Desiccation as a Post-maturation Treatment Helps Complete Maturation of Norway Spruce Somatic Embryos: Carbohydrates, Phytohormones and Proteomic Status
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35237290
PubMed Central
PMC8882965
DOI
10.3389/fpls.2022.823617
Knihovny.cz E-zdroje
- Klíčová slova
- Picea abies (L.) Karst, desiccation tolerance, phytohormones, proteomics, raffinose family oligosaccharides, somatic embryogenesis,
- Publikační typ
- časopisecké články MeSH
Exposure of Norway spruce (Picea abies) somatic embryos and those of many other conifers to post-maturation desiccation treatment significantly improves their germination. An integration analysis was conducted to understand the underlying processes induced during the desiccation phase at the molecular level. Carbohydrate, protein and phytohormone assays associated with histological and proteomic studies were performed for the evaluation of markers and actors in this phase. Multivariate comparison of mature somatic embryos with mature desiccated somatic embryos and/or zygotic embryos provided new insights into the processes involved during the desiccation step of somatic embryogenesis. Desiccated embryos were characterized by reduced levels of starch and soluble carbohydrates but elevated levels of raffinose family oligosaccharides. Desiccation treatment decreased the content of abscisic acid and its derivatives but increased total auxins and cytokinins. The content of phytohormones in dry zygotic embryos was lower than in somatic embryos, but their profile was mostly analogous, apart from differences in cytokinin profiles. The biological processes "Acquisition of desiccation tolerance", "Response to stimulus", "Response to stress" and "Stored energy" were activated in both the desiccated somatic embryos and zygotic embryos when compared to the proteome of mature somatic embryos before desiccation. Based on the specific biochemical changes of important constituents (abscisic acid, raffinose, stachyose, LEA proteins and cruciferins) induced by the desiccation treatment and observed similarities between somatic and zygotic P. abies embryos, we concluded that the somatic embryos approximated to a state of desiccation tolerance. This physiological change could be responsible for the reorientation of Norway spruce somatic embryos toward a stage suitable for germination.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
INRAE ONF BioForA Orléans France
Institute of Experimental Botany of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Amara I., Zaidi I., Masmoudi K., Ludevid M., Pagès M., Goday A., et al. (2014). Insights into late embryogenesis abundant (LEA) proteins in plants: from structure to the functions. Am. J. Plant Sci. 5 3440–3455. 10.4236/ajps.2014.522360 DOI
Angelovici R., Galili G., Fernie A. R., Fait A. (2010). Seed desiccation: a bridge between maturation and germination. Trends Plant Sci. 15 211–218. 10.1016/j.tplants.2010.01.003 PubMed DOI
Attree S. M., Fowke L. C. (1993). Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult. 35 1–35. 10.1007/bf00043936 DOI
Attree S. M., Moore D., Sawhney V. K., Fowke L. C. (1991). Enhanced maturation and desiccation tolerance of white spruce [Picea glauca (Moench) Voss] somatic embryos: effects of a non-plasmolysing water stress and abscisic acid. Ann. Bot. 68 519–525.
Attree S. M., Pomeroy M. K., Fowke L. C. (1995). Development of white spruce (Picea glauca (Moench.) Voss) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J. Exp. Bot. 46 433–439. 10.1093/jxb/46.4.433 DOI
Balbuena T. S., Jo L., Pieruzzi F. P., Dias L. L. C., Silveira V., Santa-Catarina C., et al. (2011). Differential proteome analysis of mature and germinated embryos of Araucaria angustifolia. Phytochemistry 72 302–311. 10.1016/j.phytochem.2010.12.007 PubMed DOI
Balbuena T. S., Silveira V., Junqueira M., Dias L. L. C., Santa-Catarina C., Shevchenko A., et al. (2009). Changes in the 2-DE protein profile during zygotic embryogenesis in the Brazilian Pine (Araucaria angustifolia). J. Proteomics 72 337–352. 10.1016/j.jprot.2009.01.011 PubMed DOI
Bomal C., Le V. Q., Tremblay F. M. (2002). Induction of tolerance to fast desiccation in black spruce (Picea mariana) somatic embryos: relationship between partial water loss, sugars, and dehydrins. Physiol. Plant. 115 523–530. 10.1034/j.1399-3054.2002.1150406.x PubMed DOI
Brunoni F., Collani S., Casanova-Sáez R., Šimura J., Karady M., Schmid M., et al. (2020). Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytol. 226 1753–1765. 10.1111/nph.16463 PubMed DOI
Brunoni F., Ljung K., Bellini C. (2019). Control of root meristem establishment in conifers. Physiol. Plant. 165 81–89. 10.1111/ppl.12783 PubMed DOI
Brzobohatý B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J., et al. (1993). Release of active cytokinin by a β-glucosidase localized to the maize root meristem. Science 262 1051–1054. 10.1126/science.8235622 PubMed DOI
Businge E., Bygdell J., Wingsle G., Moritz T., Egertsdotter U. (2013). The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos. Physiol. Plant. 149 273–285. 10.1111/ppl.12039 PubMed DOI
Carpenter C. V., Koester M. K., Gupta P. K. (2000). Method for Determining Maturity of Conifer Somatic Embryos. USA Patent Application US6117678A. Mountain View, CA: Google.
Carrier D. J., Kendall E. J., Bock C. A., Cunningham J. E., Dunstan D. I. (1999). Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. J. Exp. Bot. 50 1359–1364. 10.1093/jexbot/50.337.1359 DOI
Chatelain E., Hundertmark M., Leprince O., Le Gall S., Satour P., Deligny-Penninck S., et al. (2012). Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant Cell Environ. 35 1440–1455. 10.1111/j.1365-3040.2012.02501.x PubMed DOI
Chiwocha S., von Aderkas P. (2002). Endogenous levels of free and conjugated forms of auxin, cytokinins and abscisic acid during seed development in Douglas fir. Plant Growth Regul. 36 191–200. 10.1023/A:1016522422983 DOI
Crowe J. H., Hoekstra F. A., Crowe L. M. (1992). Anhydrobiosis. Annu. Rev. Physiol. 54 579–599. 10.1146/annurev.ph.54.030192.003051 PubMed DOI
Djilianov D. L., Dobrev P. I., Moyankova D. P., Vankova R., Georgieva D. T., Gajdosova S., et al. (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 32 564–574. 10.1007/s00344-013-9323-y DOI
Downie B., Bewley J. D. (2000). Soluble sugar content of white spruce (Picea glauca) seeds during and after germination. Physiol. Plant. 110 1–12. 10.1034/j.1399-3054.2000.110101.x PubMed DOI
Dronne S., Label P., Lelu M. A. (1997). Desiccation decreases abscisic acid content in hybrid larch (Larix x leptoeuropaea) somatic embryos. Physiol. Plant. 99 433–438. 10.1034/j.1399-3054.1997.990311.x PubMed DOI
Eliášová K., Vondráková Z., Gemperlová L., Nedìěla V., Runštuk J., Fischerová L., et al. (2018). The response of Picea abies somatic embryos to UV-B radiation depends on the phase of maturation. Front. Plant Sci. 9:1736. 10.3389/fpls.2018.01736 PubMed DOI PMC
Eliášová K., Vondráková Z., Malbeck J., Trávníčková A., Pešek B., Vágner M., et al. (2017). Histological and biochemical response of Norway spruce somatic embryos to UV-B irradiation. Trees 31 1279–1293. 10.1007/s00468-017-1547-1 DOI
Fait A., Angelovici R., Less H., Ohad I., Urbanczyk-Wochniak E., Fernie A. R., et al. (2006). Arabidopsis seed development and germination Is associated with temporally distinct metabolic switches. Plant Physiol. 142 839–854. 10.1104/pp.106.086694 PubMed DOI PMC
Fehér A., Pasternak T. P., Dudits D. (2003). Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult. 74 201–228. 10.1023/A:1024033216561 DOI
Filonova L. H., Bozhkov P. V., Brukhin V. B., Daniel G., Zhivotovsky B., von Arnold S. (2000). Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J. Cell Sci. 113 4399–4411. PubMed
Find J. I. (1997). Changes in endogenous ABA levels in developing somatic embryos of Norway spruce (Picea abies (L.) Karst.) in relation to maturation medium, desiccation and germination. Plant Sci. 128 75–83. 10.1016/S0168-9452(97)00141-6 DOI
Finnie C., Bak-Jensen K. S., Laugesen S., Roepstorff P., Svensson B. (2006). Differential appearance of isoforms and cultivar variation in protein temporal profiles revealed in the maturing barley grain proteome. Plant Sci. 170 808–821. 10.1016/j.plantsci.2005.11.012 DOI
Flinn B. S., Roberts D. R., Newton C. H., Cyr D. R., Webster F. B., Taylor I. E. P. (1993). Storage protein gene expression in zygotic and somatic embryos of interior spruce. Physiol. Plant. 89 719–730. 10.1111/j.1399-3054.1993.tb05278.x DOI
Gösslová M., Svobodová H., Lipavská H., Albrechtová J., Vreugdenhil D. (2001). Comparing carbohydrate status during Norway spruce seed development and somatic embryo formation. In Vitro Cell. Dev. Biol. 37 24–28.
Grigová M., Kubeš M., Drážná N., Řezanka T., Lipavská H. (2007). Storage lipid dynamics in somatic embryos of Norway spruce (Picea abies): histochemical and quantitative analyses. Tree Physiol. 27 1533–1540. 10.1093/treephys/27.11.1533 PubMed DOI
Gupta P., Durzan D. (1986). Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies (Norway spruce). In Vitro Cell. Dev. Biol. 22 685–688. 10.1007/bf02623484 DOI
Gutmann M., Charpentier J. P., Doumas P., Jay-Allemand C. (1996). Histological investigation of walnut cotyledon fragments for a better understanding of in vitro adventitious root initiation. Plant Cell Rep. 15 345–349. 10.1007/BF00232369 PubMed DOI
Hakman I. (1993). Embryology in Norway spruce (Picea abies). An analysis of the composition of seed storage proteins and deposition of storage reserves during seed development and somatic embryogenesis. Physiol. Plant. 87 148–159. 10.1111/j.1399-3054.1993.tb00137.x DOI
Hakman I., Stabel P., Engström P., Eriksson T. (1990). Storage protein accumulation during zygotic and somatic embryo development in Picea abies (Norway spruce). Physiol. Plant. 80 441–445. 10.1111/j.1399-3054.1990.tb00065.x DOI
Hazubska-Przybyl T., Wawrzyniak M., Obarska A., Bojarczuk K. (2015). Effect of partial drying and desiccation on somatic seedling quality in Norway and Serbian spruce. Acta Physiol. Plant. 37:1735. 10.1007/s11738-014-1735-1 DOI
Hoekstra F. A., Golovina E. A., Tetteroo F. A. A., Wolkers W. F. (2001). Induction of desiccation tolerance in plant somatic embryos: how exclusive is the protective role of sugars? Cryobiology 43 140–150. 10.1006/cryo.2001.2358 PubMed DOI
Huang H., Møller I. M., Song S.-Q. (2012). Proteomics of desiccation tolerance during development and germination of maize embryos. J. Proteomics 75 1247–1262. 10.1016/j.jprot.2011.10.036 PubMed DOI
Hudec L., Konrádová H., Hašková A., Lipavská H. (2016). Norway spruce embryogenesis: changes in carbohydrate profile, structural development and response to polyethylene glycol. Tree Physiol. 36 548–561. 10.1093/treephys/tpw016 PubMed DOI PMC
Iraqi D., Tremblay F. M. (2001). Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J. Exp. Bot. 52 2301–2311. 10.1093/jexbot/52.365.2301 PubMed DOI
Jing D. L., Zhang J. W., Xia Y., Kong L. S., OuYang F. Q., Zhang S. G., et al. (2017). Proteomic analysis of stress-related proteins and metabolic pathways in Picea asperata somatic embryos during partial desiccation. Plant Biotechnol. J. 15 27–38. 10.1111/pbi.12588 PubMed DOI PMC
Jourdain I., Lelu M. A., Label P. (1997). Hormonal changes during growth of somatic embryogenic masses in hybrid larch. Plant Physiol. Biochem. 35 741–749.
Joy R. W., IV, Yeung E. C., Kong L., Thorpe T. A. (1991). Development of white spruce somatic embryos: I. Storage product deposition. In Vitro Cell. Dev. Biol. Plant 27 32–41. 10.1007/BF02632059 DOI
Käll L., Canterbury J., Weston J., Noble W. S., MacCoss M. J. (2007). Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4 923–925. 10.1038/nmeth1113 PubMed DOI
Keller F., Pharr D. M. (1996). “Metabolism of carbohydrates in sinks and sources: galactosyl-sucrose oligosaccharides,” in Photoassimilate Distribution in Plants and Crops: Source–Sink Relationships, eds Zamski E., Schaffer A. A. (New York, NY: Marcel Dekker; ), 157–183. 10.1071/ar9860157 DOI
Kermode A. R., Dumbroff E. B., Bewley J. D. (1989). The role of maturation drying in the transition from seed development to germination. 7. Effects of partial and complete desiccation on abscisic acid levels and sensitivity in Ricinus communis L. Seeds. J. Exp. Bot. 40 303–313. 10.1093/jxb/40.2.303 PubMed DOI
Keunen E., Peshev D., Vangronsveld J., van den Ende W., Cuypers A. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 36 1242–1255. 10.1111/pce.12061 PubMed DOI
Klimaszewska K., Hargreaves C., Lelu-Walter M. A., Trontin J. F. (2016). “Advances in conifer somatic embryogenesis since year 2000,” in In vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, Vol. 1359 eds Germanà M. A., Lambardi M. (New York, NY: Springer Science and Business Media; ), 131–166. 10.1007/978-1-4939-3061-6_7 PubMed DOI
Klimaszewska K., Morency F., Jones-Overton C., Cooke J. (2004). Accumulation pattern and identification of seed storage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments. Physiol. Plant. 121 682–690. 10.1111/j.1399-3054.2004.00370.x DOI
Kong L., Yeung E. C. (1992). Development of white spruce somatic embryos: II. Continual shoot meristem development during germination. In Vitro Cell. Dev. Biol. Plant 28 125–131. 10.1007/BF02823060 DOI
Kong L., Attree S. M., Evans D. E., Binarova P., Yeung E. C., Fowke L. C. (1999). “Somatic embryogenesis in white spruce: studies of embryo development and cell biology,” in Somatic Embryogenesis in Woody Plants. Forestry Sciences, eds Jain M., Gupta P. K., Newton R. J. (Dordrecht: Springer; ), 1–28. 10.1007/978-94-017-3032-7_1 DOI
Konradova H., Grigova M., Lipavska H. (2003). Cold-induced accumulation of raffinose family oligosaccharides in somatic embryos of Norway spruce (Picea abies). In Vitro Cell. Dev. Biol. Plant 39 425–427. 10.1079/Ivp2003426 DOI
Koster K. L. (1991). Glass formation and desiccation tolerance in seeds. Plant Physiol. 96 302–304. 10.1104/pp.96.1.302 PubMed DOI PMC
Koster K. L., Bryant G. (2005). “Dehydration in model membranes and protoplasts: contrasting effects at low, intermediate and high hydrations,” in Cold Hardiness in Plants: Molecular Genetics, Cell Biology and Physiology, eds Chen T. H. H., Uemura M., Fujikawa S. (Wallingford: CABI Publishing; ), 219–234. 10.1079/9780851990590.0219 DOI
Koster K. L., Leopold A. C. (1988). Sugars and desiccation tolerance in seeds. Plant Physiol. 88 829–832. 10.1104/pp.88.3.829 PubMed DOI PMC
Kubes M., Drazna N., Konradova H., Lipavska H. (2014). Robust carbohydrate dynamics based on sucrose resynthesis in developing Norway spruce somatic embryos at variable sugar supply. In Vitro Cell. Dev. Biol. Plant 50 45–57. 10.1007/s11627-013-9589-6 DOI
Lara-Chavez A., Egertsdotter U., Flinn B. S. (2012). Comparison of gene expression markers during zygotic and somatic embryogenesis in pine. In Vitro Cell. Dev. Biol. Plant 48 341–354. 10.1007/s11627-012-9440-5 DOI
Lê S., Josse J., Husson F. (2008). FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25 1–18. 10.18637/jss.v025.i01 DOI
Leal I., Misra S., Attree S. M., Fowke L. C. (1995). Effect of abscisic acid, osmoticum and desiccation on 11s storage protein gene expression in somatic embryos of white spruce. Plant Sci. 106 121–128. 10.1016/0168-9452(95)04081-5 DOI
Lelu M. A., Label P. (1994). Changes in the levels of abscisic acid and its glucose ester conjugate during maturation of hybrid larch (Larix × leptoeuropaea) somatic embryos, in relation to germination and plantlet recovery. Physiol. Plant. 92 53–60. 10.1111/j.1399-3054.1994.tb06654.x DOI
Lelu M. A., Klimaszewska K., Pflaum G., Bastien C. (1995). Effect of maturation duration on desiccation tolerance in hybrid larch (Larix × leptoeuropaea dengler) somatic embryos. In Vitro Cell. Dev. Biol. Plant 31 15–20. 10.1007/BF02632220 DOI
Lelu-Walter M. A., Bernier-Cardou M., Klimaszewska K. (2008). Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tissue Organ Cult. 92 31–45. 10.1007/s11240-007-9300-x DOI
Leprince O., Buitink J. (2010). Desiccation tolerance: from genomics to the field. Plant Science 179 554–564. 10.1016/j.plantsci.2010.02.011 DOI
Leprince O., Buitink J. (2015). Introduction to desiccation biology: from old borders to new frontiers. Planta 242 369–378. 10.1007/s00425-015-2357-6 PubMed DOI
Leprince O., Pellizzaro A., Berriri S., Buitink J. (2017). Late seed maturation: drying without dying. J. Exp. Bot. 68 827–841. 10.1093/jxb/erw363 PubMed DOI
Leprince O., Vanderwerf A., Deltour R., Lambers H. (1992). Respiratory pathways in germinating maize radicles correlated with desiccation tolerance and soluble sugars. Physiol. Plant. 85 581–588. 10.1111/j.1399-3054.1992.tb04758.x DOI
Letham D. S., Palni L. M. S. (1983). The biosynthesis and metabolism of cytokinins. Annu. Rev. Plant Physiol. 34 163–197. 10.1146/annurev.pp.34.060183.001115 DOI
Li Q., Wang B. C., Xu Y., Zhu Y. X. (2007). Systematic studies of 12S seed storage protein accumulation and degradation patterns during Arabidopsis seed maturation and early seedling germination stages. J. Biochem. Mol. Biol. 40 373–381. 10.5483/bmbrep.2007.40.3.373 PubMed DOI
Liao Y., Juan I. P. (2015). Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying. J. For. Res. 20 114–124. 10.1007/s10310-014-0445-2 DOI
Lin T.-P., Huang N.-H. (1994). The relationship between carbohydrate composition of some tree seeds and their longevity. J. Exp. Bot. 45 1289–1294. 10.1093/jxb/45.9.1289 PubMed DOI
Lipavská H., Konrádová H. (2004). Invited review: somatic embryogenesis in conifers: The role of carbohydrate metabolism. In Vitro Cell. Dev. Biol. Plant 40 23–30. 10.1079/ivp2003482 DOI
Lipavska H., Svobodova H., Albrechtova J., Kumstyrova L., Vagner M., Vondrakova Z. (2000). Carbohydrate status during somatic embryo maturation in Norway spruce. In Vitro Cell. Dev. Biol. Plant 36 260–267. 10.1007/s11627-000-0048-9 DOI
Lippert D., Yuen M., Bohlmann J. (2009). Spruce proteome DB: a resource for conifer proteomics research. Tree Genet. Genomes 5 723–727. 10.1007/s11295-009-0220-2 DOI
Liu Y., Müller K., El-Kassaby Y. A., Kermode A. R. (2015). Changes in hormone flux and signaling in white spruce (Picea glauca) seeds during the transition from dormancy to germination in response to temperature cues. BMC Plant Biol. 15:292. 10.1186/s12870-015-0638-7 PubMed DOI PMC
Marques A., Nijveen H., Somi C., Ligterink W., Hilhorst H. (2019). Induction of desiccation tolerance in desiccation sensitive Citrus limon seeds. J. Integr. Plant Biol. 61 624–638. 10.1111/jipb.12788 PubMed DOI PMC
Maruyama T. E., Hosoi Y. (2012). Post-maturation treatment improves and synchronizes somatic embryo germination of three species of Japanese pines. Plant Cell Tissue Organ Cult. 110 45–52. 10.1007/s11240-012-0128-7 DOI
Morel A., Trontin J.-F., Corbineau F., Lomenech A.-M., Beaufour M., Reymond I., et al. (2014). Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses. Planta 240 1075–1095. 10.1007/s00425-014-2125-z PubMed DOI
Nagmani R., Diner A., Garton S., Zipf A. (1995). “Anatomical comparison of somatic and zygotic embryogeny in conifers,” in Somatic Embryogenesis in Woody Plants, eds Jain S., Gupta P., Newton R. (Dordrecht: Kluwer Academic; ), 23–48.
Ntuli T. M., Finch-Savage W. E., Berjak P., Pammenter N. W. (2011). Increased drying rate lowers the critical water content for survival in embryonic axes of English oak (Quercus robur L.) Seeds F. J. Integr. Plant Biol. 53 270–280. 10.1111/j.1744-7909.2010.01016.x PubMed DOI
Oliver M. J., O’Mahony P., Wood A. J. (1998). “To dryness and beyond” – Preparation for the dried state and rehydration in vegetative desiccation-tolerant plants. Plant Growth Regul. 24 193–201. 10.1023/A:1005863015130 DOI
Pammenter N. W., Berjak P. (1999). A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci. Res. 9 13–37. 10.1017/S0960258599000033 DOI
Pérez H., Hill L. M., Walters C. (2020). “A protective role for accumulated dry matter reserves in seeds during desiccation: implications for conservation,” in Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery, eds Chong P., Newman D., Steinmacher D. (Cham: Springer; ), 133–142.
Personat J.-M., Tejedor-Cano J., Prieto-Dapena P., Almoguera C., Jordano J. (2014). Co-overexpression of two heat shock factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress. BMC Plant Biol. 14:56. 10.1186/1471-2229-14-56 PubMed DOI PMC
Peterbauer T., Richter A. (2001). Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci. Res. 11 185–197. 10.1079/SSR200175 DOI
Pokorná E., Hluska T., Galuszka P., Hallmark H. T., Dobrev P. I., Záveská Drábková L., et al. (2021). Cytokinin N-glucosides: occurrence, metabolism and biological activities in plants. Biomolecules 11:24. 10.3390/biom11010024 PubMed DOI PMC
Pond S. E., von Aderkas P., Bonga J. M. (2002). Improving tolerance of somatic embryos of Picea glauca to flash desiccation with a cold treatment (desiccation after cold acclimation). In Vitro Cell. Dev. Biol. Plant 38 334–341. 10.1079/Ivp2002304 DOI
Pullman G. S., Bucalo K. (2014). Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development. New For. 45 353–377. 10.1007/s11056-014-9407-y DOI
Pullman G. S., Buchanan M. (2008). Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiol. 28 985–996. 10.1093/treephys/28.7.985 PubMed DOI
Quesnelle P. E., Emery R. J. N. (2007). cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can. J. Bot. 85 91–103. 10.1139/b06-149 DOI
Righetti K., Vu J. L., Pelletier S., Vu B. L., Glaab E., Lalanne D., et al. (2015). Inference of longevity-related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways. Plant Cell 27 2692–2708. 10.1105/tpc.15.00632 PubMed DOI PMC
Roberts D. R. (1991). Abscisic acid and mannitol promote early development, maturation and storage protein accumulation in somatic embryos of interior spruce. Physiol. Plant. 83 247–254. 10.1111/j.1399-3054.1991.tb02149.x DOI
Roberts D. R., Sutton B. C. S., Flinn B. S. (1990b). Synchronous and high-frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can. J. Bot. 68 1086–1090. 10.1139/b90-136 DOI
Roberts D. R., Flinn B. S., Webb D. T., Webster F. B., Sutton B. C. S. (1990a). Abscisic acid and indole-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiol. Plant. 78 355–360. 10.1111/j.1399-3054.1990.tb09048.x DOI
Roberts D. R., Lazaroff W. R., Webster F. B. (1991). Interaction between maturation and high relative humidity treatments and their effects on germination of sitka spruce somatic embryos. J. Plant Physiol. 138 1–6. 10.1016/S0176-1617(11)80720-0 DOI
Sass J. E. (1958). Botanical Microtechnique. Ames, IA: The Iowa State University Press.
Sauter J. J., van Cleve B. (1991). Biochemical and ultrastructural results during starch-sugar-conversion in ray parenchyma cells of Populus during cold adaptation. J. Plant Physiol. 139 19–26. 10.1016/S0176-1617(11)80158-6 DOI
Sghaier B., Kriaa W., Bahloul M., Novo J. V. J., Drira N. (2009). Effect of ABA, arginine and sucrose on protein content of date palm somatic embryos. Sci. Hortic. 120 379–385. 10.1016/j.scienta.2008.11.035 DOI
Shi J., Zhen Y., Zheng R.-H. (2010). Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook. J. Exp. Bot. 61 2367–2381. 10.1093/jxb/erq066 PubMed DOI PMC
Silveira V., Balbuena T. S., Santa-Catarina C., Floh E. I. S., Guerra M. P., Handro W. (2004). Biochemical changes during seed development in Pinus taeda L. Plant Growth Regul. 44 147–156. 10.1007/s10725-004-2601-8 DOI
Silveira V., Santa-Catarina C., Balbuena T. S., Moraes F. M. S., Ricart C. A. O., Sousa M. V., et al. (2008). Endogenous abscisic acid and protein contents during seed development of Araucaria angustifolia. Biol. Plant. 52 101–104. 10.1007/s10535-008-0018-3 DOI
Stasolla C., Yeung E. (2003). Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult. 74 15–35.
Stasolla C., Belmonte M. F., Van Zyl L., Craig D. L., Liu W., Yeung E. C., et al. (2004a). The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. J. Exp. Bot. 55 695–709. 10.1093/jxb/erh074 PubMed DOI
Stasolla C., Bozhkov P. V., Chu T. M., Van Zyl L., Egertsdotter U., Suarez M. F., et al. (2004b). Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol. 24 1073–1085. 10.1093/treephys/24.10.1073 PubMed DOI
Stasolla C., van Zyl L., Egertsdotter U., Craig D., Liu W. B., Sederoff R. R. (2003). The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol. 131 49–60. 10.1104/pp.015214 PubMed DOI PMC
RStudio (2021). Integrated Development Environment for R. Boston, MA: RStudio, PBC.
Tereso S., Zoglauer K., Milhinhos A., Miguel C., Oliveira M. M. (2007). Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study. Tree Physiol. 27 661–669. 10.1093/treephys/27.5.661 PubMed DOI
Teyssier C., Grondin C., Bonhomme L., Lomenech A. M., Vallance M., Morabito D., et al. (2011). Increased gelling agent concentration promotes somatic embryo maturation in hybrid larch (Larix × eurolepsis): a 2-DE proteomic analysis. Physiol. Plant. 141 152–165. 10.1111/j.1399-3054.2010.01423.x PubMed DOI
Teyssier C., Maury S., Beaufour M., Grondin C., Delaunay A., Le Metté C., et al. (2014). In search of markers for somatic embryo maturation in hybrid larch (Larix × eurolepis): global DNA methylation and proteomic analyses. Physiol. Plant. 150 271–291. 10.1111/ppl.12081 PubMed DOI
Vágner M., Vondráková Z., Strnadová Z., Eder J., Macháčková I. (1998). Endogenous levels of plant growth hormones during early stages of somatic embryogenesis of Picea abies. Adv. Hortic. Sci. 12 11–18.
Vales T., Feng X., Ge L., Xu N., Cairney J., Pullman G. S., et al. (2007). Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep. 26 133–143. 10.1007/s00299-006-0221-7 PubMed DOI
Välimäki S., Paavilainen L., Tikkinen M., Salonen F., Varis S., Aronen T. (2020). Production of Norway spruce embryos in a temporary immersion system (TIS). In Vitro Cell. Dev. Biol. Plant 56 430–439. 10.1007/s11627-020-10068-x DOI
Vestman D., Larsson E., Uddenberg D., Cairney J., Clapham D., Sundberg E., et al. (2011). Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet. Genomes 7 347–362.
von Aderkas P., Lelu M. A., Label P. (2001). Plant growth regulator levels during maturation of larch somatic embryos. Plant Physiol. Biochem. 39 495–502.
von Aderkas P., Rohr R., Sundberg B., Gutmann M., Dumont-BéBoux N., Lelu M. A. (2002). Abscisic acid and its influence on development of the embryonal root cap, storage product and secondary metabolite accumulation in hybrid larch somatic embryos. Plant Cell Tissue Organ Cult. 69 111–120.
von Arnold S., Hakman I. (1988). Regulation of somatic embryo development in Picea abies by abscisic acid (ABA). J. Plant Physiol. 132 164–169. 10.1016/S0176-1617(88)80155-X DOI
von Arnold S., Clapham D., Abrahamsson M. (2019). Embryology in conifers. Adv. Bot. Res. 89 157–184. 10.1016/bs.abr.2018.11.005 DOI
von Arnold S., Clapham D., Egertsdotter U., Mo L. H. (1996). Somatic embryogenesis in conifers - A case study of induction and development of somatic embryos in Picea abies. Plant Growth Regul. 20 3–9.
Vondrakova Z., Dobrev P. I., Pesek B., Fischerova L., Vagner M., Motyka V. (2018). Profiles of endogenous phytohormones over the course of Norway spruce somatic embryogenesis. Front. Plant Sci. 9:1283. 10.3389/fpls.2018.01283 PubMed DOI PMC
Vondráková Z., Eliášová K., Vágner M., Martincová O., Cvikrová M. (2015). Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos. Plant Growth Regul. 75 405–414. 10.1007/s10725-014-0001-2 DOI
Vondráková Z., Trávníčková A., Malbeck J., Cvikrová M. (2013). “The effect of different desiccation treatments on polyamine metabolism of spruce somatic embryos,” in Proceedings of the 13th Conference of the Experimental Plant Biology, Košice, 160.
Wang W.-Q., Ye J.-Q., Rogowska-Wrzesinska A., Wojdyla K. I., Jensen O. N., Møller I. M., et al. (2014). Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance. J. Proteome Res. 13 606–626. 10.1021/pr4007574 PubMed DOI
Xiao L., Koster K. L. (2001). Desiccation tolerance of protoplasts isolated from pea embryos. J. Exp. Bot. 52 2105–2114. 10.1093/jexbot/52.364.2105 PubMed DOI
Yathisha N. S., Barbara P., Gügi B., Yogendra K., Jogaiah S., Azeddine D., et al. (2020). Vegetative desiccation tolerance in Eragrostiella brachyphylla: biochemical and physiological responses. Heliyon 6:e04948. 10.1016/j.heliyon.2020.e04948 PubMed DOI PMC
Záveská-Drábková L., Honys D., Motyka V. (2021). Evolutionary diversification of cytokinin-specific glucosyltransferases in angiosperms and enigma of missing cis-zeatin O-glucosyltransferase gene in Brassicaceae. Sci. Rep. 11:7885. 10.1038/s41598-021-87047-8 PubMed DOI PMC
Zhou X., Zheng R., Liu G., Xu Y., Zhou Y., Laux T., et al. (2017). Desiccation treatment and endogenous IAA levels are key factors influencing high frequency somatic embryogenesis in Cunninghamia lanceolata (Lamb.) hook. Front. Plant Sci. 8:2054. 10.3389/fpls.2017.02054 PubMed DOI PMC
The humidity level matters during the desiccation of Norway spruce somatic embryos