Altered Root Growth, Auxin Metabolism and Distribution in Arabidopsis thaliana Exposed to Salt and Osmotic Stress
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34360759
PubMed Central
PMC8348202
DOI
10.3390/ijms22157993
PII: ijms22157993
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, abiotic stress, auxin distribution, auxin metabolome, auxin transcriptome, root growth,
- MeSH
- Arabidopsis růst a vývoj MeSH
- chlorid sodný farmakologie MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku biosyntéza MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- solný stres účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
Salt and osmotic stress are the main abiotic stress factors affecting plant root growth and architecture. We investigated the effect of salt (100 mM NaCl) and osmotic (200 mM mannitol) stress on the auxin metabolome by UHPLC-MS/MS, auxin distribution by confocal microscopy, and transcript levels of selected genes by qRT-PCR in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and DR5rev::GFP (DR5) line. During long-term stress (13 days), a stability of the auxin metabolome and a tendency to increase indole-3-acetic acid (IAA) were observed, especially during salt stress. Short-term stress (3 h) caused significant changes in the auxin metabolome, especially NaCl treatment resulted in a significant reduction of IAA. The data derived from auxin profiling were consistent with gene expressions showing the most striking changes in the transcripts of YUC, GH3, and UGT transcripts, suggesting disruption of auxin biosynthesis, but especially in the processes of amide and ester conjugation. These data were consistent with the auxin distribution observed in the DR5 line. Moreover, NaCl treatment caused a redistribution of auxin signals from the quiescent center and the inner layers of the root cap to the epidermal and cortical cells of the root elongation zone. The distribution of PIN proteins was also disrupted by salt stress; in particular, PIN2 was suppressed, even after 5 min of treatment. Based on our results, the DR5 line was more sensitive to the applied stresses than Col-0, although both lines showed similar trends in root morphology, as well as transcriptome and metabolome parameters under stress conditions.
Zobrazit více v PubMed
Daliakopoulos I.N., Panagea I.S., Tsanis I.K., Grillakis M.G., Koutroulis A.G., Hessel R., Mayor A.G., Ritsema C.J. Yield response of Mediterranean rangelands under a changing climate. Land Degrad. Dev. 2017;28:1962–1972. doi: 10.1002/ldr.2717. DOI
Petersson S.V., Johansson A.I., Kowalczyk M., Makoveychuk A., Wang J.Y., Moritz T., Grebe M., Benfey P.N., Sandberg G., Ljung K. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell. 2009;21:1659–1668. doi: 10.1105/tpc.109.066480. PubMed DOI PMC
Clark N.M., de Luis Balaguer M.A., Sozzani R. Experimental data and computational modeling link auxin gradient and development in the Arabidopsis root. Front. Plant Sci. 2014;5:328. doi: 10.3389/fpls.2014.00328. PubMed DOI PMC
Korver R.A., Koevoets I.T., Testerink C. Out of shape during stress: A key role for auxin. Trends Plant Sci. 2018;23:783–793. doi: 10.1016/j.tplants.2018.05.011. PubMed DOI PMC
Ljung K., Hull A.K., Celenza J., Yamada M., Estelle M., Normanly J., Sandberg G. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell. 2005;17:1090–1104. doi: 10.1105/tpc.104.029272. PubMed DOI PMC
Du Y., Scheres B. Lateral root formation and the multiple roles of auxin. J. Exp. Bot. 2018;69:155–167. doi: 10.1093/jxb/erx223. PubMed DOI
Tivendale N.D., Ross J.J., Cohen J.D. The shifting paradigms of auxin biosynthesis. Trends Plant Sci. 2014;19:44–51. doi: 10.1016/j.tplants.2013.09.012. PubMed DOI
Di D.-W., Zhang C., Luo P., An C.-W., Guo G.-Q. The biosynthesis of auxin: How many paths truly lead to IAA? Plant Growth Regul. 2016;78:275–285. doi: 10.1007/s10725-015-0103-5. DOI
Olatunji D., Geelen D., Verstraeten I. Control of endogenous auxin levels in plant root development. Int. J. Mol. Sci. 2017;18:2587. doi: 10.3390/ijms18122587. PubMed DOI PMC
Zhang J., Peer W.A. Auxin homeostasis: The DAO of catabolism. J. Exp. Bot. 2017;68:3145–3154. doi: 10.1093/jxb/erx221. PubMed DOI
Smolko A., Ludwig-Müller J., Salopek-Sondi B. Auxin Amidohydrolases—From Structure to Function: Revisited. Croat. Chem. Acta. 2018;91:233–239. doi: 10.5562/cca3356. DOI
Casanova-Sáez R., Mateo-Bonmatí E., Ljung K. Auxin metabolism in plants. Cold Spring Harb. Perspect. Biol. 2021;13:a039867. doi: 10.1101/cshperspect.a039867. PubMed DOI PMC
Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Normanly J., Slovin J.P., Cohen J.D. Auxin biosynthesis and metabolism. In: Davies P.J., editor. Plant Hormones. Springer; Dordrecht, The Netherlands: 2010. pp. 36–62.
Ludwig-Müller J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011;62:1757–1773. doi: 10.1093/jxb/erq412. PubMed DOI
Bartel B., LeClere S., Magidin M., Zolman B.K. Inputs to the active indole-3-acetic acid pool: De novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. J. Plant Growth Regul. 2001;20:198–216. doi: 10.1007/s003440010025. DOI
Sánchez-García A.B., Ibáñez S., Cano A., Acosta M., Pérez-Pérez J.M. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings. PLoS ONE. 2018;13:e0196663. doi: 10.1371/journal.pone.0196663. PubMed DOI PMC
Korasick D.A., Enders T.A., Strader L.C. Auxin biosynthesis and storage forms. J. Exp. Bot. 2013;64:2541–2555. doi: 10.1093/jxb/ert080. PubMed DOI PMC
Tanaka K., Hayashi K., Natsume M., Kamiya Y., Sakakibara H., Kawaide H., Kasahara H. UGT74D1 Catalyzes the Glucosylation of 2-Oxindole-3-Acetic Acid in the Auxin Metabolic Pathway in Arabidopsis. Plant Cell Physiol. 2014;55:218–228. doi: 10.1093/pcp/pct173. PubMed DOI PMC
Sugawara S., Hishiyama S., Jikumaru Y., Hanada A., Nishimura T., Koshiba T., Zhao Y., Kamiya Y., Kasahara H. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2009;106:5430–5435. doi: 10.1073/pnas.0811226106. PubMed DOI PMC
Tzin V., Galili G. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana. Arabidopsis Book. 2010;8:e0132. doi: 10.1199/tab.0132. PubMed DOI PMC
Abualia R., Benkova E., Lacombe B. Transporters and Mechanisms of Hormone Transport in Arabidopsis. In: Maurel C.B., editor. Membrane Transport in Plants. Volume 87. Academic Press; Cambridge, MA, USA: 2018. pp. 115–138. DOI
Mohanta T.K., Bashir T., Hashem A., Abd_Allah E.F., Khan A.L., Al-Harrasi A.S. Molecular players of auxin transport systems: Advances in genomic and molecular events. J. Plant Interact. 2018;13:483–495. doi: 10.1080/17429145.2018.1523476. DOI
Koevoets I.T., Venema J.H., Elzenga J.T.M., Testerink C. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. Front. Plant Sci. 2016;7:1335. doi: 10.3389/fpls.2016.01335. PubMed DOI PMC
Mroue S., Simeunovic A., Robert H.S. Auxin production as an integrator of environmental cues for developmental growth regulation. J. Exp. Bot. 2018;69:201–212. doi: 10.1093/jxb/erx259. PubMed DOI
Liang W., Ma X., Wan P., Liu L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018;495:286–291. doi: 10.1016/j.bbrc.2017.11.043. PubMed DOI
Salopek-Sondi B., Pavlović I., Smolko A., Šamec D. Auxin as a Mediator of Abiotic Stress Responses. In: Pandey G., editor. Mechanism of Plant Hormone Signaling under Stress. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2017. pp. 1–36.
Wang Y., Li K., Li X. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. 2009;166:1637–1645. doi: 10.1016/j.jplph.2009.04.009. PubMed DOI
Julkowska M.M., Hoefsloot H.C.J., Mol S., Feron R., de Boer G.-J., Haring M.A., Testerink C. Capturing Arabidopsis Root Architecture Dynamics with ROOT-FIT Reveals Diversity in Responses to Salinity. Plant Physiol. 2014;166:1387–1402. doi: 10.1104/pp.114.248963. PubMed DOI PMC
Ryu H., Cho Y.-G. Plant hormones in salt stress tolerance. J. Plant Biol. 2015;58:147–155. doi: 10.1007/s12374-015-0103-z. DOI
Pavlović I., Pěnčík A., Novák O., Vujčić V., Radić Brkanac S., Lepeduš H., Strnad M., Salopek-Sondi B. Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism. Plant Physiol. Biochem. 2018;125:74–84. doi: 10.1016/j.plaphy.2018.01.026. PubMed DOI
Julkowska M.M., Koevoets I.T., Mol S., Hoefsloot H., Feron R., Tester M.A., Keurentjes J.J.B., Korte A., Haring M.A., de Boer G.-J., et al. Genetic Components of Root Architecture Remodeling in Response to Salt Stress. Plant Cell. 2017;29:3198–3213. doi: 10.1105/tpc.16.00680. PubMed DOI PMC
Galvan-Ampudia C.S., Testerink C. Salt stress signals shape the plant root. Curr. Opin. Plant Biol. 2011;14:296–302. doi: 10.1016/j.pbi.2011.03.019. PubMed DOI
Liu W., Li R.-J., Han T.-T., Cai W., Fu Z.-W., Lu Y.-T. Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis. Plant Physiol. 2015;168:343–356. doi: 10.1104/pp.15.00030. PubMed DOI PMC
Zhang J., Lin J.E., Harris C., Campos Mastrotti Pereira F., Wu F., Blakeslee J.J., Peer W.A. DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2016;113:11010–11015. doi: 10.1073/pnas.1604769113. PubMed DOI PMC
Liu L., Guo G., Wang Z., Ji H., Mu F., Li X. Auxin in Plant Growth and Stress Responses. In: Phan Tran L.-S., Pal S., editors. Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications. Springer; New York, NY, USA: 2014. pp. 1–35.
Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., Novák O. Plant hormonomics: Multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC
Křeček P., Skůpa P., Libus J., Naramoto S., Tejos R., Friml J., Zažímalová E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 2009;10:249. doi: 10.1186/gb-2009-10-12-249. PubMed DOI PMC
Jiang K., Moe-Lange J., Hennet L., Feldman L.J. Salt Stress Affects the Redox Status of Arabidopsis Root Meristems. Front. Plant Sci. 2016;7:81. doi: 10.3389/fpls.2016.00081. PubMed DOI PMC
Feraru E., Friml J. PIN Polar Targeting. Plant Physiol. 2008;147:1553–1559. doi: 10.1104/pp.108.121756. PubMed DOI PMC
Fu Y., Yang Y., Chen S., Ning N., Hu H. Arabidopsis IAR4 Modulates Primary Root Growth Under Salt Stress Through ROS-Mediated Modulation of Auxin Distribution. Front. Plant Sci. 2019;10:522. doi: 10.3389/fpls.2019.00522. PubMed DOI PMC
Kilian J., Whitehead D., Horak J., Wanke D., Weinl S., Batistic O., D’Angelo C., Bornberg-Bauer E., Kudla J., Harter K. The AtGenExpress global stress expression data set: Protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 2007;50:347–363. doi: 10.1111/j.1365-313X.2007.03052.x. PubMed DOI
Winter D., Vinegar B., Nahal H., Ammar R., Wilson G.V., Provart N.J. An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLoS ONE. 2007;2:e718. doi: 10.1371/journal.pone.0000718. PubMed DOI PMC
Boyes D.C., Zayed A.M., Ascenzi R., McCaskill A.J., Hoffman N.E., Davis K.R., Görlach J. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell. 2001;13:1499–1510. doi: 10.1105/TPC.010011. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Yan S., Che G., Ding L., Chen Z., Liu X., Wang H., Zhao W., Ning K., Zhao J., Tesfamichael K., et al. Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Sci. Rep. 2016;6:20760. doi: 10.1038/srep20760. PubMed DOI PMC
Shi H., Chen L., Ye T., Liu X., Ding K., Chan Z. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 2014;82:209–217. doi: 10.1016/j.plaphy.2014.06.008. PubMed DOI
Kim J.I., Baek D., Park H.C., Chun H.J., Oh D.-H., Lee M.K., Cha J.-Y., Kim W.-Y., Kim M.C., Chung W.S., et al. Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Mol. Plant. 2013;6:337–349. doi: 10.1093/mp/sss100. PubMed DOI
Ke Q., Wang Z., Ji C.Y., Jeong J.C., Lee H.-S., Li H., Xu B., Deng X., Kwak S.-S. Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. Plant Physiol. Biochem. 2015;94:19–27. doi: 10.1016/j.plaphy.2015.05.003. PubMed DOI
Park J.-E., Park J.-Y., Kim Y.-S., Staswick P.E., Jeon J., Yun J., Kim S.-Y., Kim J., Lee Y.-H., Park C.-M. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J. Biol. Chem. 2007;282:10036–10046. doi: 10.1074/jbc.M610524200. PubMed DOI
Kirungu J.N., Magwanga R.O., Lu P., Cai X., Zhou Z., Wang X., Peng R., Wang K., Liu F. Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton. BMC Genet. 2019;20:62. doi: 10.1186/s12863-019-0756-6. PubMed DOI PMC
Kong W., Zhong H., Deng X., Gautam M., Gong Z., Zhang Y., Zhao G., Liu C., Li Y. Evolutionary analysis of GH3 genes in six Oryza species/subspecies and their expression under salinity stress in Oryza sativa ssp. japonica. Plants. 2019;8:30. doi: 10.3390/plants8020030. PubMed DOI PMC
Kong W., Zhang Y., Deng X., Li S., Zhang C., Li Y. Comparative genomic and transcriptomic analysis suggests the evolutionary dynamic of GH3 genes in Gramineae crops. Front. Plant Sci. 2019;10:1297. doi: 10.3389/fpls.2019.01297. PubMed DOI PMC
Kinoshita N., Wang H., Kasahara H., Liu J., MacPherson C., Machida Y., Kamiya Y., Hannah M.A., Chua N.-H. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell. 2012;24:3590–3602. doi: 10.1105/tpc.112.097006. PubMed DOI PMC
Rehman H.M., Nawaz M.A., Shah Z.H., Ludwig-Müller J., Chung G., Ahmad M.Q., Yang S.H., Lee S.I. Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three Brassica species and Arabidopsis indicates stress-responsive regulation. Sci. Rep. 2018;8:1875. doi: 10.1038/s41598-018-19535-3. PubMed DOI PMC
Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003;115:591–602. doi: 10.1016/S0092-8674(03)00924-3. PubMed DOI
Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 2003;426:147–153. doi: 10.1038/nature02085. PubMed DOI
Scholl R.L., May S.T., Ware D.H. Seed and Molecular Resources for Arabidopsis. Plant Physiol. 2000;124:1477–1480. doi: 10.1104/pp.124.4.1477. PubMed DOI PMC
Abas L., Benjamins R., Malenica N., Paciorek T., Wišniewska J., Moulinier–Anzola J.C., Sieberer T., Friml J., Luschnig C. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 2006;8:249–256. doi: 10.1038/ncb1369. PubMed DOI
Vieten A., Vanneste S., Wisniewska J., Benkova E., Benjamins R., Beeckman T., Luschnig C., Friml J. Functional redundancy of PIN proteins is accompanied by auxin-dependentcross-regulation of PIN expression. Development. 2005;132:4521–4531. doi: 10.1242/dev.02027. PubMed DOI
Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005;433:39–44. doi: 10.1038/nature03184. PubMed DOI
Shahzad Z., Kellermeier F., Armstrong E.M., Rogers S., Lobet G., Amtmann A., Hills A. EZ-Root-VIS: A software pipeline for the rapid analysis and visual reconstruction of root system architecture. Plant Physiol. 2018;177:1368–1381. doi: 10.1104/pp.18.00217. PubMed DOI PMC
Gu X., Xu T., He Y. A Histone H3 Lysine-27 Methyltransferase complex represses lateral root formation in Arabidopsis thaliana. Mol. Plant. 2014;7:977–988. doi: 10.1093/mp/ssu035. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Pěnčík A., Casanova-Sáez R., Pilařová V., Žukauskaitė A., Pinto R., Micol J.L., Ljung K., Novák O. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 2018;69:2569–2579. doi: 10.1093/jxb/ery084. PubMed DOI PMC
Arvidsson S., Kwasniewski M., Riano-Pachon D.M., Mueller-Roeber B. QuantPrime—A flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinform. 2008;9:465. doi: 10.1186/1471-2105-9-465. PubMed DOI PMC
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Czechowski T., Stitt M., Altmann T., Udvardi M.K., Scheible W.-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139:5–17. doi: 10.1104/pp.105.063743. PubMed DOI PMC
Ruijter J.M., Ramakers C., Hoogaars W.M.H., Karlen Y., Bakker O., van den Hoff M.J.B., Moorman A.F.M. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:e45. doi: 10.1093/nar/gkp045. PubMed DOI PMC
Waese J., Fan J., Pasha A., Yu H., Fucile G., Shi R., Cumming M., Kelley L.A., Sternberg M.J., Krishnakumar V., et al. ePlant: Visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell. 2017;29:1806–1821. doi: 10.1105/tpc.17.00073. PubMed DOI PMC
Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit