Norway spruce embryogenesis: changes in carbohydrate profile, structural development and response to polyethylene glycol
Jazyk angličtina Země Kanada Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27052433
PubMed Central
PMC4886291
DOI
10.1093/treephys/tpw016
PII: tpw016
Knihovny.cz E-zdroje
- Klíčová slova
- Picea abies, anatomy, desiccation, fatty acid composition, lipids, maturation, osmotic stress, pinitol, raffinose family oligosaccharides, saccharides, somatic embryogenesis,
- MeSH
- klíčení MeSH
- metabolismus sacharidů * MeSH
- osmotický tlak MeSH
- polyethylenglykoly farmakologie MeSH
- povrchově aktivní látky farmakologie MeSH
- semena rostlinná účinky léků růst a vývoj metabolismus MeSH
- smrk * účinky léků růst a vývoj metabolismus MeSH
- somatická embryogeneze rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polyethylenglykoly MeSH
- povrchově aktivní látky MeSH
Two unrelated, geographically distinct, highly embryogenic lines of Norway spruce (Picea abies (L.) Karst.) were analysed to identify metabolic traits characteristic for lines with good yields of high-quality embryos. The results were compared with corresponding characteristics of a poorly productive line (low embryo yield, scarce high-quality embryos). The following carbohydrate profiles and spectra during maturation, desiccation and germination were identified as promising characteristics for line evaluation: a gradual decrease in total soluble carbohydrates with an increasing sucrose : hexose ratio during maturation; accumulation of raffinose family oligosaccharides resulting from desiccation and their rapid degradation at the start of germination; and a decrease in sucrose, increase in hexoses and the appearance of pinitol with proceeding germination. We propose that any deviation from this profile in an embryonic line is a symptom of inferior somatic embryo development. We further propose that a fatty acid spectrum dominated by linoleic acid (18 : 2) was a common feature of healthy spruce somatic embryos, although it was quite different from zygotic embryos mainly containing oleic acid (18 : 1). The responses of the lines to osmotic stress were evaluated based on comparison of control (without osmoticum) and polyethylene glycol (PEG)-exposed (PEG 4000) variants. Although genetically distinct, both highly embryogenic lines responded in a very similar manner, with the only difference being sensitivity to high concentrations of PEG. At an optimum PEG concentration (3.75 and 5%), which was line specific, negative effects of PEG on embryo germination were compensated for by a higher maturation efficiency so that the application of PEG at an appropriate concentration improved the yield of healthy germinants per gram of initial embryonal mass and accelerated the process. Polyethylene glycol application, however, resulted in no improvement of the poorly productive line.
Zobrazit více v PubMed
Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss Org Cult 35:1–35. doi:10.1007/BF00043936 DOI
Attree SM, Pomeroy MK, Fowke LC (1992) Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187:395–404. doi:10.1007/BF00195664 PubMed DOI
Attree SM, Pomeroy MK, Fowke LC (1995) Development of white spruce (Picea glauca (Moench.) Voss) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J Exp Bot 46:433–439. doi:10.1093/jxb/46.4.433 DOI
Belmonte ME, Macey J, Yeung EC, Stasolla C (2005) The effect of osmoticum on ascorbate and glutathione metabolism during white spruce (Picea glauca) somatic embryo development. Plant Physiol Biochem 43:337–346. doi:10.1016/j.plaphy.2005.01.022 PubMed DOI
Bomal P, Le VQ, Tremblay FM (2002) Induction of tolerance to fast desiccation in black spruce (Picea mariana) somatic embryos: relationship between partial water loss, sugars, and dehydrins. Physiol Plant 115:523–530. doi:10.1034/j.1399-3054.2002.1150406.x PubMed DOI
Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tiss Org Cult 100:241–254. doi:10.1007/s11240-009-9647-2 DOI
Bozhkov PV, von Arnold S (1998) Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiol Plant 104:211–224. doi:10.1034/j.1399-3054.1998.1040209.x DOI
Businge E, Egertsdotter U (2014) A possible biochemical basis for fructose-induced inhibition of embryo development in Norway spruce (Picea abies). Tree Physiol 34:657–669. doi:10.1093/treephys/tpu053 PubMed DOI
Businge E, Bygdell J, Wingsle G, Moritz T, Egertsdotter U (2013) The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos. Physiol Plant 149:273–285. doi:10.1111/ppl.12039 PubMed DOI
Dahmer ML, Collins GB, Hildebrand DF (1991) Lipid content and composition of soybean somatic embryos. Crop Sci 31:741–746. doi:10.2135/cropsci1991.0011183X003100030041x DOI
dos Santos TB, Budzinski IGF, Marur CJ, Petkowicz CLO, Pereira LFP, Vieira LGE (2011) Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiol Biochem 49:441–448. doi:10.1016/j.plaphy.2011.01.023 PubMed DOI
Elhiti M, Stasolla C (2012) In vitro propagation methods of ornamental conifers with emphasis on spruce somatic emryogenesis. Propag Ornam Plants 12:3–10.
Ericsson A. (1979) Effects of fertilization and irrigation on the seasonal changes of carbohydrate reserves in different age-classes of needle on 20-year-old scots pine trees (Pinus silvestris). Physiol Plant 45:270–280. doi:10.1111/j.1399-3054.1979.tb01700.x DOI
Find JI. (1997) Changes in endogenous ABA levels in developing somatic embryos of Norway spruce (Picea abies (L.) Karst.) in relation to maturation medium, desiccation and germination. Plant Sci 128:75–83. doi:10.1016/S0168-9452(97)00141-6 DOI
Fowke LC, Attree SM, Rennie PJ (1994) Scanning electron microscopy of hydrated and desiccated mature somatic embryos and zygotic embryos of white spruce (Picea glauca [Moench] Voss.). Plant Cell Rep 13:612–618. doi:10.1007/BF00232931 PubMed DOI
Gösslová M, Svobodová H, Lipavská H, Albrechtová J, Vreugdenhil D (2001) Comparing carbohydrate status during Norway spruce seed development and somatic embryo formation. In Vitro Cell Dev Biol Plant 37:24–28. doi:10.1007/s11627-001-0005-2 DOI
Grigová M, Kubeš M, Drážná N, Řezanka T, Lipavská H (2007) Storage lipid dynamics in somatic embryos of Norway spruce (Picea abies): histochemical and quantitative analyses. Tree Physiol 27:1533–1540. doi:10.1093/treephys/27.11.1533 PubMed DOI
Gupta PK, Durzan DJ (1986) Somatic polyembryogenesis from callus of mature sugar pine embryos. Nat Biotechnol 4:643–645. doi:10.1038/nbt0786-643 DOI
Gupta PK, Grob JA (1995) Somatic embryogenesis in conifers. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, Vol. 1 Kluwer Academic Publishers, Dordrecht, pp 81–98.
Iraqi D, Tremblay FM (2001) Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot 52:2301–2311. doi:10.1093/jexbot/52.365.2301 PubMed DOI
Janick J, Velho CC, Whipkey A (1991) Developmental changes in seeds of loblolly pine. J Am Soc Hort Sci 116:297–301.
Jones NB, van Staden J (2001) Improved somatic embryo production from embryogenic tissue of Pinus patula. In Vitro Cell Dev Biol Plant 37:543–549. doi:10.1007/s11627-001-0094-y DOI
Klimaszewska K, Morency F, Jones-Overton C, Cooke J (2004) Accumulation pattern and identification of seed storage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments. Physiol Plant 121:682–690. doi:10.1111/j.1399-3054.2004.00370.x DOI
Kong L, Yeung EC (1995) Effects of silver nitrate and polyethylene glycol on white spruce (Picea glauca) somatic embryo development: enhancing cotyledonary embryo formation and endogenous ABA content. Physiol Plant 93:298–304. doi:10.1111/j.1399-3054.1995.tb02232.x DOI
Konrádová H, Lipavská H, Albrechtová J, Vreugdenhil D (2002) Sucrose metabolism during somatic and zygotic embryogeneses in Norway spruce: content of soluble saccharides and localisation of key enzyme activities. J Plant Physiol 159:387–396. doi:10.1078/0176-1617-00624 DOI
Konrádová H, Grigová M, Lipavská H (2003) Cold-induced accumulation of raffinose family oligosaccharides in somatic embryos of Norway spruce (Picea abies). In Vitro Cell Dev Biol Plant 39:425–427. doi:10.1079/IVP2003426 DOI
Krajňáková J, Häggman H, Gömöry D (2009) Effect of sucrose concentration, polyethylene glycol and activated charcoal on maturation and regeneration of Abies cephalonica somatic embryos. Plant Cell Tiss Org Cult 96:251–262. doi:10.1007/s11240-008-9482-x DOI
Kubeš M, Drážná N, Konrádová H, Lipavská H (2014) Robust carbohydrate dynamics based on sucrose resynthesis in developing Norway spruce somatic embryos at variable sugar supply. In Vitro Cell Dev Biol Plant 50:45–57. doi:10.1007/s11627-013-9589-6 DOI
Lelu-Walter M-A, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes 9:883–899. doi:10.1007/s11295-013-0620-1 DOI
Lipavská H, Konrádová H (2004) Somatic embryogenesis in conifers: the role of carbohydrate metabolism. In Vitro Cell Dev Biol Plant 40:23–30. doi:10.1079/IVP2003482 DOI
Lipavská H, Svobodová H, Albrechtová J, Kumstýřová L, Vágner M, Vondráková Z (2000) Carbohydrate status during somatic embryo maturation in Norway spruce. In Vitro Cell Dev Biol Plant 36:260–267. doi:10.1007/s11627-000-0048-9 DOI
Maruyama TE, Hosoi Y (2012) Post-maturation treatment improves and synchronizes somatic embryo germination of three species of Japanese pines. Plant Cell Tiss Organ Cult 110:45–52. doi:10.1007/s11240-012-0128-7 DOI
Metcalfe LD, Wang CN (1981) Rapid preparation of fatty acid methyl esters using organic base-catalyzed transesterification. J Chromatogr Sci 19:530–535. doi:10.1093/chromsci/19.10.530 DOI
Misra S, Attree SM, Leal I, Fowke LC (1993) Effect of abscisic acid, osmoticum, and desiccation on synthesis of storage proteins during the development of white spruce somatic embryos. Ann Bot 71:11–22. doi:10.1006/anbo.1993.1002 DOI
Morel A, Trontin J-F, Corbineau F et al. (2014) Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses. Planta 240:1075–1095. doi:10.1007/s00425-014-2125-z PubMed DOI
Nishizawa-Yokoi A, Yabuta Y, Shigeoka S (2008) The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. Plant Signal Behav 3:1016–1018. doi:10.4161/psb.6738 PubMed DOI PMC
O'Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi Pty Ltd, Melbourne, pp 4.46–4.55.
Park Y-S. (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656. doi:10.1051/forest:2002051 DOI
Poláčková D, Beneš K (1975) The staining of chromosomes and nuclei in squashes of root tips with aluminium lake of nuclear fast red. Biol Plant 17:374–375. doi:10.1007/BF02921165 DOI
Pond SE. (2005) The effect of temperature on conversion of white spruce somatic embryos. Propag Ornam Plants 5:35–44.
Pullman GS, Buchanan M (2008) Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiol 28:985–996. doi:10.1093/treephys/28.7.985 PubMed DOI
Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. doi:10.1016/j.jplph.2004.01.013 PubMed DOI
Roberts DR. (1991) Abscisic acid and mannitol promote early development, maturation and storage protein accumulation in somatic embryos of interior spruce. Physiol Plant 83:247–254. doi:10.1111/j.1399-3054.1991.tb02149.x DOI
Ruaud J-N, Bercetche J, Pâques M (1992) First evidence of somatic embryogenesis from needles of 1-year-old Picea abies plants. Plant Cell Rep 11:563–566. doi:10.1007/BF00233093 PubMed DOI
Simard S, Giovannelli A, Treydte K, Traversi ML, King GM, Frank D, Fonti P (2013) Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiol 33:913–923. doi:10.1093/treephys/tpt075 PubMed DOI
Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: Improving somatic embryo quality. Plant Cell Tiss Org Cult 74:15–35. doi:10.1023/A:1023345803336 DOI
Stasolla C, Loukanina N, Ashihara H, Yeung EC, Thorpe TA (2001) Purine and pyrimidine metabolism during the partial drying treatment of white spruce (Picea glauca) somatic embryos. Physiol Plant 111:93–101. doi:10.1034/j.1399-3054.2001.1110112.x DOI
Stasolla C, Kong L, Yeung EC, Thorpe TA (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol Plant 38:93–105. doi:10.1079/IVP2001262 DOI
Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu W, Sederoff RR (2003) The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol 131:49–60. doi:10.1104/pp.015214 PubMed DOI PMC
Stasolla C, Belmonte MF, van Zyl L, Craig DL, Liu W, Yeung EC, Sederoff RR (2004) The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos. J Exp Bot 55:695–709. doi:10.1093/jxb/erh074 PubMed DOI
Streit K, Rinne KT, Hagedorn F, Dawes MA, Saurer M, Hoch G, Werner RA, Buchmann N, Siegwolf RTW (2013) Tracing fresh assimilates through Larix decidua exposed to elevated CO2 and soil warming at the alpine treeline using compound-specific stable isotope analysis. New Phytol 197:838–849. doi:10.1111/nph.12074 PubMed DOI
Svobodová H, Albrechtová J, Kumstýřová L, Lipavská H, Vágner M, Vondráková Z (1999) Somatic embryogenesis in Norway spruce: anatomical study of embryo development and influence of polyethylene glycol on maturation process. Plant Physiol Biochem 37:209–221. doi:10.1016/S0981-9428(99)80036-9 DOI
Tereso S, Zoglauer K, Milhinhos A, Miguel C, Oliveira MM (2007) Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study. Tree Physiol 27:661–669. doi:10.1093/treephys/27.5.661 PubMed DOI
Tremblay L, Tremblay FM (1991) Carbohydrate requirements for the development of black spruce (Picea mariana (Mill.) B.S.P.) and red spruce (P. rubens Sarg.) somatic embryos. Plant Cell Tiss Org Cult 27:95–103. doi:10.1007/BF00048213 DOI
Tremblay L, Tremblay FM (1995) Maturation of black spruce somatic embryos: sucrose hydrolysis and resulting osmotic pressure of the medium. Plant Cell Tiss Org Cult 42:39–46. doi:10.1007/BF00037680 DOI
Vestman D, Larsson E, Uddenberg D, Cairney J, Clapham D, Sundberg E, von Arnold S (2011) Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet Genomes 7:347–362. doi:10.1007/s11295-010-0336-4 DOI
von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69:233–249. doi:10.1023/A:1015673200621 DOI
Yeung EC. (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA. (ed) In vitro embryogenesis in plants. Springer, Dordrecht, pp 205–247.
The endangered Saharan cypress (Cupressus dupreziana): do not let it get into Charon's boat