The humidity level matters during the desiccation of Norway spruce somatic embryos
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35968100
PubMed Central
PMC9372446
DOI
10.3389/fpls.2022.968982
Knihovny.cz E-zdroje
- Klíčová slova
- 3-glucanases, Picea abies (L.) Karst, chitinases, desiccation, germination, polyamines, somatic embryogenesis, β-1,
- Publikační typ
- časopisecké články MeSH
In Norway spruce, as in many other conifers, the germination capacity of somatic embryos is strongly influenced by the desiccation phase inserted after maturation. The intensity of drying during desiccation eminently affected the formation of emblings (i.e., seedlings developed from somatic embryos). Compared to non-desiccated embryos, the germination capacity of embryos desiccated at 100% relative humidity was about three times higher, but the reduction of relative humidity to 95 and 90% had a negative effect on the subsequent embryo development. The water loss observed in these embryos did not lead to an increase in lipid peroxidation, as shown by malondialdehyde levels. Another metabolic pathway in plants that mediates a response to abiotic stresses is directed toward the biosynthesis of polyamines (PAs). The activities of PA biosynthetic enzymes increased steadily in embryos during desiccation at 100% relative humidity, whereas they decreased at lower humidity. The total content of free PAs in the embryos gradually decreased throughout desiccation. The increase in free putrescine (Put) and perchloric acid-insoluble Put conjugates was observed in embryos desiccated at lower humidity. These changes were accompanied to some extent by the transcription of the genes for the PA biosynthesis enzymes. Desiccation at 100% relative humidity increased the activity of the cell wall-modifying enzymes β-1,3-glucanases and chitinases; the activities of these enzymes were also significantly suppressed at reduced humidity. The same pattern was observed in the transcription of some β-1,3-glucanase and chitinase genes. Desiccation treatments triggered metabolic processes that responded to water availability, suggesting an active response of the embryo to the reduction in humidity. A positive effect was demonstrated only for desiccation at high relative humidity. Some of the physiological characteristics described can be used as markers of inappropriate relative humidity during somatic embryo desiccation.
Department of Biology University of Ss Cyril and Methodius in Trnava Trnava Slovakia
Department of Biotechnologies University of Ss Cyril and Methodius in Trnava Trnava Slovakia
Zobrazit více v PubMed
Alcázar R., Bueno M., Tiburcio A. F. (2020). Polyamines: small amines with large effects on plant abiotic stress tolerance. Cells 9:2373. 10.3390/cells9112373 PubMed DOI PMC
Attree S. M., Pomeroy M. K., Fowke L. C. (1995). Development of White Spruce (Picea glauca (Moench) Voss.) somatic embryos during culture with abscisic-acid and osmoticum, and their tolerance to drying and frozen storage. J. Exp. Bot. 46 433–439.
Balasubramanian V., Vashisht D., Cletus J., Sakthivel N. (2012). Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol. Lett. 34 1983–1990. 10.1007/s10529-012-1012-6 PubMed DOI
Berta G., Altamura M. M., Fusconi A., Cerruti F., Capitani F., Bagni N. (1997). The plant cell wall is altered by inhibition of polyamine biosynthesis. New Phytol. 137 569–577. 10.1046/j.1469-8137.1997.00868.x DOI
Bomal C., Tremblay F. M. (1999). Effect of desiccation to low moisture content on germination, synchronization of root emergence, and plantlet regeneration of black spruce somatic embryos. Plant Cell Tissue Organ Cult. 56 193–200. 10.1023/A:1006201414616 DOI
Bonga J. M., Klimaszewska K. K., von Aderkas P. (2010). Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult. 100 241–254. 10.1007/s11240-009-9647-2 DOI
Bradford M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI
Buchner P., Rochat C., Wuillème S., Boutin J.-P. (2002). Characterization of a tissue-specific and developmentally regulated β-1,3-glucanase gene in pea (Pisum sativum). Plant Mol. Biol. 49 171–186. 10.1023/A:1014910900312 PubMed DOI
Chen D. D., Shao Q. S., Yin L. H., Younis A., Zheng B. S. (2019). Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 9:1945. 10.3389/fpls.2018.01945 PubMed DOI PMC
Chen X. Y., Kim J. Y. (2009). Callose synthesis in higher plants. Plant Signal. Behav. 4 489–492. 10.4161/psb.4.6.8359 PubMed DOI PMC
Cvikrova M., Gemperlova L., Dobra J., Martincova O., Prasil I. T., Gubis J., et al. (2012). Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Sci. 182 49–58. 10.1016/j.plantsci.2011.01.016 PubMed DOI
Cvikrova M., Vondrakova Z., Eliasova K., Pesek B., Travnickova A., Vagner M. (2016). The impact of UV-B irradiation applied at different phases of somatic embryo development in Norway spruce on polyamine metabolism. Trees Struct. Funct. 30 113–124. 10.1007/s00468-015-1280-6 DOI
De Bolle M. F. C., Goderis I. J., Terras F. R. G., Cammue B. P. A., Broekaert W. F. (1991). A technique for detecting antifungal activity of proteins separated by polyacrylamide gel electrophoresis. Electrophoresis 12 442–444. 10.1002/elps.1150120612 PubMed DOI
De Storme N., Geelen D. (2014). Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front. Plant Sci. 5:138. 10.3389/fpls.2014.00138 PubMed DOI PMC
Domon J.-M., Neutelings G., Roger D., David A., David H. (2000). A basic chitinase-like protein secreted by embryogenic tissues of pinus caribaea acts on arabinogalactan proteins extracted from the same cell lines. J. Plant Physiol. 156 33–39. 10.1016/S0176-1617(00)80269-2 DOI
Dong J. Z., Dunstan D. I. (1997). Endochitinase and β-1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201 189–194. 10.1007/BF01007703 PubMed DOI
Doxey A. C., Yaish M. W. F., Moffatt B. A., Griffith M., McConkey B. J. (2007). Functional divergence in the Arabidopsis β-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Mol. Biol. Evol. 24 1045–1055. 10.1093/molbev/msm024 PubMed DOI
Dronne S., Label P., Lelu M. A. (1997). Desiccation decreases abscisic acid content in hybrid larch (Larix x leptoeuropaea) somatic embryos. Physiol. Plant. 99 433–438. 10.1034/j.1399-3054.1997.990311.x PubMed DOI
Dyachok J. V., Wiweger M., Kenne L., von Arnold S. (2002). Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol. 128 523–533. 10.1104/pp.010547 PubMed DOI PMC
Egertsdotter U., Ahmad I., Clapham D. (2019). Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Front. Plant Sci. 10:109. 10.3389/fpls.2019.00109 PubMed DOI PMC
Eliášová K., Konrádová H., Dobrev P. I., Motyka V., Lomenech A. M., Fischerová L., et al. (2022). Desiccation as a post-maturation treatment helps complete maturation of norway spruce somatic embryos: carbohydrates, phytohormones and proteomic status. Front. Plant Sci. 13:823617. 10.3389/fpls.2022.823617 PubMed DOI PMC
Eliášová K., Vondráková Z., Gemperlová L., Nedìla V., Runštuk J., Fischerová L., et al. (2018). The Response of Picea abies somatic embryos to UV-B radiation depends on the phase of maturation. Front. Plant Sci. 9:1736. 10.3389/fpls.2018.01736 PubMed DOI PMC
Faure O., Mengoli M., Nougarede A., Bagni N. (1991). Polyamine pattern and biosynthesis in zygotic and somatic embryo stages of Vitis vinifera. J. Plant Physiol. 138 545–549. 10.1016/s0176-1617(11)80238-5 DOI
Fellenberg C., Ziegler J., Handrick V., Vogt T. (2012). Polyamine homeostasis in wild type and phenolamide deficient Arabidopsis thaliana stamens. Front. Plant Sci. 3:180. 10.3389/fpls.2012.00180 PubMed DOI PMC
Finch-Savage W. E., Leubner-Metzger G. (2006). Seed dormancy and the control of germination. New Phytol. 171 501–523. 10.1111/j.1469-8137.2006.01787.x PubMed DOI
Find J. I. (1997). Changes in endogenous ABA levels in developing somatic embryos of Norway spruce (Picea abies (L.) Karst.) in relation to maturation medium, desiccation and germination. Plant Sci. 128 75–83. 10.1016/S0168-9452(97)00141-6 DOI
Fráterová L., Salaj T., Matušíková I., Salaj J. (2013). The role of chitinases and glucanases in somatic embryogenesis of black pine and hybrid firs. Cent. Eur. J. Biol. 8 1172–1182. 10.2478/s11535-013-0234-5 DOI
Galusova T., Rybansky L., Meszaros P., Spiess N., Pirselova B., Kuna R., et al. (2015). Variable responses of soybean chitinases to arsenic and cadmium stress at the whole plant level. Plant Growth Regul. 76 147–155. 10.1007/s10725-014-9984-y DOI
Gao Y., Cui Y., Zhao R., Chen X., Zhang J., Zhao J., et al. (2022). Cryo-treatment enhances the embryogenicity of mature somatic embryos via the lncRNA–miRNA–mRNA Network in White Spruce. Int. J. Mol. Sci. 23:1111. 10.3390/ijms23031111 PubMed DOI PMC
Gemperlová L., Eder J., Cvikrová M. (2005). Polyamine metabolism during the growth cycle of tobacco BY-2 cells. Plant Physiol. Biochem. 43 375–381. 10.1016/j.plaphy.2005.02.012 PubMed DOI
Gemperlova L., Fischerova L., Cvikrova M., Mala J., Vondrakova Z., Martincova O., et al. (2009). Polyamine profiles and biosynthesis in somatic embryo development and comparison of germinating somatic and zygotic embryos of Norway spruce. Tree Physiol. 29 1287–1298. 10.1093/treephys/tpp063 PubMed DOI
González L. M. G., El Kayal W., Morris J. S., Cooke J. E. K. (2015). Diverse chitinases are invoked during the activity-dormancy transition in spruce. Tree Genet. Genomes 11:41. 10.1007/s11295-015-0871-0 DOI
Gregorová Z., Kováčik J., Klejdus B., Maglovski M., Kuna R., Hauptvogel P., et al. (2015). Drought-induced responses of physiology, metabolites, and PR Proteins in Triticum aestivum. J. Agric. Food Chem. 63 8125–8133. 10.1021/acs.jafc.5b02951 PubMed DOI
Grienenberger E., Besseau S., Geoffroy P., Debayle D., Heintz D., Lapierre C., et al. (2009). A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J. 58 246–259. 10.1111/j.1365-313X.2008.03773.x PubMed DOI
Groppa M. D., Benavides M. P. (2008). Polyamines and abiotic stress: recent advances. Amino Acids 34 35–45. 10.1007/s00726-007-0501-8 PubMed DOI
Grover A. (2012). Plant chitinases: genetic diversity and physiological roles. Crit. Rev. Plant Sci. 31 57–73. 10.1080/07352689.2011.616043 DOI
Gulzar B., Mujib A., Malik M. Q., Sayeed R., Mamgain J., Ejaz B. (2020). Genes, proteins and other networks regulating somatic embryogenesis in plants. J. Genet. Eng. Biotechnol. 18:31. 10.1186/s43141-020-00047-5 PubMed DOI PMC
Gupta P. K., Durzan D. J. (1986). Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies (Norway spruce). In Vitro Cell. Dev. Biol. 22 685–688. 10.1007/BF02623484 DOI
Handa A. K., Fatima T., Mattoo A. K. (2018). Polyamines: bio-molecules with diverse functions in plant and human health and disease. Front. Chem. 6:10. 10.3389/fchem.2018.00010 PubMed DOI PMC
Hay E. I., Charest P. J. (1999). “Somatic embryo germination and desiccation tolerance in conifers,” in Somatic Embryogenesis in Woody Plants, Vol. Volume 4 eds Jain S. M., Gupta P. K., Newton R. J. (Dordrecht: Springer; ), 61–96.
Hazubska-Przybyl T., Wawrzyniak M., Obarska A., Bojarczuk K. (2015). Effect of partial drying and desiccation on somatic seedling quality in Norway and Serbian spruce. Acta Physiol. Plant. 37:1735. 10.1007/s11738-014-1735-1 DOI
He M., He C.-Q., Ding N.-Z. (2018). Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 9:1771. 10.3389/fpls.2018.01771 PubMed DOI PMC
Helleboid S., Bauw G., Belingheri L., Vasseur J., Hilbert J. L. (1998). Extracellular β-1,3-glucanases are induced during early somatic embryogenesis in Cichorium. Planta 205 56–63. 10.1007/s004250050296 PubMed DOI
Helleboid S., Hendriks T., Bauw G., Inzé D., Vasseur J., Hilbert J. L. (2000). Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. J. Exp. Bot. 51 1189–1200. 10.1093/jexbot/51.348.1189 PubMed DOI
Hietala A. M., Kvaalen H., Schmidt A., Jøhnk N., Solheim H., Fossdal C. G. (2004). Temporal and spatial profiles of chitinase expression by Norway spruce in response to bark colonization by Heterobasidion annosum. Appl. Environ. Microbiol. 70 3948–3953. 10.1128/AEM.70.7.3948-3953.2004 PubMed DOI PMC
Högberg K. A., Bozhkov P. V., Gronroos R., von Arnold S. (2001). Critical factors affecting ex vitro performance of somatic embryo plants of Picea abies. Scand. J. For. Res. 16 295–304.
Huang C. K., Chang B. S., Wang K. C., Her S. J., Chen T. W., Chen Y. A., et al. (2004). Changes in polyamine pattern are involved in floral initiation and development in Polianthes tuberosa. J. Plant Physiol. 161 709–713. 10.1078/0176-1617-01256 PubMed DOI
Hura T., Dziurka M., Hura K., Ostrowska A., Dziurka K. (2015). Free and cell wall-bound polyamines under long-term water stress applied at different growth stages of x Triticosecale Wittm. PLoS One 10:e0135002. 10.1371/journal.pone.0135002 PubMed DOI PMC
Hurkman W. J., Tanaka C. K. (1986). Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 81 802–806. 10.1104/pp.81.3.802 PubMed DOI PMC
Igarashi K., Kashiwagi K. (2015). Modulation of protein synthesis by polyamines. IUBMB Life 67 160–169. 10.1002/iub.1363 PubMed DOI
Igarashi K., Kashiwagi K. (2019). The functional role of polyamines in eukaryotic cells. Int. J. Biochem. Cell Biol. 107 104–115. 10.1016/j.biocel.2018.12.012 PubMed DOI
Jimenez-Bremont J. F., Marina M., Guerrero-Gonzalez M. D., Rossi F. R., Sanchez-Rangel D., Rodriguez-Kessler M., et al. (2014). Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front. Plant Sci. 5:95. 10.3389/fpls.2014.00095 PubMed DOI PMC
Jing D., Zhang J., Xia Y., Kong L., OuYang F., Zhang S., et al. (2017). Proteomic analysis of stress-related proteins and metabolic pathways in Picea asperata somatic embryos during partial desiccation. Plant Biotechnol. J. 15 27–38. 10.1111/pbi.12588 PubMed DOI PMC
Jones N. B., Van Staden J. (2001). Improved somatic embryo production from embryogenic tissue of Pinus patula. In Vitro Cell. Dev. Biol. Plant 37 543–549.
Kamada-Nobusada T., Hayashi M., Fukazawa M., Sakakibara H., Nishimura M. (2008). A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol. 49 1272–1282. 10.1093/pcp/pcn114 PubMed DOI
Klimaszewska K., Hargreaves C., Lelu-Walter M.-A., Trontin J.-F. (2016). Advances in conifer somatic embryogenesis since year 2000. Methods Mol. Biol. 1359 131–166. 10.1007/978-1-4939-3061-6_7 PubMed DOI
Kusano T., Berberich T., Tateda C., Takahashi Y. (2008). Polyamines: essential factors for growth and survival. Planta 228 367–381. 10.1007/s00425-008-0772-7 PubMed DOI
Le K.-C., Weerasekara A. B., Ranade S. S., Egertsdotter E. M. U. (2021). Evaluation of parameters to characterise germination-competent mature somatic embryos of Norway spruce (Picea abies). Biosyst. Eng. 203 55–59. 10.1016/j.biosystemseng.2020.12.013 DOI
Lelu M. A., Klimaszewska K., Pflaum G., Bastien C. (1995). Effect of maturation duration on desiccation tolerance in hybrid larch (Larix X Leptoeuropaea Dengler) Somatic Embryos. In Vitro Cell. Dev. Biol. Plant 31 15–20.
Leprince O., Pellizzaro A., Berriri S., Buitink J. (2017). Late seed maturation: drying without dying. J. Exp. Bot. 68 827–841. 10.1093/jxb/erw363 PubMed DOI
Leubner-Metzger G. (2005). β-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J. 41 133–145. 10.1111/j.1365-313X.2004.02284.x PubMed DOI
Leubner-Metzger G., Meins F. (1999). “Functions and regulation of plant β-1, 3-glucanases (PR-2),” in Pathogenesis-Related Proteins in Plants, eds Swapan K. D., Subbaratnam M. (Boca Raton, FL: CRC Press; ), 49–76.
Levy A., Guenoune-Gelbart D., Epel B. L. (2007). β-1,3-Glucanases. Plant Signal. Behav. 2 404–407. 10.4161/psb.2.5.4334 PubMed DOI PMC
Liao Y. K., Juan I. P. (2015). Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying. J. For. Res. 20 114–124. 10.1007/s10310-014-0445-2 DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI
Mailloux R. J., Harper M.-E. (2011). Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic. Biol. Med. 51 1106–1115. 10.1016/j.freeradbiomed.2011.06.022 PubMed DOI
Michael A. J. (2016). Polyamines in eukaryotes, bacteria, and archaea. J. Biol. Chem. 291 14896–14903. 10.1074/jbc.R116.734780 PubMed DOI PMC
Minocha R., Minocha S. C., Long S. (2004). Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cell. Dev. Biol. Plant 40 572–580.
Monteiro M., Kevers C., Dommes J., Gaspar T. (2002). A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tissue Organ Cult. 68 225–232. 10.1023/a:1013950729576 DOI
Murray-Stewart T., Dunworth M., Lui Y., Giardiello F. M., Woster P. M., Casero R. A. (2018). Curcumin mediates polyamine metabolism and sensitizes gastrointestinal cancer cells to antitumor polyamine-targeted therapies. PLoS One 13:e202677. 10.1371/journal.pone.0202677 PubMed DOI PMC
Mustafavi S. H., Naghdi Badi H., Sêkara A., Mehrafarin A., Janda T., Ghorbanpour M., et al. (2018). Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol. Plant. 40:102. 10.1007/s11738-018-2671-2 DOI
Namasivayam P. (2007). Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult. 90 1–8. 10.1007/s11240-007-9249-9 DOI
Navarro B. V., Elbl P., de Oliveira L. F., Piovezani A. R., dos Santos A. L. W., de Souza D. T., et al. (2022). Cell-to-cell trafficking patterns in cell lines of Araucaria angustifolia (Brazilian pine) with contrasting embryogenic potential. Plant Cell Tissue Organ Cult. 148 81–93. 10.1007/s11240-021-02166-4 DOI
Park Y. S. (2002). Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann. For. Sci. 59 651–656.
Perrot T., Pauly M., Ramírez V. (2022). Emerging roles of β-glucanases in plant development and adaptative responses. Plants 11:1119. 10.3390/plants11091119 PubMed DOI PMC
Pirttilä A., Laukkanen H., Hohtola A. (2002). Chitinase production in pine callus (Pinus sylvestris L.): a defense reaction against endophytes? Planta 214 848–852. 10.1007/s00425-001-0709-x PubMed DOI
Prerostova S., Dobrev P. I., Knirsch V., Jarosova J., Gaudinova A., Zupkova B., et al. (2021). Light quality and intensity modulate cold acclimation in arabidopsis. Int. J. Mol. Sci. 22:2736. 10.3390/ijms22052736 PubMed DOI PMC
Roberts D. R., Lazaroff W. R., Webster F. B. (1991). Interaction between maturation and high relative-humidity treatments and their effects on germination of sitka spruce somatic embryos. J. Plant Physiol. 138 1–6.
Roberts D. R., Sutton B. C. S., Flinn B. S. (1990). Synchronous and high-frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can. J. Bot. 68 1086–1090. 10.1139/b90-136 DOI
Rojas-Herrera R., Loyola-Vargas V. M. (2002). Induction of a class III acidic chitinase in foliar explants of Coffea arabica L. during somatic embryogenesis and wounding. Plant Sci. 163 705–711. 10.1016/S0168-9452(02)00156-5 DOI
Salo H. M., Sarjala T., Jokela A., Häggman H., Vuosku J. (2016). Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis. Tree Physiol. 36 392–402. 10.1093/treephys/tpv136 PubMed DOI PMC
Schefe J. H., Lehmann K. E., Buschmann I. R., Unger T., Funke-Kaiser H. (2006). Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s C-T difference” formula. J. Mol. Med. 84 901–910. 10.1007/s00109-006-0097-6 PubMed DOI
Seo M., Marion-Poll A. (eds) (2019). “Chapter One - Abscisic acid metabolism and transport,” in Advances in Botanical Research, (Oxford: Elsevier; ), 1–49.
Silveira V., Floh E. I. S., Handro W., Guerra M. P. (2004). Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in embryogenic suspension cultures of Pinus taeda. Plant Cell Tissue Organ Cult. 76 53–60. 10.1023/a:1025847515435 DOI
Slocum R. D., Flores H. E., Galston A. W., Weinstein L. H. (1989). Improved Method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue. Plant Physiol. 89 512–517. 10.1104/pp.89.2.512 PubMed DOI PMC
Sudisha J., Sharathchandra R. G., Amruthesh K. N., Kumar A., Shetty H. S. (2012). “Pathogenesis related proteins in plant defense response,” in Plant Defence: Biological Control, eds Mérillon J. M., Ramawat K. G. (Dordrecht: Springer; ), 379–403.
Takahashi Y., Tahara M., Yamada Y., Mitsudomi Y., Koga K. (2018). Characterization of the polyamine biosynthetic pathways and salt stress response in Brachypodium distachyon. J. Plant Growth Regul. 37 625–634. 10.1007/s00344-017-9761-z DOI
Tassoni A., Van Buuren M., Franceschetti M., Fornalè S., Bagni N. (2000). Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol. Biochem. 38 383–393. 10.1016/S0981-9428(00)00757-9 DOI
Tiburcio A. F., Altabella T., Bitrián M., Alcázar R. (2014). The roles of polyamines during the lifespan of plants: from development to stress. Planta 240 1–18. 10.1007/s00425-014-2055-9 PubMed DOI
Tikkinen M., Varis S., Peltola H., Aronen T. (2018b). Improved germination conditions for Norway spruce somatic cotyledonary embryos increased survival and height growth of emblings. Trees Struct. Funct. 32 1489–1504. 10.1007/s00468-018-1728-6 DOI
Tikkinen M., Varis S., Aronen T. (2018a). Development of somatic embryo maturation and growing techniques of Norway Spruce emblings towards large-scale field testing. Forests 9:325. 10.3390/f9060325 DOI
Vaghela B., Vashi R., Rajput K., Joshi R. (2022). Plant chitinases and their role in plant defense: a comprehensive review. Enzyme Microb. Technol. 159:110055. 10.1016/j.enzmictec.2022.110055 PubMed DOI
Vagner M., Fischerova L., Spackova J., Vondrakova Z. (2005). “Somatic embryogenesis in Norway spruce,” in Protocols for Somatic Embryogenesis in Woody Plants, eds Jain S. M., Gupta P. K. (Dordrecht: Springer; ), 141–155.
Van Breusegem F., Vranová E., Dat J. F., Inzé D. (2001). The role of active oxygen species in plant signal transduction. Plant Sci. 161 405–414. 10.1016/S0168-9452(01)00452-6 DOI
van der Schoot C., Paul L. K., Rinne P. L. (2014). The embryonic shoot: a lifeline through winter. J. Exp. Bot. 65 1699–1712. 10.1093/jxb/ert413 PubMed DOI
Van Hengel A. J., Van Kammen A., De Vries S. C. (2002). A relationship between seed development, Arabinogalactan-proteins (AGPS) and the AGP mediated promotion of somatic embryogenesis. Physiol. Plant. 114 637–644. 10.1034/j.1399-3054.2002.1140418.x PubMed DOI
Velarde-Buendia A. M., Shabala S., Cvikrova M., Dobrovinskaya O., Pottosin I. (2012). Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol. Biochem. 61 18–23. 10.1016/j.plaphy.2012.09.002 PubMed DOI
Von Aderkas P., Bonga J. M. (2000). Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol. 20 921–928. 10.1093/treephys/20.14.921 PubMed DOI
von Arnold S., Bozhkov P., Clapham D., Dyachok J., Filonova L., Högberg K.-A., et al. (2005). Propagation of Norway spruce via somatic embryogenesis. Plant Cell Tissue Organ Cult. 81 323–329. 10.1007/s11240-004-6662-1 DOI
Vondrakova Z., Cvikrova M., Eliasova K., Martincova O., Vagner M. (2010). Cryotolerance in Norway spruce and its association with growth rates, anatomical features and polyamines of embryogenic cultures. Tree Physiol. 30 1335–1348. 10.1093/treephys/tpq074 PubMed DOI
Vondrakova Z., Dobrev P. I., Pesek B., Fischerova L., Vagner M., Motyka V. (2018). Profiles of endogenous phytohormones over the course of Norway spruce somatic embryogenesis. Front. Plant Sci. 9:1283. 10.3389/fpls.2018.01283 PubMed DOI PMC
Vondráková Z., Eliášová K., Vágner M., Martincová O., Cvikrová M. (2015). Exogenous putrescine affects endogenous polyamine levels and the development of Picea abies somatic embryos. Plant Growth Regul. 75 405–414. 10.1007/s10725-014-0001-2 DOI
Vondrakova Z., Pesek B., Malbeck J., Bezdeckova L., Vondrak T., Fischerova L., et al. (2020). Dormancy breaking in Fagus sylvatica seeds is linked to formation of abscisic acid-glucosyl ester. New For. 51 671–688. 10.1007/s11056-019-09751-8 DOI
Vuosku J., Suorsa M., Ruottinen M., Sutela S., Muilu-Mäkelä R., Julkunen-Tiitto R., et al. (2012). Polyamine metabolism during exponential growth transition in Scots pine embryogenic cell culture. Tree Physiol. 32 1274–1287. 10.1093/treephys/tps088 PubMed DOI
Wiweger M., Farbos I., Ingouff M., Lagercrantz U., von Arnold S. (2003). Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases. J. Exp. Bot. 54 2691–2699. 10.1093/jxb/erg299 PubMed DOI
Wuddineh W., Minocha R., Minocha S. C. (2018). “Polyamines in the context of metabolic networks,” in Methods in Molecular Biology, Vol. 1694 eds Alcázar R., Tiburcio A. F. (Dordrecht: Springer; ), 1–23. PubMed
Yakovlev I. A., Carneros E., Lee Y. K., Olsen J. E., Fossdal C. G. (2016). Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243 1237–1249. 10.1007/s00425-016-2484-8 PubMed DOI
Yang J. C., Zhang J. H., Liu K., Wang Z. Q., Liu L. J. (2007). Involvement of polyamines in the drought resistance of rice. J. Exp. Bot. 58 1545–1555. 10.1093/jxb/erm032 PubMed DOI
Yokoyama R., Nishitani K. (2004). Genomic basis for cell-wall diversity in plants. a comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol. 45 1111–1121. 10.1093/pcp/pch151 PubMed DOI
Yu Y., Zhou W. W., Liang X., Zhou K. J., Lin X. Y. (2019). Increased bound putrescine accumulation contributes to the maintenance of antioxidant enzymes and higher aluminum tolerance in wheat. Environ. Pollut. 252 941–949. 10.1016/j.envpol.2019.06.045 PubMed DOI
Zavaliev R., Ueki S., Epel B. L., Citovsky V. (2011). Biology of callose (β-1,3-glucan) turnover at plasmodesmata. Protoplasma 248 117–130. 10.1007/s00709-010-0247-0 PubMed DOI PMC
Zhou Q., Yu B. J. (2010). Changes in content of free, conjugated and bound polyamines and osmotic adjustment in adaptation of vetiver grass to water deficit. Plant Physiol. Biochem. 48 417–425. 10.1016/j.plaphy.2010.03.003 PubMed DOI
Zieliński K., Dubas E., Gerši Z., Krzewska M., Janas A., Nowicka A., et al. (2021). β-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.). Plant Sci. 302:110700. 10.1016/j.plantsci.2020.110700 PubMed DOI
Żur I., Gołêbiowska G., Dubas E., Golemiec E., Matušíková I., Libantová J., et al. (2013). β-1, 3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale. Biologia 68 241–248.