New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35873993
PubMed Central
PMC9302884
DOI
10.3389/fpls.2022.875528
Knihovny.cz E-zdroje
- Klíčová slova
- ARD, Malus × domestica Borkh. (apple), allelopathy, auxin, dihydrochalcones, phloretin, phytotoxicity, polar auxin transport,
- Publikační typ
- časopisecké články MeSH
Apple species are the unique naturally rich source of dihydrochalcones, phenolic compounds with an elusive role in planta, but suggested auto-allelochemical features related to "apple replant disease" (ARD). Our aim was to elucidate the physiological basis of the phytotoxic action of dihydrochalcone phloretin in the model plant Arabidopsis and to promote phloretin as a new prospective eco-friendly phytotoxic compound. Phloretin treatment induced a significant dose-dependent growth retardation and severe morphological abnormalities and agravitropic behavior in Arabidopsis seedlings. Histological examination revealed a reduced starch content in the columella cells and a serious disturbance in root architecture, which resulted in the reduction in length of meristematic and elongation zones. Significantly disturbed auxin metabolome profile in roots with a particularly increased content of IAA accumulated in the lateral parts of the root apex, accompanied by changes in the expression of auxin biosynthetic and transport genes, especially PIN1, PIN3, PIN7, and ABCB1, indicates the role of auxin in physiological basis of phloretin-induced growth retardation. The results reveal a disturbance of auxin homeostasis as the main mechanism of phytotoxic action of phloretin. This mechanism makes phloretin a prospective candidate for an eco-friendly bioherbicide and paves the way for further research of phloretin role in ARD.
Zobrazit více v PubMed
Ahmed A., Tariq A., Habib S. (2020). “Interactive biology of auxins and phenolics in plant environment,” in Plant Phenolics in Sustainable Agriculture. eds. Lone R., Shuab R., Kamili A. N. (Singapore: Springer; ), 117–134. doi: 10.1007/978-981-15-4890-1_5 DOI
Bachheti A., Sharma A., Bachheti R. K., Husen A., Pandey D. P. (2020). “Plant allelochemicals and their various applications,” in Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. eds. Mérillon J. M., Ramawat K. G. (Switzerland AG: Springer Nature; ), 441–465.
Bahmani R., Kim D. G., Modareszadeh M., Thompson A. J., Park J. H., Yoo H. H., et al. . (2020). The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA). Environ. Pollut. 257:113516. doi: 10.1016/j.envpol.2019.113516, PMID: PubMed DOI
Bais H. P., Vepachedu R., Gilroy S., Callaway R. M., Vivanco J. M. (2003). Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301, 1377–1380. doi: 10.1126/science.1083245, PMID: PubMed DOI
Baldwin K. L., Strohm A. K., Masson P. H. (2013). Gravity sensing and signal transduction in vascular plant primary roots. Am. J. Bot. 100, 126–142. doi: 10.3732/ajb.1200318, PMID: PubMed DOI
Barreca D., Bellocco E., Laganà G., Ginestra G., Bisignano C. (2014). Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chem. 160, 292–297. doi: 10.1016/j.foodchem.2014.03.118, PMID: PubMed DOI
Behzad S., Sureda A., Barreca D., Nabavi S. F., Rastrelli L., Nabavi S. M. (2017). Health effects of phloretin: from chemistry to medicine. Phytochem. Rev. 16, 527–533. doi: 10.1007/s11101-017-9500-x DOI
Billou I., Xu J., Wildwater M., Willemsen V., Paponov I., Frimi J., et al. . (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44. doi: 10.1038/nature03184, PMID: PubMed DOI
Blancaflor E. B., Fasano J. M., Gilroy S. (1998). Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol. 116, 213–222. doi: 10.1104/pp.116.1.213, PMID: PubMed DOI PMC
Börner H. (1959). The apple replant problem. I. The excretion of phlorizin from apple root residues. Contrib. Boyce Thompson Inst. 20, 39–56.
Börner H. (1960). Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev. 26, 393–424. doi: 10.1007/BF02860808 DOI
Bouizgarne B., El-Maarouf-Bouteau H., Frankart C., Reboutier D., Madiona K., Pennarun A. M., et al. . (2006). Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects. New Phytol. 169, 209–218. doi: 10.1111/j.1469-8137.2005.01561.x, PMID: PubMed DOI
Brown D. E., Rashotte A. M., Murphy A. S., Normanly J., Tague B. W., Peer W. A., et al. . (2001). Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126, 524–535. doi: 10.1104/PP.126.2.524, PMID: PubMed DOI PMC
Brumos J., Alonso J. M., Stepanova A. N. (2014). Genetic aspects of auxin biosynthesis and its regulation. Physiol. Plant. 151, 3–12. doi: 10.1111/ppl.12098 PubMed DOI
Brumos J., Robles L. M., Yun J., Vu T. C., Jackson S., Alonso J. M., et al. . (2018). Local auxin biosynthesis is a key regulator of plant development. Dev. Cell 47, 306–318.e5. doi: 10.1016/j.devcel.2018.09.022, PMID: PubMed DOI
Caspar T., Pickard B. G., Caspar T., Pickard B. G. (1989). Gravitropism in a starchless mutant of Arabidopsis. Planta 177, 185–197. doi: 10.1007/BF00392807, PMID: PubMed DOI
Cheng F., Cheng Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6:1020. doi: 10.3389/fpls.2015.01020, PMID: PubMed DOI PMC
Cho M., Lee Z. W., Cho H. T. (2012). ATP-binding cassette B4, an auxin-efflux transporter, stably associates with the plasma membrane and shows distinctive intracellular trafficking from that of PIN-FORMED proteins. Plant Physiol. 159, 642–654. doi: 10.1104/pp.112.196139, PMID: PubMed DOI PMC
Dare A. P., Tomes S., Jones M., McGhie T. K., Stevenson D. E., Johnson R. A., et al. . (2013). Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus × domestica). Plant J. 74, 398–410. doi: 10.1111/tpj.12140, PMID: PubMed DOI
Dare A. P., Yauk Y.-K., Tomes S., McGhie T. K., Rebstock R. S., Cooney J. M., et al. . (2017). Silencing a phloretin-specific glycosyltransferase perturbs both general phenylpropanoidbiosynthesis and plant development. Plant J. 91, 237–250. doi: 10.1111/tpj.13559, PMID: PubMed DOI
De Albuquerque M. B., Dos Santos R. C., Lima L. M., Melo Filho P. D. A., Nogueira R. J. M. C., Da Câmara C. A. G., et al. . (2011). Allelopathy, an alternative tool to improve cropping systems. A review. Agron. Sustain. Dev. 31, 379–395. doi: 10.1051/agro/2010031 DOI
Dugé de Bernoville T., Gaucher M., Guyot S., Durel C. E., Dat J. F., Brisset M. N. (2011). The constitutive phenolic composition of two Malus × domestica genotypes is not responsible for their contrasted susceptibilities to fire blight. Environ. Exp. Bot. 74, 65–73. doi: 10.1016/j.envexpbot.2011.04.019 DOI
Friml J., Justyna W., Eva B., Kurt M., Klaus P. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806–809. doi: 10.1038/415806a PubMed DOI
Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., et al. . (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230. doi: 10.1126/science.282.5397.2226, PMID: PubMed DOI
Gasic K., Hernandez A., Korban S. S. (2004). RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol. Biol. Rep. 22, 437–438. doi: 10.1007/BF02772687 DOI
Geisler M., Aryal B., Di Donato M., Hao P. (2017). A critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiol. 58, 1601–1614. doi: 10.1093/pcp/pcx104, PMID: PubMed DOI
Geisler M., Blakeslee J. J., Bouchard R., Lee O. R., Vincenzetti V., Bandyopadhyay A., et al. . (2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 44, 179–194. doi: 10.1111/j.1365-313X.2005.02519.x, PMID: PubMed DOI
Glawischnig E. (2007). Camalexin. Phytochemistry 68, 401–406. doi: 10.1016/j.phytochem.2006.12.005 PubMed DOI
Gosch C., Halbwirth H., Stich K. (2010). Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochemistry 71, 838–843. doi: 10.1016/j.phytochem.2010.03.003, PMID: PubMed DOI
Grabov A., Ashley M. K., Rigas S., Hatzopoulos P., Dolan L., Vicente-Agullo F. (2005). Morphometric analysis of root shape. New Phytol. 165, 641–652. doi: 10.1111/j.1469-8137.2004.01258.x PubMed DOI
Hanzawa T., Shibasaki K., Numata T., Kawamura Y., Gaude T., Rahman A. (2013). Cellular auxin homeostasis under high temperature is regulated through a SORTING NEXIN1 – dependent endosomal trafficking pathway. Plant Cell 25, 3424–3433. doi: 10.1105/tpc.113.115881, PMID: PubMed DOI PMC
Hayashi K.-I., Arai K., Aoi Y., Tanaka Y., Hira H., Guo R., et al. . (2021). The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 12:6752. doi: 10.1038/s41467-021-27020-1, PMID: PubMed DOI PMC
Huang L. F., Song L. X., Xia X. J., Mao W. H., Shi K., Zhou Y. H., et al. . (2013a). Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J. Chem. Ecol. 39, 232–242. doi: 10.1007/s10886-013-0244-9, PMID: PubMed DOI
Huang Y., Zhou G., Yi G., Gong Y., Zhang W., Liu A., et al. . (2013b). Rhizosphere actinomycete isolation methods and phloridzin degradation activity analysis in plants. J. South. Agr. 44, 54–58. http://www.nfnyxb.com/EN/Default.aspx
Jianghong Z., Zhiquan M., Liqin W. (2007). Effect of phloridzin on physiological characteristics of Malus hupehensis Rehd. Seedlings. Sci. Agric. Sin. 40, 492–498.
Kishimoto K., Matsui K., Ozawa R., Takabayashi J. (2006). Analysis of defensive responses activated by volatile Allo-ocimene treatment in Arabidopsis thaliana. Phytochemistry 67, 1520–1529. doi: 10.1016/j.phytochem.2006.05.027, PMID: PubMed DOI
Kiss J. Z., Hertel R., Sack F. D. (1989). Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177, 198–206. doi: 10.1007/BF00392808, PMID: PubMed DOI
Kleine-Vehn J., Ding Z., Jones A. R., Tasaka M., Morita M. T., Friml J. (2010). Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc. Natl. Acad. Sci. U. S. A. 107, 22344–22349. doi: 10.1073/pnas.1013145107, PMID: PubMed DOI PMC
Lewis D. R., Miller N. D., Splitt B. L., Wu G., Spalding E. P. (2007). Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis Multidrug Resistance-Like ABC transporter genes. Plant Cell 19, 1838–1850. doi: 10.1105/tpc.107.051599, PMID: PubMed DOI PMC
Li P., Ding L., Zhang L., He J., Huan Z. (2019). Weisiensin B inhibits primary and lateral root development by interfering with polar auxin transport in Arabidopsis thaliana. Plant Physiol. Biochem. 139, 738–745. doi: 10.1016/j.plaphy.2019.04.020, PMID: PubMed DOI
Li J., Xu H. H., Liu W. C., Zhang X. W., Lu Y. T. (2015). Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation. Plant Physiol. 168, 1777–1791. doi: 10.1104/pp.15.00523, PMID: PubMed DOI PMC
Linsmaier E. M., Skoog F. (1965). Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18, 100–127. doi: 10.1111/j.1399-3054.1965.tb06874.x DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408. doi: 10.1006/METH.2001.1262 PubMed DOI
Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., et al. . (2011). The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108, 18512–18517. doi: 10.1073/pnas.1108434108, PMID: PubMed DOI PMC
Michniewicz M., Brewer P. B., Friml J. (2007). Polar auxin transport and asymmetric Auxin distribution. Arabidopsis Book 5, e0108–e0128. doi: 10.1199/tab.0108, PMID: PubMed DOI PMC
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x DOI
Na X., Hu Y., Yue K., Lu H., Jia P., Wang H., et al. . (2011). Narciclasine modulates polar auxin transport in Arabidopsis roots. J. Plant Physiol. 168, 1149–1156. doi: 10.1016/j.jplph.2011.01.025, PMID: PubMed DOI
Nithiya T., Udayakumar R. (2016). In vitro antioxidant properties of phloretin—an important phytocompound. J. Biosci. Med. 4, 85–94. doi: 10.4236/jbm.2016.41010 DOI
Normanly J., Cohen J. D., Fink G. R. (1993). Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc. Natl. Acad. Sci. U. S. A. 90, 10355–10359. doi: 10.1073/pnas.90.21.10355, PMID: PubMed DOI PMC
Pasternak T., Groot E. P., Kazantsev F. V., Teale W., Omelyanchuk N., Kovrizhnykh V., et al. . (2019). Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol. 180, 1725–1739. doi: 10.1104/pp.19.00130, PMID: PubMed DOI PMC
Pavlović I., Pěnčík A., Novák O., Vujčić V., Brkanac S. R., Lepeduš H., et al. . (2018). Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism. Plant Physiol. Biochem. 125, 74–84. doi: 10.1016/j.plaphy.2018.01.026, PMID: PubMed DOI
Peer W. A., Murphy A. S. (2007). Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 12, 556–563. doi: 10.1016/j.tplants.2007.10.003 PubMed DOI
Pěnčík A., Casanova-Sáez R., Pilařová V., Žukauskaite A., Pinto R., Micol J. L., et al. . (2018). Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 69, 2569–2579. doi: 10.1093/jxb/ery084, PMID: PubMed DOI PMC
Pontais I., Treutter D., Paulin J. P., Brisset M. N. (2008). Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system. Physiol. Plant. 132, 262–271. doi: 10.1111/j.1399-3054.2007.01004.x, PMID: PubMed DOI
Růzǐčka K., Šimášková M., Duclercq J., Petrášek J., Zažímalová E., Simon S., et al. . (2009). Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc. Natl. Acad. Sci. U. S. A. 106, 4284–4289. doi: 10.1073/pnas.0900060106, PMID: PubMed DOI PMC
Sánchez-Moreiras A. M., de la Peña T. C., Reigosa M. J. (2008). The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry 69, 2172–2179. doi: 10.1016/j.phytochem.2008.05.014, PMID: PubMed DOI
Shibasaki K., Uemura M., Tsurumi S., Rahman A. (2009). Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21, 3823–3838. doi: 10.1105/tpc.109.069906, PMID: PubMed DOI PMC
Smolko A., Bauer N., Pavlovi I., Pěnčík A., Salopek-Sondi A. (2021). Altered root growth, auxin metabolism and distribution in Arabidopsis thaliana exposed to salt and osmotic stress. Int. J. Mol. Sci. 22, 7993. doi: 10.3390/ijms22157993, PMID: PubMed DOI PMC
Soltys D., Rudzińska-Langwald A., Gniazdowska A., Wiśniewska A., Bogatek R. (2012). Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta 236, 1629–1638. doi: 10.1007/s00425-012-1722-y, PMID: PubMed DOI PMC
Souto X. C., Chiapusio G., Pellissier F. (2000). Relationships between phenolics and soil microorganisms in spruce forests: significance for natural regeneration. J. Chem. Ecol. 26, 2025–2034. doi: 10.1023/A:1005504029243 DOI
Stanišić M., Ćosić T., Savić J., Krstić-Milošević D., Mišić D., Smigocki A., et al. . (2019). Hairy root culture as a valuable tool for allelopathic studies in apple. Tree Physiol. 39, 888–905. doi: 10.1093/treephys/tpz006, PMID: PubMed DOI
Stepanova A. N., Robertson-Hoyt J., Yun J., Benavente L. M., Xie D. Y., Doležal K., et al. . (2008). TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191. doi: 10.1016/j.cell.2008.01.047, PMID: PubMed DOI
Stepanova A. N., Yun J., Robles L. M., Novak O., He W., Guo H., et al. . (2011). The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23, 3961–3973. doi: 10.1105/tpc.111.088047, PMID: PubMed DOI PMC
Su T., Xu J., Li Y., Lei L., Zhao L., Yang H., et al. . (2011). Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23, 364–380. doi: 10.1105/tpc.110.079145, PMID: PubMed DOI PMC
Sugawara S., Hishiyama S., Jikumaru Y., Hanada A., Nishimura T., Koshiba T., et al. . (2009). Biochemical analyses of indole-3-acetaldoximedependent auxin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 106, 5430–5435. doi: 10.1073/pnas.0811226106, PMID: PubMed DOI PMC
Sun P., Tian Q. Y., Chen J., Zhang W. H. (2010). Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. J. Exp. Bot. 61, 347–356. doi: 10.1093/jxb/erp306, PMID: PubMed DOI PMC
Swarup R., Friml J., Marchant A., Ljung K., Sandberg G., Palme K., et al. . (2001). Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 15, 2648–2653. doi: 10.1101/gad.210501, PMID: PubMed DOI PMC
Terasaka K., Blakeslee J. J., Titapiwatanakun B., Peer W. A., Bandyopadhyay A., Makam S. N., et al. . (2005). PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17, 2922–2939. doi: 10.1105/tpc.105.035816, PMID: PubMed DOI PMC
Thomma B. P. H. J., Nelissen I., Eggermont K., Broekaert W. F. (1999). Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J. 19, 163–171. doi: 10.1046/j.1365-313X.1999.00513.x, PMID: PubMed DOI
Tsugeki R., Fedoroff N. V. (1999). Genetic ablation of root cap cells in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 96, 12941–12946. doi: 10.1073/pnas.96.22.12941, PMID: PubMed DOI PMC
Tsuji J., Jackson E. P., Gage D. A., Hammerschmidt R., Somerville S. C. (1992). Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol. 98, 1304–1309. doi: 10.1104/pp.98.4.1304, PMID: PubMed DOI PMC
Vieten A., Vanneste S., Wiśniewska J., Benková E., Benjamins R., Beeckman T., et al. . (2005). Functional redundancy of PIN proteins is accompanied by auxin-dependent cross regulation of PIN expression. Development 132, 4521–4531. doi: 10.1242/dev.02027, PMID: PubMed DOI
Vorwerk S., Biernacki S., Hillebrand H., Janzik I., Müller A., Weiler E. W., et al. . (2001). Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta 212, 508–516. doi: 10.1007/s004250000420, PMID: PubMed DOI
Weir T. L., Park S.-W., Vivanco J. M. (2004). Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol. 7, 472–479. doi: 10.1016/J.PBI.2004.05.007, PMID: PubMed DOI
Winkelmann T., Smalla K., Amelung W., Baab G., Grunewaldt-Stöcker G., Kanfra X., et al. . (2019). Apple replant disease: causes and mitigation strategies. Curr. Issues Mol. Biol. 30, 89–106. doi: 10.21775/CIMB.030.089, PMID: PubMed DOI
Won C., Shen X., Mashiguchi K., Zheng Z., Dai X., Cheng Y., et al. . (2011). Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108, 18518–18523. doi: 10.1073/pnas.1108436108, PMID: PubMed DOI PMC
Yan S., Che G., Ding L., Chen Z., Liu X., Wang H., et al. . (2016). Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Sci. Rep. 6, 1–12. doi: 10.1038/srep20760, PMID: PubMed DOI PMC
Yan Z. Q., Jin H., Wang D. D., Yang X. Y., Qin B. (2015). The effect of ellagic acid on the root gravitropic response in Arabidopsis thaliana. Russ. J. Plant Physiol. 62, 664–669. doi: 10.1134/S1021443715050180 DOI
Yan Z., Wang D., Cui H., Sun Y., Yang X., Jin H., et al. . (2018). Effects of artemisinin on root gravitropic response and root system development in Arabidopsis thaliana. Plant Growth Regul. 85, 211–220. doi: 10.1007/s10725-018-0384-6 DOI
Yang L., You J., Li J., Wang Y., Chan Z. (2021). Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner. J. Exp. Bot. 72, 5599–5611. doi: 10.1093/jxb/erab196, PMID: PubMed DOI
Yim B., Smalla K., Winkelmann T. (2013). Evaluation of apple replant problems based on different soil disinfection treatments-links to soil microbial community structure? Plant Soil 366, 617–631. doi: 10.1007/s11104-012-1454-6 DOI
Yin C., Duan Y., Xiang L., Wang G., Zhang X., Shen X., et al. . (2018). Effects of phloridzin, phloretin and benzoic acid at the concentrations measured in soil on the root proteome of Malus hupehensis Rehd seedlings. Sci. Hortic. 228, 10–17. doi: 10.1016/J.SCIENTA.2017.09.044 DOI
Yuan H. M., Huang X. (2016). Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ. 39, 120–135. doi: 10.1111/pce.12597, PMID: PubMed DOI
Yuan H. M., Xu H. H., Liu W. C., Lu Y. T. (2013). Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol. 54, 766–778. doi: 10.1093/pcp/pct030, PMID: PubMed DOI
Zažímalová E., Murph A. S., Yang H., Hoyerová K., Hošek P. (2010). Auxin transporters – why so many? Cold spring Harb. Perspect. Biol. 2, 1–15. doi: 10.1101/cshperspect.a001552 PubMed DOI PMC
Zhang W., Lu L. Y., Hu L. Y., Cao W., Sun K., Sun Q. B., et al. . (2018). Evidence for the involvement of auxin, ethylene and ROS signaling during primary root inhibition of Arabidopsis by the allelochemical benzoic acid. Plant Cell Physiol. 59, 1889–1904. doi: 10.1093/pcp/pcy107, PMID: PubMed DOI
Zhao Y., Hull A. K., Gupta N. R., Goss K. A., Alonso J., Ecker J. R., et al. . (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 16, 3100–3112. doi: 10.1101/gad.1035402, PMID: PubMed DOI PMC
Zhao J., Williams C. C., Last R. L. (1998). Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10, 359–370. doi: 10.1105/tpc.10.3.359, PMID: PubMed DOI PMC
Zhou K., Hu L., Li P., Gong X., Ma F. (2017). Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Sci. 265, 131–145. doi: 10.1016/j.plantsci.2017.10.003, PMID: PubMed DOI