Bcl-2△21 and Ac-DEVD-CHO Inhibit Death of Wheat Microspores
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28082995
PubMed Central
PMC5184288
DOI
10.3389/fpls.2016.01931
Knihovny.cz E-zdroje
- Klíčová slova
- Bcl-2△21, caspase-3, cell death, embryogenesis, hydroxyl radicals, microspore,
- Publikační typ
- časopisecké články MeSH
Microspore cell death and low green plant production efficiency are an integral obstacle in the development of doubled haploid production in wheat. The aim of the current study was to determine the effect of anti-apoptotic recombinant human B-cell lymphoma-2 (Bcl-2△21) and caspase-3-inhibitor (Ac-DEVD-CHO) in microspore cell death in bread wheat cultivars AC Fielder and AC Andrew. Induction medium containing Bcl-2△21 and Ac-DEVD-CHO yielded a significantly higher number of viable microspores, embryo-like structures and total green plants in wheat cultivars AC Fielder and AC Andrew. Total peroxidase activity was lower in Bcl-2△21 treated microspore cultures at 96 h of treatment compared to control and Ac-DEVD-CHO. Electron paramagnetic resonance study of total microspore protein showed a different scavenging activity for Bcl-2△21 and Ac-DEVD-CHO. Bcl-2△21 scavenged approximately 50% hydroxyl radical (HO•) formed, whereas Ac-DEVD-CHO scavenged approximately 20% of HO•. Conversely, reduced caspase-3-like activities were detected in the presence of Bcl-2△21 and Ac-DEVD-CHO, supporting the involvement of Bcl-2△21 and Ac-DEVD-CHO in increasing microspore viability by reducing oxidative stress and caspase-3-like activity. Our results indicate that Bcl-2△21 and Ac-DEVD-CHO protects cells from cell death following different pathways. Bcl-2△21 prevents cell damage by detoxifying HO• and suppressing caspase-3-like activity, while Ac-DEVD-CHO inhibits the cell death pathways by modulating caspase-like activity.
Zobrazit více v PubMed
Alexander M. P. (1969). Differential staining of aborted and non-aborted pollen. Stain Technol. 44 117–122. 10.3109/10520296909063335 PubMed DOI
Amstad P. A., Liu H., Ichimiya M., Berezesky I. K., Trump B. F., Buhimschi I. A., et al. (2001). BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production. Redox Rep. 6 351–362. 10.1179/135100001101536535 PubMed DOI
Cai Y. M., Yu J., Gallois P. (2014). Endoplasmic reticulum stress-induced PCD and caspase-like activities involved. Front. Plant Sci. 5:41 10.3389/fpls.2014.00041 PubMed DOI PMC
Castillo A. M., Sanchez-Diaz R. A., Valles M. P. (2015). Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage and candidate gene association. Front. Plant Sci. 6:402 10.3389/fpls.2015.00402 PubMed DOI PMC
Chang M., Huang Y. W., Aronstam R. S., Lee H. J. (2014). Cellular delivery of noncovalently-associated macromolecules by cell-penetrating peptides. Curr. Pharm. Biotechnol. 15 267–275. 10.2174/1389201015666140617095415 PubMed DOI
Chen C., Dickman M. B. (2004). Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot. 55 2617–2623. 10.1093/jxb/erh275 PubMed DOI
Choi C. J., Berges J. A. (2013). New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death Dis. 4:e490 10.1038/cddis.2013.21 PubMed DOI PMC
Chugh A., Amundsen E., Eudes F. (2009). Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep. 28 801–810. 10.1007/s00299-009-0692-4 PubMed DOI
Courtois-Moreau C. L., Pesquet E., Sjödin A., Muñiz L., Bollhöner B., Kaneda M., et al. (2009). A unique program for cell death in xylem fibers of Populus stem. Plant J. 58 260–274. 10.1111/j.1365-313X.2008.03777.x PubMed DOI
Deng R., Hua X., Li J., Chi W., Zhang Z., Lu F., et al. (2015). Oxidative stress markers induced by hyperosmolarity in primary human corneal epithelial cells. PLoS ONE 10:e0126561 10.1371/journal.pone.0126561 PubMed DOI PMC
Doukhanina E. V., Chen S., van der Zalm E., Godzik A., Reed J., Dickman M. B. (2006). Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J. Biol. Chem. 281 18793–18801. 10.1074/jbc.M511794200 PubMed DOI
Egea J., Rosa A. O., Cuadrado A., Garcia A. G., Lopez M. G. (2007). Nicotinic receptor activation by epibatidine induces heme oxygenase-1 and protects chromaffin cells against oxidative stress. J. Neurochem. 102 1842–1852. 10.1111/j.1471-4159.2007.04665.x PubMed DOI
Ferri A. M. R., Caswell K. L. (2011). Isolated microspore culture techniques and recent progress for haploid and doubled haploid production. Plant Cell Tissue Org. Cult. 104 301–309. 10.1007/s11240-010-9800-y DOI
Ferrie A. M. R. (2003). Microspore Culture of Brassica Species, 1st Edn. Berlin: Springer, 205–215.
Foreman J., Demidchik V., Bothwell J. H. F., Mylona P., Miedema H., Torres M. A., et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422 442–446. 10.1038/nature01485 PubMed DOI
Garrido D., Chibi F., Matilla A. (1995). Polyamines in the induction of Nicotiana tabacum pollen embryogenesis by starvation. J. Plant Physiol. 145 731–735. 10.1016/S0176-1617(11)81288-5 DOI
Gechev T. S., Van Breusegem F., Stone J. M., Denev I., Laloi C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28 1091–1101. 10.1002/bies.20493 PubMed DOI
Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 909–930. 10.1016/j.plaphy.2010.08.016 PubMed DOI
Gross A., McDonnell J. M., Korsmeyer S. J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13 1899–1911. 10.1101/gad.13.15.1899 PubMed DOI
Hatsugai N., Yamada K., Goto-Yamada S., Hara-Nishimura I. (2015). Vacuolar processing enzyme in plant programmed cell death. Front. Plant Sci. 6:234 10.3389/fpls.2015.00234 PubMed DOI PMC
Hauptmann P., Riel C., Kunz-Schughart L. A., Fröhlich K. U., Madeo F., Lehle L. (2006). Defects in N-glycosylation induce apoptosis in yeast. Mol. Microbiol. 59 765–778. 10.1111/j.1365-2958.2005.04981.x PubMed DOI
Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. (1993). Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75 241–251. 10.1016/0092-8674(93)80066-N PubMed DOI
Jang J. H., Surh Y. J. (2004). Bcl-2 attenuation of oxidative cell death is associated with up-regulation of gamma-glutamylcysteine ligase via constitutive NF-kappaB activation. J. Biol. Chem. 279 38779–38786. 10.1074/jbc.M406371200 PubMed DOI
Janzen E. G. (1971). Spin trapping. Acc. Chem. Res. 4 31–40. 10.1021/ar50037a005 DOI
Jaspers P., Kangasjärvi J. (2010). Reactive oxygen species in abiotic stress signalling. Physiol. Plant. 138 405–413. 10.1111/j.1399-3054.2009.01321.x PubMed DOI
Jiang A., Cheng Y., Li J., Zhang W. (2008). A zinc-dependent nuclear endonuclease is responsible for DNA laddering during salt-induced programmed cell death in root tip cells of rice. J. Plant Physiol. 165 1134–1141. 10.1016/j.jplph.2007.12.008 PubMed DOI
Kamarehei M., Yazdanparast R. (2014). Modulation of notch signaling pathway to prevent H2O2/menadione-induced SK-N-MC cells death by EUK134. Cell Mol. Neurobiol. 34 1037–1045. 10.1007/s10571-014-0079-0 PubMed DOI
Kinoshita T., Nishimura M., Hara-Nishimura I. (1995). Homologues of a vacuolar processing enzyme that are expressed in different organs in Arabidopsis thaliana. Plant Mol. Biol. 29 81–89. 10.1007/BF00019120 PubMed DOI
Kowaltowski A. J., Fiskum G. (2005). Redox mechanisms of cytoprotection by Bcl-2. Antioxid. Redox Signal. 7 508–514. 10.1089/ars.2005.7.508 PubMed DOI PMC
Kumlehn J., Serazetdinova L., Hensel G., Becker D., Loerz H. (2006). Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol. J. 4 251–261. 10.1111/j.1467-7652.2005.00178.x PubMed DOI
Li W., Dickman M. B. (2004). Abiotic stress induces apoptotic-like features in tobacco that is inhibited by expression of human Bcl-2. Biotechnol. Lett. 26 87–95. 10.1023/B:BILE.0000012896.76432.ba PubMed DOI
Lima N. B., Trindade F. G., da Cunha M., Oliveira A. E., Topping J., Lindsey K., et al. (2015). Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat. Plant Cell Environ. 38 718–728. 10.1111/pce.12432 PubMed DOI
Luanpitpong S., Chanvorachote P., Stehlik C., Tse W., Callery P. S., Wang L., et al. (2013). Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol. Biol. Cell 24 858–869. 10.1091/mbc.E12-10-0747 PubMed DOI PMC
Maraschin S. D. F., Lamers G. E., de Pater B. S., Spaink H. P., Wang M. (2003). 14-3-3 isoforms and pattern formation during barley microspore embryogenesis. J. Exp. Bot. 54 1033–1043. 10.1093/jxb/erg098 PubMed DOI
Maraschin Sde F, Gaussand G., Pulido A., Olmedilla A., Lamers G. E., Korthout H., et al. (2005). Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis. Planta 221 459–470. 10.1007/s00425-004-1460-x PubMed DOI
Pospíšil P. (2012). Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1817 218–231. 10.1016/j.bbabio.2011.05.017 PubMed DOI
Reape T. J., McCabe P. F. (2010). Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15 249–256. 10.1007/s10495-009-0447-2 PubMed DOI
Rentel M. C., Knight M. R. (2004). Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol. 135 1471–1479. 10.1104/pp.104.042663 PubMed DOI PMC
Renvoizé C., Biola A., Pallardy M., Bréard J. (1998). Apoptosis: identification of dying cells. Cell Biol. Toxicol. 14 111–120. 10.1023/A:1007429904664 PubMed DOI
Rodríguez-Serrano M., Bárány I., Prem D., Coronado M. J., Risueño M. C., Testillano P. S. (2012). NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. J. Exp. Bot. 63 2007–2024. 10.1093/jxb/err400 PubMed DOI PMC
SAS (2003). Release 9.2. Cary, NC: SAS Institute, Inc.
Sharma P., Jha A. B., Dubey R. S., Pessarakli M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. Artic. 2012:217037 10.1016/j.plaphy.2016.05.038 DOI
Sidhu P. K., Davies P. A. (2009). Regeneration of fertile green plants from oat isolated microspore culture. Plant Cell Rep. 28 571–577. 10.1007/s00299-009-0684-4 PubMed DOI
Sinha R. K., Eudes F. (2015). Dimethyl tyrosine conjugated peptide prevents oxidative damage and death of triticale and wheat microspores. Plant Cell Tissue Org. Cult. 122 227–237. 10.1007/s11240-015-0763-x DOI
Sinha R. K., Komenda J., Knoppova J., Sedlarova M., Pospisil P. (2012). Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Environ. 35 806–818. 10.1111/j.1365-3040.2011.02454.x PubMed DOI
Tran V., Weier D., Radchuk R., Thiel J., Radchuk V. (2014). Caspase-like activities accompany programmed cell death events in developing barley grains. PLoS ONE 10:e109426 10.1371/journal.pone.0109426 PubMed DOI PMC
Van Doorn W. G. (2011). Classes of programmed cell death in plants, compared to those in animals. J. Exp. Bot. 62 4749–4761. 10.1093/jxb/err196 PubMed DOI
Wang C. L., Xu G. H., Jiang X. T., Chen G., Wu J., Wu H. Q., et al. (2009). S-RNase triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube of Pyrus pyrifolia in vitro. Plant J. 57 220–229. 10.1111/j.1365-313X.2008.03681.x PubMed DOI
Wolter K. G., Hsu Y. T., Smith C., Nechushtan A., Xi X. G., Youle R. J. (1997). Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139 1281–1292. 10.1083/jcb.139.5.1281 PubMed DOI PMC
Xu Q., Zhang L. (2009). Plant caspase-like proteases in plant programmed cell death. Plant Signal. Behav. 4 902–904. 10.4161/psb.4.9.9531 PubMed DOI PMC
Youle R. J., Strasser A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9 47–59. 10.1038/nrm2308 PubMed DOI
Zadok J. C., Chang T. T., Konzak F. C. (1974). A decimal code for growth stages of cereals. Weed Res. 14 415–421. 10.1111/j.1365-3180.1974.tb01084.x DOI
Zheng J. H., Viacava F. A., Kriwacki R. W., Moldoveanu T. (2015). Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J. 283 2690–2700. 10.1111/febs.13527 PubMed DOI
Zheng M. Y., Weng Y., Sahibzada R., Konzak C. F. (2003). “Isolated microspore culture in maize (Zea mays L.) production of doubled-haploids via induced androgenesis,” in Doubled Haploid Production in Crop Plants, eds Maluszynski M., K. Kasha J., Forster B. P., Szarejko I. (Berlin: Springer; ).
Żur I., Dubas E., Krzewska M., Janowiak F., Hura K., Ewa P., et al. (2014). Antioxidant activity and ROS tolerance in triticale ( × Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell Tissue Org. Cult. 119 79–94. 10.1007/s11240-014-0515-3 DOI