Thy1 transgenic mice expressing the red fluorescent calcium indicator jRGECO1a for neuronal population imaging in vivo
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 EY028188
NEI NIH HHS - United States
Howard Hughes Medical Institute - United States
PubMed
30308007
PubMed Central
PMC6181368
DOI
10.1371/journal.pone.0205444
PII: PONE-D-18-16867
Knihovny.cz E-zdroje
- MeSH
- antigeny Thy-1 genetika MeSH
- fluorescenční mikroskopie MeSH
- luminescentní proteiny genetika metabolismus MeSH
- myši transgenní MeSH
- myši MeSH
- neurony metabolismus MeSH
- poměr signál - šum MeSH
- promotorové oblasti (genetika) MeSH
- zrakové korové centrum diagnostické zobrazování metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antigeny Thy-1 MeSH
- luminescentní proteiny MeSH
Calcium imaging is commonly used to measure the neural activity of large groups of neurons in mice. Genetically encoded calcium indicators (GECIs) can be delivered for this purpose using non-invasive genetic methods. Compared to viral gene transfer, transgenic targeting of GECIs provides stable long-term expression and obviates the need for invasive viral injections. Transgenic mice expressing the green GECI GCaMP6 are already widely used. Here we present the generation and characterization of transgenic mice expressing the sensitive red GECI jRGECO1a, driven by the Thy1 promoter. Four transgenic lines with different expression patterns showed sufficiently high expression for cellular in vivo imaging. We used two-photon microscopy to characterize visual responses of individual neurons in the visual cortex in vivo. The signal-to-noise ratio in transgenic mice was comparable to, or better than, mice transduced with adeno-associated virus. In addition, we show that Thy1-jRGECO1a transgenic mice are useful for transcranial population imaging and functional mapping using widefield fluorescence microscopy. We also demonstrate imaging of visual responses in retinal ganglion cells in vitro. Thy1-jRGECO1a transgenic mice are therefore a useful addition to the toolbox for imaging activity in intact neural networks.
Zobrazit více v PubMed
Sofroniew NJ, Flickinger D, King J, Svoboda K. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. Elife. 2016;5 10.7554/eLife.14472 . PubMed DOI PMC
Peron SP, Freeman J, Iyer V, Guo C, Svoboda K. A Cellular Resolution Map of Barrel Cortex Activity during Tactile Behavior. Neuron. 2015;86(3):783–99. 10.1016/j.neuron.2015.03.027 . PubMed DOI
Kim TH, Zhang Y, Lecoq J, Jung JC, Li J, Zeng H, et al. Long-Term optical access to an estimated one million neurons in the live mouse cortex. Cell reports. 2016;17(12):3385–94. 10.1016/j.celrep.2016.12.004 PubMed DOI PMC
Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, et al. Sensitive red protein calcium indicators for imaging neural activity. Elife. 2016;5 10.7554/eLife.12727 ; PubMed Central PMCID: PMCPMC4846379. PubMed DOI PMC
Sun Y, Nern A, Franconville R, Dana H, Schreiter ER, Looger LL, et al. Neural signatures of dynamic stimulus selection in Drosophila. Nature Neuroscience. 2017. PubMed
Dana H, Chen T-W, Hu A, Shields BC, Guo C, Looger L, et al. Thy1-GCaMP6 Transgenic Mice for Neuronal Population Imaging In Vivo. PloS ONE. 2014;9(9):e108697 10.1371/journal.pone.0108697 PubMed DOI PMC
Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron. 2015;85(5):942–58. 10.1016/j.neuron.2015.02.022 ; PubMed Central PMCID: PMC4365051. PubMed DOI PMC
Wekselblatt JB, Flister ED, Piscopo DM, Niell CM. Large-scale imaging of cortical dynamics during sensory perception and behavior. Journal of Neurophysiology. 2016;115(6):2852–66. 10.1152/jn.01056.2015 . PubMed DOI PMC
Huber D, Gutnisky DA, Peron S, O'Connor DH, Wiegert JS, Tian L, et al. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature. 2012;484(7395):473–8. Epub 2012/04/28. 10.1038/nature11039 . PubMed DOI PMC
Akerboom J, Rivera JD, Guilbe MM, Malave EC, Hernandez HH, Tian L, et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem. 2009;284(10):6455–64. 10.1074/jbc.M807657200 . PubMed DOI PMC
Zariwala HA, Borghuis BG, Hoogland TM, Madisen L, Tian L, De Zeeuw CI, et al. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. The Journal of Neuroscience. 2012;32(9):3131–41. 10.1523/JNEUROSCI.4469-11.2012 PubMed DOI PMC
Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods. 2009;6(12):875–81. Epub 2009/11/10. 10.1038/nmeth.1398 . PubMed DOI PMC
Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499(7458):295–300. Epub 2013/07/23. 10.1038/nature12354 ; PubMed Central PMCID: PMC3777791. PubMed DOI PMC
Heim N, Garaschuk O, Friedrich MW, Mank M, Milos RI, Kovalchuk Y, et al. Improved calcium imaging in transgenic mice expressing a troponin C–based biosensor. Nature Methods. 2007;4(2):127–9. 10.1038/nmeth1009 PubMed DOI
Direnberger S, Mues M, Micale V, Wotjak CT, Dietzel S, Schubert M, et al. Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. Nat Commun. 2012;3:1031 10.1038/ncomms2035 PubMed DOI
Hasan MT, Friedrich RW, Euler T, Larkum ME, Giese GG, Both M, et al. Functional Fluorescent Ca(2+) Indicator Proteins in Transgenic Mice under TET Control. PLoS Biol. 2004;2(6):E163 10.1371/journal.pbio.0020163 . PubMed DOI PMC
Díez‐García J, Matsushita S, Mutoh H, Nakai J, Ohkura M, Yokoyama J, et al. Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein. European Journal of Neuroscience. 2005;22(3):627–35. 10.1111/j.1460-9568.2005.04250.x PubMed DOI
Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, et al. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A. 2006;103(12):4753–8. 10.1073/pnas.0509378103 . PubMed DOI PMC
Tallini YN, Brekke JF, Shui B, Doran R, Hwang SM, Nakai J, et al. Propagated endothelial Ca2+ waves and arteriolar dilation in vivo: measurements in Cx40BAC GCaMP2 transgenic mice. Circ Res. 2007;101(12):1300–9. Epub 2007/10/13. 10.1161/CIRCRESAHA.107.149484 . PubMed DOI
Atkin SD, Patel S, Kocharyan A, Holtzclaw LA, Weerth SH, Schram V, et al. Transgenic mice expressing a cameleon fluorescent Ca2+ indicator in astrocytes and Schwann cells allow study of glial cell Ca2+ signals in situ and in vivo. Journal of neuroscience methods. 2009;181(2):212–26. Epub 2009/05/21. 10.1016/j.jneumeth.2009.05.006 ; PubMed Central PMCID: PMC3142666. PubMed DOI PMC
Chen Q, Cichon J, Wang W, Qiu L, Lee S-JR, Campbell NR, et al. Imaging Neural Activity Using Thy1-GCaMP Transgenic Mice. Neuron. 2012;76(2):297–308. 10.1016/j.neuron.2012.07.011 PubMed DOI PMC
Daigle TL, Madisen L, Hage TA, Valley MT, Knoblich U, Larsen RS, et al. A suite of transgenic driver and reporter mouse lines with enhanced brain cell type targeting and functionality. bioRxiv. 2017. 10.1101/224881 PubMed DOI PMC
Bethge P, Carta S, Lorenzo DA, Egolf L, Goniotaki D, Madisen L, et al. An R-CaMP1.07 reporter mouse for cell-type-specific expression of a sensitive red fluorescent calcium indicator. PLOS ONE. 2017;12(6):e0179460 10.1371/journal.pone.0179460 PubMed DOI PMC
Chen TW, Li N, Daie K, Svoboda K. A Map of Anticipatory Activity in Mouse Motor Cortex. Neuron. 2017;94(4):866–79 e4. 10.1016/j.neuron.2017.05.005 . PubMed DOI
Caroni P. Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods. 1997;71(1):3–9. . PubMed
Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28(1):41–51. . PubMed
Behringer R, Gertsenstein M, Vintersten Nagy K, Nagy A. Manipulating the Mouse Embryo: A Laboratory Manual. Fourth edition ed. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press; 2013.
Donello JE, Loeb JE, Hope TJ. Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. Journal of Virology. 1998;72(6):5085–92. PubMed PMC
Loeb JE, Cordier WS, Harris ME, Weitzman MD, Hope TJ. Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Human gene therapy. 1999;10(14):2295–305. 10.1089/10430349950016942 PubMed DOI
Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Wiestler OD, et al. NeuN: a useful neuronal marker for diagnostic histopathology. Journal of Histochemistry & Cytochemistry. 1996;44(10):1167–71. PubMed
Guo ZV, Li N, Huber D, Ophir E, Gutnisky DA, Ting JT, et al. Flow of cortical activity underlying a tactile decision in mice. Neuron. 2014;81(1):179–94. Epub 2013/12/19. 10.1016/j.neuron.2013.10.020 . PubMed DOI PMC
Zhuang J, Ng L, Williams D, Valley M, Li Y, Garrett M, et al. An extended retinotopic map of mouse cortex. eLife [Internet]. 2017 2017/01//; 6. PubMed PMC
Borghuis BG, Marvin JS, Looger LL, Demb JB. Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. Journal of Neuroscience. 2013;33(27):10972–85. 10.1523/JNEUROSCI.1241-13.2013 PubMed DOI PMC
Sabatini BL, Oertner TG, Svoboda K. The life cycle of Ca(2+) ions in dendritic spines. Neuron. 2002;33(3):439–52. Epub 2002/02/08. doi: S0896627302005731 [pii]. . PubMed
Helmchen F, Imoto K, Sakmann B. Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J. 1996;70:1069–81. 10.1016/S0006-3495(96)79653-4 PubMed DOI PMC
Hires SA, Tian L, Looger LL. Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol. 2008;36(1–4):69–86. 10.1007/s11068-008-9029-4 . PubMed DOI PMC
Svoboda K, Block SM. Biological applications of optical forces. Ann Rev of Biophys and Biomol Struct. 1994;23:247–85. PubMed
Jacques SL. Optical properties of biological tissues: a review. Physics in Medicine & Biology. 2013;58(11):R37. PubMed
Malonek D, Grinvald A. Interactions Between Electrical Activity and Cortical Microcirculation Revealed by Imaging Spectroscopy: Implications for Functional Brain Mapping. Science. 1996;272(5261):551–4. 10.1126/science.272.5261.551 PubMed DOI
Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods. 2013;10(2):162–70. 10.1038/nmeth.2333 ; PubMed Central PMCID: PMCPMC4469972. PubMed DOI PMC
figshare
10.6084/m9.figshare.7117544.v1