Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32004385
DOI
10.1111/nph.16463
Knihovny.cz E-zdroje
- Klíčová slova
- Picea abies, GH3 genes, auxin conjugates, auxin homeostasis, conifers, indole-3-acetic acid (IAA),
- MeSH
- cévnaté rostliny * MeSH
- fylogeneze MeSH
- homeostáza MeSH
- kyseliny indoloctové * MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové * MeSH
Dynamic regulation of the concentration of the natural auxin (IAA) is essential to coordinate most of the physiological and developmental processes and responses to environmental changes. Oxidation of IAA is a major pathway to control auxin concentrations in angiosperms and, along with IAA conjugation, to respond to perturbation of IAA homeostasis. However, these regulatory mechanisms remain poorly investigated in conifers. To reduce this knowledge gap, we investigated the different contributions of the IAA inactivation pathways in conifers. MS-based quantification of IAA metabolites under steady-state conditions and after perturbation was investigated to evaluate IAA homeostasis in conifers. Putative Picea abies GH3 genes (PaGH3) were identified based on a comprehensive phylogenetic analysis including angiosperms and basal land plants. Auxin-inducible PaGH3 genes were identified by expression analysis and their IAA-conjugating activity was explored. Compared to Arabidopsis, oxidative and conjugative pathways differentially contribute to reduce IAA concentrations in conifers. We demonstrated that the oxidation pathway plays a marginal role in controlling IAA homeostasis in spruce. By contrast, an excess of IAA rapidly activates GH3-mediated irreversible conjugation pathways. Taken together, these data indicate that a diversification of IAA inactivation mechanisms evolved specifically in conifers.
Institut Jean Pierre Bourgin INRAE AgroParisTech Université Paris Saclay 78000 Versailles France
Umeå Plant Science Centre Department of Plant Physiology Umeå University 90736 Umeå Sweden
Zobrazit více v PubMed
Bierfreund NM, Tintelnot S, Reski R, Decker EL. 2004. Loss of GH3 function does not affect phytochrome-mediated development in a moss Physcomitrella patens. Plant Cell Reports 21: 1143-1152.
Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, Saint YMM, Keeling CI, Brand D, Vandervalk BP et al. 2013. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29: 1492-1497.
Brunoni F, Collani S, Šimura J, Schmid M, Bellini C, Ljung K. 2019. A bacterial assay for rapid screening of IAA catabolic enzymes. Plant Methods 15: 126.
Cooke TJ, Poli DB, Sztein AE, Cohen JD. 2002. Evolutionary patterns in auxin action. Plant Molecular Biology 49: 319-338.
Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey PN, Busch W, Novak O, Ljung K, Di Paola L et al. 2017. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proceedings of the National Academy of Sciences, USA 114: E7641-E7649.
Drábková LZ, Dobrev PI, Motyka V. 2015. Phytohormone profiling across the bryophytes. PLoS ONE 10: 1-19.
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A et al. 2019. The Pfam protein families database in 2019. Nucleic Acids Research 47: D427-D432.
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40: 1178-1186.
Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick PE, Kowalczyk M, Păcurar M, Demailly H, Geiss G et al. 2012. Auxin controls arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24: 2515-2527.
Hagen G, Guilfoyle T, Okrent RA, Wildermuth MC. 2002. Evolutionary history of the GH3 family of acyl adenylases in rosids. Plant Molecular Biology 49: 489-505.
Jackson RG, Lim EK, Li Y, Kowalczyk M, Sandberg G, Hogget J, Ashford DA, Bowles DJ. 2001. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. Journal of Biological Chemistry 276: 4350-4356.
Kai K, Horita J, Wakasa K, Miyagawa H. 2007. Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68: 1651-1663.
Kawai Y, Ono E, Mizutani M. 2014. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenease superfamily in plants. The Plant Journal 78: 328-343.
Kowalczyk M, Sandberg G. 2001. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiology 127: 1845-1853.
Kramer EM, Ackelsberg EM. 2015. Auxin metabolism rates and implications for plant development. Frontiers in Plant Science 6: 1-8.
LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B. 2002. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. Journal of Biological Chemistry 277: 20446-20452.
Ljung K. 2013. Auxin metabolism and homeostasis during plant development. Development 140: 943-950.
Ljung K, Östin A, Lioussanne L, Sandberg G. 2001. Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiology 125: 464-475.
Ludwig-Müller J. 2011. Auxin conjugates: their role for plant development and in the evolution of land plants. Journal of Experimental Botany 62: 1757-1773.
Ludwig-Müller J, Jülke S, Bierfreund NM, Decker EL, Reski R. 2009. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. New Phytologist 181: 323-338.
Mellor N, Band LR, Pěnčík A, Novák O, Rashed A, Holman T, Wilson MH, Voß U, Bishopp A, King JR et al. 2016. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences, USA 113: 11022-11027.
Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD et al. 2014. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology 15: 1-13.
Normanly J. 2010. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harbor Perspectives in Biology 2: 1-18.
Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K. 2012. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. The Plant Journal 72: 523-536.
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497: 579-584.
Okrent RA, Wildermuth MC. 2011. Evolutionary history of the GH3 family of acyl adenylases in rosids. Plant Molecular Biology 76: 489-505.
Östin A, Kowalyczk M, Bhalerao RP, Sandberg G. 1998. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiology 118: 285-296.
Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM. 2007. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. The Journal of Biological Chemistry 282: 10036-10046.
Peer WA, Cheng Y, Murphy AS. 2013. Evidence of oxidative attenuation of auxin signalling. Journal of Experimental Botany 64: 2629-2639.
Pěnčík A, Simonovik B, Petersson SV, Henykova E, Simon S, Greenham K, Zhang Y, Kowalczyk M, Estelle M, Zazimalova E et al. 2013. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25: 3858-3870.
Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e45.
Porco S, Pěnčík A, Rashed A, Voß U, Casanova-Sáez R, Bishopp A, Golebiowska A, Bhosale R, Swarup R, Swarup K et al. 2016. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences, USA 113: 11016-11021.
Reddy SM, Hitchin S, Melayah D, Pandey AK, Raffier C, Henderson J, Marmeisse R, Gay G. 2006. The auxin-inducible GH3 homologue Pp-GH3.16 is downregulated in Pinus pinaster root systems on ectomycorrhizal symbiosis establishment. New Phytologist 170: 391-400.
Ruiz Rosquete M, Barbez E, Kleine-Vehn J. 2012. Cellular auxin homeostasis: gatekeeping is housekeeping. Molecular Plant 5: 772-786.
Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
Schwarz R, Dayhoff M. 1979. Matrices for detecting distant relationships. In: Dayhoff M, ed. Atlas of protein sequences. Washington, DC, USA: National Biomedical Research Foundation, 353-358.
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17: 616-627.
Staswick PE, Tiryaki I, Rowe ML. 2002. Jasmonate response locus jar1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405-1415.
Stepanova AN, Alonso JM. 2016. Auxin catabolism unplugged: role of IAA oxidation in auxin homeostasis. Proceedings of the National Academy of Sciences, USA 113: 10742-10744.
Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin YC, Sjödin A, Van de Peer Y, Jansson S, Hvidsten TR, Street NR. 2015. The plant genome integrative explorer resource: PantGenIE.org. New Phytologist 208: 1149-1156.
Sztein AE, Cohen JD, Garcia de la Fuente I, Cooke TJ. 1999. Auxin metabolism in mosses and liverworts. American Journal of Botany 86: 1544-1555.
Tam YY, Epstein E, Normanly J. 2000. Characterization of auxin conjugates in Arabidopsis: low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiology 123: 589-596.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.
Tanaka K, Hayashi KI, Natsume M, Kamiya Y, Sakakibara H, Kawaide H, Kasahara H. 2014. UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant and Cell Physiology 55: 218-228.
Terol J, Domingo C, Talón M. 2006. The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis. Gene 371: 279-290.
Vanneste S, Friml J. 2009. Auxin: a trigger for change in plant development. Cell 136: 1005-1016.
Westfall CS, Herrmann J, Chen Q, Wang S, Jez JM. 2011. Modulating plant hormones by enzyme action. Plant Signaling & Behavior 5: 1607-1612.
Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez JM. 2016. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proceedings of the National Academy of Sciences, USA 113: 13917-13922.
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. 2007. An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 8: e718.
Zhang J, Lin JE, Harris C, Campos Mastrotti Pereira F, Wu F, Blakeslee JJ, Peer WA. 2016. DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 113: 11010-11015.
Zhang J, Peer WA. 2017. Auxin homeostasis: the DAO of catabolism. Journal of Experimental Botany 68: 3145-3154.
Zhao Y. 2018. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annual Review of Plant Biology 69: 417-435.
Zhao Z, Zhang Y, Liu X, Zhang X, Shichang L, Yu X, Ren Y, Zheng X, Zheng X, Zhou K et al. 2013. A role for a dioxygenase in auxin metabolism and reproductive development in rice. Developmental Cell 27: 113-122.
Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong P et al. 2014. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196: 875-890.
Žižková E, Kubeš M, Dobrev PI, Přibyl P, Šimura J, Zahajská L, Drábková LZ, Novák O, Motyka V. 2017. Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Annals of Botany 119: 151-166.
Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species
High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing
Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit
Plant Growth Regulators in Tree Rooting
Dynamics of Auxin and Cytokinin Metabolism during Early Root and Hypocotyl Growth in Theobroma cacao
Reaction Wood Anatomical Traits and Hormonal Profiles in Poplar Bent Stem and Root