DOI

Zakar T, Laczko-Dobos H, Toth TN, Gombos Z. Carotenoids Assist in Cyanobacterial Photosystem II Assembly and Function. Front Plant Sci. 2016;7:295. doi: 10.3389/fpls.2016.00295. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...