As(III, V) Uptake from Nanostructured Iron Oxides and Oxyhydroxides: The Complex Interplay between Sorbent Surface Chemistry and Arsenic Equilibria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
F72F20000240007
Fondazione Banco di Sardegna
J88D19001040001
Ministry of Education, Universities and Research
AIM1890410-3
Ministry of Education, Universities and Research
PubMed
35159671
PubMed Central
PMC8840107
DOI
10.3390/nano12030326
PII: nano12030326
Knihovny.cz E-zdroje
- Klíčová slova
- akaganeite, arsenic, ferrihydrite, maghemite, water remediation, β-FeOOH,
- Publikační typ
- časopisecké články MeSH
Iron oxides/oxyhydroxides, namely maghemite, iron oxide-silica composite, akaganeite, and ferrihydrite, are studied for AsV and AsIII removal from water in the pH range 2-8. All sorbents were characterized for their structural, morphological, textural, and surface charge properties. The same experimental conditions for the batch tests permitted a direct comparison among the sorbents, particularly between the oxyhydroxides, known to be among the most promising As-removers but hardly compared in the literature. The tests revealed akaganeite to perform better in the whole pH range for AsV (max 89 mg g-1 at pH0 3) but to be also efficient toward AsIII (max 91 mg g-1 at pH0 3-8), for which the best sorbent was ferrihydrite (max 144 mg g-1 at pH0 8). Moreover, the study of the sorbents' surface chemistry under contact with arsenic and arsenic-free solutions allowed the understanding of its role in the arsenic uptake through electrophoretic light scattering and pH measurements. Indeed, the sorbent's ability to modify the starting pH was a crucial step in determining the removal of performances. The AsV initial concentration, contact time, ionic strength, and presence of competitors were also studied for akaganeite, the most promising remover, at pH0 3 and 8 to deepen the uptake mechanism.
Department of Chemistry and Pharmacy University of Sassari Via Vienna 2 07100 Sassari Italy
Department of Inorganic Chemistry Charles University Hlavova 8 12800 Prague Czech Republic
Zobrazit více v PubMed
World Health Organization . In: 2017 Guidelines for Drinking-Water Quality. 4th ed. World Health Organization, editor. World Health Organization; Geneva, Switzerland: 2017.
Liu B., Kim K.H., Kumar V., Kim S. A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. J. Hazard. Mater. 2020;388:121815. doi: 10.1016/j.jhazmat.2019.121815. PubMed DOI
O’Day P.A. Chemistry and Mineralogy of Arsenic. Elements. 2006;2:77–83. doi: 10.2113/gselements.2.2.77. DOI
RoyChowdhury A., Sarkar D., Datta R. Remediation of Acid Mine Drainage-Impacted Water. Curr. Pollut. Rep. 2015;1:131–141. doi: 10.1007/s40726-015-0011-3. DOI
Bolisetty S., Peydayesh M., Mezzenga R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019;48:463–487. doi: 10.1039/C8CS00493E. PubMed DOI
Samuel M.S., Selvarajan E., Sarswat A., Muthukumar H., Jacob J.M., Mukesh M., Pugazhendhi A. Nanomaterials as adsorbents for As(III) and As(V) removal from water: A review. J. Hazard. Mater. 2022;424:127572. doi: 10.1016/j.jhazmat.2021.127572. PubMed DOI
Luong V.T., Cañas Kurz E.E., Hellriegel U., Luu T.L., Hoinkis J., Bundschuh J. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. Water Res. 2018;133:110–122. doi: 10.1016/j.watres.2018.01.007. PubMed DOI
Kobya M., Soltani R.D.C., Omwene P.I., Khataee A. A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. Environ. Technol. Innov. 2020;17:100519. doi: 10.1016/j.eti.2019.100519. DOI
Kamegawa T., Ishiguro Y., Seto H., Yamashita H. Enhanced photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in water purification. J. Mater. Chem. A. 2015;3:2323–2330. doi: 10.1039/C4TA06020B. DOI
Benhamou A., Basly J.P., Baudu M., Derriche Z., Hamacha R. Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate. J. Colloid Interface Sci. 2013;404:135–139. doi: 10.1016/j.jcis.2013.04.026. PubMed DOI
Haldar D., Duarah P., Purkait M.K. MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere. 2020;251:126388. doi: 10.1016/j.chemosphere.2020.126388. PubMed DOI
Sarkar A., Paul B. The global menace of arsenic and its conventional remediation—A critical review. Chemosphere. 2016;158:37–49. doi: 10.1016/j.chemosphere.2016.05.043. PubMed DOI
Wu X., Hu J., Wu F., Zhang X., Wang B., Yang Y., Shen G., Liu J., Tao S., Wang X. Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. J. Hazard. Mater. 2021;405:124047. doi: 10.1016/j.jhazmat.2020.124047. PubMed DOI
Pereira F.J., Vázquez M.D., Debán L., Aller A.J. Determination of arsenic by ICP-MS after retention on thoria nanoparticles. Anal. Methods. 2015;7:598–606. doi: 10.1039/C4AY02181A. DOI
Jain A., Raven K.P., Loeppert R.H. Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH- release stoichiometry. Environ. Sci. Technol. 1999;33:1179–1184. doi: 10.1021/es980722e. DOI
Wang S., Mulligan C.N. Speciation and surface structure of inorganic arsenic in solid phases: A review. Environ. Int. 2008;34:867–879. doi: 10.1016/j.envint.2007.11.005. PubMed DOI
Lin S., Lu D., Liu Z. Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chem. Eng. J. 2012;211–212:46–52. doi: 10.1016/j.cej.2012.09.018. DOI
Chowdhury S.R., Yanful E.K., Pratt A.R. Arsenic removal from aqueous solutions by mixed magnetite-maghemite nanoparticles. Environ. Earth Sci. 2011;64:411–423. doi: 10.1007/s12665-010-0865-z. DOI
Tuutijärvi T., Lu J., Sillanpää M., Chen G. As(V) adsorption on maghemite nanoparticles. J. Hazard. Mater. 2009;166:1415–1420. doi: 10.1016/j.jhazmat.2008.12.069. PubMed DOI
Ramos-Guivar J.A., Flores-Cano D.A., Passamani E.C. Differentiating nanomaghemite and nanomagnetite and discussing their importance in arsenic and lead removal from contaminated effluents: A critical review. Nanomaterials. 2021;11:2310. doi: 10.3390/nano11092310. PubMed DOI PMC
Memon A.Q., Ahmed S., Bhatti Z.A., Maitlo G., Shah A.K., Mazari S.A., Muhammad A., Jatoi A.S., Kandhro G.A. Experimental investigations of arsenic adsorption from contaminated water using chemically activated hematite (Fe2O3) iron ore. Environ. Sci. Pollut. Res. 2021;28:12898–12908. doi: 10.1007/s11356-020-11208-x. PubMed DOI
Freitas E.T.F., Montoro L.A., Gasparon M., Ciminelli V.S.T. Natural attenuation of arsenic in the environment by immobilization in nanostructured hematite. Chemosphere. 2015;138:340–347. doi: 10.1016/j.chemosphere.2015.05.101. PubMed DOI
Hajji S., Montes-Hernandez G., Sarret G., Tordo A., Morin G., Ona-Nguema G., Bureau S., Turki T., Mzoughi N. Arsenite and chromate sequestration onto ferrihydrite, siderite and goethite nanostructured minerals: Isotherms from flow-through reactor experiments and XAS measurements. J. Hazard. Mater. 2019;362:358–367. doi: 10.1016/j.jhazmat.2018.09.031. PubMed DOI
Deliyanni E.I., Bakoyannakis D.N., Zouboulis A.I., Matis K.A. Sorption of As(V) ions by akaganéite-type nanocrystals. Chemosphere. 2003;50:155–163. doi: 10.1016/S0045-6535(02)00351-X. PubMed DOI
Samanta A., Das S., Jana S. Exploring β-FeOOH Nanorods as an Efficient Adsorbent for Arsenic and Organic Dyes. ChemistrySelect. 2018;3:2467–2473. doi: 10.1002/slct.201703022. DOI
Zhang Y.X., Jia Y. A facile solution approach for the synthesis of akaganéite (β-FeOOH) nanorods and their ion-exchange mechanism toward As(V) ions. Appl. Surf. Sci. 2014;290:102–106. doi: 10.1016/j.apsusc.2013.11.007. DOI
Kolbe F., Weiss H., Morgenstern P., Wennrich R., Lorenz W., Schurk K., Stanjek H., Daus B. Sorption of aqueous antimony and arsenic species onto akaganeite. J. Colloid Interface Sci. 2011;357:460–465. doi: 10.1016/j.jcis.2011.01.095. PubMed DOI
Giles D.E., Mohapatra M., Issa T.B., Anand S., Singh P. Iron and aluminium based adsorption strategies for removing arsenic from water. J. Environ. Manag. 2011;92:3011–3022. doi: 10.1016/j.jenvman.2011.07.018. PubMed DOI
Deliyanni E.A., Peleka E.N., Matis K.A. Effect of cationic surfactant on the adsorption of arsenites onto akaganeite nanocrystals. Sep. Sci. Technol. 2007;42:993–1012. doi: 10.1080/01496390701206306. DOI
Pepper R.A., Couperthwaite S.J., Millar G.J. A novel akaganeite sorbent synthesised from waste red mud: Application for treatment of arsenate in aqueous solutions. J. Environ. Chem. Eng. 2018;6:6308–6316. doi: 10.1016/j.jece.2018.09.036. DOI
Wang H., Tsang Y.F., Wang Y.-N., Sun Y., Zhang D., Pan X. Adsorption capacities of poorly crystalline Fe minerals for antimonate and arsenate removal from water: Adsorption properties and effects of environmental and chemical conditions. Clean Technol. Environ. Policy. 2018;20:2169–2179. doi: 10.1007/s10098-018-1552-0. DOI
Raven K.P., Jain A., Loeppert R.H. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 1998;32:344–349. doi: 10.1021/es970421p. DOI
Jain A., Loeppert R.H. Effect of Competing Anions on the Adsorption of Arsenate and Arsenite by Ferrihydrite. J. Environ. Qual. 2000;29:1422–1430. doi: 10.2134/jeq2000.00472425002900050008x. DOI
Qi P., Pichler T. Competitive Adsorption of As(III) and As(V) by Ferrihydrite: Equilibrium, Kinetics, and Surface Complexation. Water Air Soil Pollut. 2016;227:387. doi: 10.1007/s11270-016-3091-9. DOI
Hao L., Liu M., Wang N., Li G. A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 2018;8:39545–39560. doi: 10.1039/C8RA08512A. PubMed DOI PMC
Richmond W.R., Cowley J.M., Parkinson G.M., Saunders M. An electron microscopy study of β-FeOOH (akaganéite) nanorods and nanotubes. CrystEngComm. 2006;8:36–40. doi: 10.1039/B513423D. DOI
Rémazeilles C., Refait P. On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corros. Sci. 2007;49:844–857. doi: 10.1016/j.corsci.2006.06.003. DOI
Cornell R.M., Schwertmann U. The Iron Oxides. Volume 39. Wiley; New York, NY, USA: 2003.
Sanna Angotzi M., Mameli V., Cara C., Borchert K.B.L., Steinbach C., Boldt R., Schwarz D., Cannas C. Meso- and macroporous silica-based arsenic adsorbents: Effect of pore size, nature of the active phase, and silicon release. Nanoscale Adv. 2021;3:6100–6113. doi: 10.1039/D1NA00487E. PubMed DOI PMC
Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916;38:2221–2295. doi: 10.1021/ja02268a002. DOI
Freundlich H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907;57U:385–470. doi: 10.1515/zpch-1907-5723. DOI
Temkin M.I., Pyzhev V. Kinetics of ammonia synthesis over a promoted iron catalyst. Acta Phys. Chim. URSS. 1940;12:327.
Redlich O., Peterson D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959;63:1024. doi: 10.1021/j150576a611. DOI
Dubinin M.M., Radushkevich L.V. On the characteristic curve equation for active charcoals. Doklay Akad. Nauk. 1947;15:327–329.
Lutterotti L., Scardi P. Simultaneous structure and size–strain refinement by the Rietveld method. J. Appl. Crystallogr. 1990;23:246–252. doi: 10.1107/S0021889890002382. DOI
Post J.E., Heaney P.J., Von Dreele R.B., Hanson J.C. Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganéite. Am. Mineral. 2003;88:782–788. doi: 10.2138/am-2003-5-607. DOI
Michel F.M., Ehm L., Antao S.M., Lee P.L., Chupas P.J., Liu G., Strongin D.R., Schoonen M.A.A., Phillips B.L., Parise J.B. The Structure of Ferrihydrite, a Nanocrystalline Material. Science. 2007;316:1726–1729. doi: 10.1126/science.1142525. PubMed DOI
Pecharromán C., González-Carreño T., Iglesias J. The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders. Phys. Chem. Miner. 1995;22:21–29. doi: 10.1007/BF00202677. DOI
Brunauer S., Emmett P.H., Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI
Barrett E.P., Joyner L.G., Halenda P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951;73:373–380. doi: 10.1021/ja01145a126. DOI
Horváth G., Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Japan. 1983;16:470–475. doi: 10.1252/jcej.16.470. DOI
Hoy G.R., Long G.J. In: Mössbauer Spectroscopy Applied to Inorganic Chemistry. Long G.J., editor. Volume 2. Springer; Boston, MA, USA: 1984.
Sanna Angotzi M., Mameli V., Cara C., Peddis D., Xin H.L., Sangregorio C., Mercuri M.L., Cannas C. On the synthesis of bi-magnetic manganese ferrite-based core–shell nanoparticles. Nanoscale Adv. 2021;3:1612–1623. doi: 10.1039/D0NA00967A. PubMed DOI PMC
Sanna Angotzi M., Mameli V., Musinu A., Nizňnanský D. 57 Fe Mössbauer Spectroscopy for the Study of Nanostructured Mixed Mn–Co Spinel Ferrites. J. Nanosci. Nanotechnol. 2019;19:5008–5013. doi: 10.1166/jnn.2019.16793. PubMed DOI
Sanna Angotzi M., Mameli V., Cara C., Ardu A., Nizňnanský D., Musinu A. Oleate-Based Solvothermal Approach for Size Control of MIIFe2IIIO4 (MII = MnII, FeII) Colloidal Nanoparticles. J. Nanosci. Nanotechnol. 2019;19:4954–4963. doi: 10.1166/jnn.2019.16785. PubMed DOI
Sanna Angotzi M., Mameli V., Khanal S., Veverka M., Vejpravova J., Cannas C. Effect of Different Molecular Coating on the Heating Properties of Maghemite Nanoparticles. Nanoscale Adv. 2022;4:408–420. doi: 10.1039/D1NA00478F. PubMed DOI PMC
Sanna Angotzi M., Mameli V., Cara C., Grillo V., Enzo S., Musinu A., Cannas C. Defect-assisted synthesis of magneto-plasmonic silver-spinel ferrite heterostructures in a flower-like architecture. Sci. Rep. 2020;10:17015. doi: 10.1038/s41598-020-73502-5. PubMed DOI PMC
Sanna Angotzi M., Mameli V., Zákutná D., Kubániová D., Cara C., Cannas C. Evolution of the Magnetic and Structural Properties with the Chemical Composition in Oleate-Capped MnxCo1−xFe2O4 Nanoparticles. J. Phys. Chem. C. 2021;125:20626–20638. doi: 10.1021/acs.jpcc.1c06211. DOI
Knyazev Y.V., Balaev D.A., Stolyar S.V., Krasikov A.A., Bayukov O.A., Volochaev M.N., Yaroslavtsev R.N., Ladygina V.P., Velikanov D.A., Iskhakov R.S. Interparticle magnetic interactions in synthetic ferrihydrite: Mössbauer spectroscopy and magnetometry study of the dynamic and static manifestations. J. Alloys Compd. 2022;889:161623. doi: 10.1016/j.jallcom.2021.161623. DOI
Vacca M.A., Cara C., Mameli V., Sanna Angotzi M., Scorciapino M.A., Cutrufello M.G., Musinu A., Tyrpekl V., Pala L., Cannas C. Hexafluorosilicic Acid (FSA): From Hazardous Waste to Precious Resource in Obtaining High Value-Added Mesostructured Silica. ACS Sustain. Chem. Eng. 2020;8:14286–14300. doi: 10.1021/acssuschemeng.0c03218. DOI
Cara C., Mameli V., Rombi E., Pinna N., Sanna Angotzi M., Nižňanský D., Musinu A., Cannas C. Anchoring ultrasmall FeIII-based nanoparticles on silica and titania mesostructures for syngas H2S purification. Microporous Mesoporous Mater. 2020;298:110062. doi: 10.1016/j.micromeso.2020.110062. DOI
Villacorta V., Barrero C.A., Turrión M.-B., Lafuente F., Greneche J.-M., García K.E. Removal of As³⁺, As⁵⁺, Sb³⁺, and Hg²⁺ ions from aqueous solutions by pure and co-precipitated akaganeite nanoparticles: Adsorption kinetics studies. RSC Adv. 2020;10:42688–42698. doi: 10.1039/D0RA08075F. PubMed DOI PMC
Sanna Angotzi M., Musinu A., Mameli V., Ardu A., Cara C., Niznansky D., Xin H.L., Cannas C. Spinel Ferrite Core–Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces. ACS Nano. 2017;11:7889–7900. doi: 10.1021/acsnano.7b02349. PubMed DOI
Lutterotti L., Scardi P. Profile Fitting by the Interference Function. Adv. X-ray Anal. 1991;35:577–584. doi: 10.1154/S0376030800009277. DOI
Kokunešoski M., Gulicovski J., Matović B., Logar M., Milonjić S.K., Babić B. Synthesis and surface characterization of ordered mesoporous silica SBA-15. Mater. Chem. Phys. 2010;124:1248–1252. doi: 10.1016/j.matchemphys.2010.08.066. DOI
Kersten M., Karabacheva S., Vlasova N., Branscheid R., Schurk K., Stanjek H. Surface complexation modeling of arsenate adsorption by akagenéite (β-FeOOH)-dominant granular ferric hydroxide. Colloids Surf. Physicochem. Eng. Asp. 2014;448:73–80. doi: 10.1016/j.colsurfa.2014.02.008. DOI
Brinker C.J. Sol-Gel Science: The Physics and Chemistry of Sol–Gel Processing. Academic Press; Cambridge, MA, USA: 1990.
Mohan D., Pittman C.U. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007;142:1–53. doi: 10.1016/j.jhazmat.2007.01.006. PubMed DOI