As(III, V) Uptake from Nanostructured Iron Oxides and Oxyhydroxides: The Complex Interplay between Sorbent Surface Chemistry and Arsenic Equilibria

. 2022 Jan 20 ; 12 (3) : . [epub] 20220120

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35159671

Grantová podpora
F72F20000240007 Fondazione Banco di Sardegna
J88D19001040001 Ministry of Education, Universities and Research
AIM1890410-3 Ministry of Education, Universities and Research

Iron oxides/oxyhydroxides, namely maghemite, iron oxide-silica composite, akaganeite, and ferrihydrite, are studied for AsV and AsIII removal from water in the pH range 2-8. All sorbents were characterized for their structural, morphological, textural, and surface charge properties. The same experimental conditions for the batch tests permitted a direct comparison among the sorbents, particularly between the oxyhydroxides, known to be among the most promising As-removers but hardly compared in the literature. The tests revealed akaganeite to perform better in the whole pH range for AsV (max 89 mg g-1 at pH0 3) but to be also efficient toward AsIII (max 91 mg g-1 at pH0 3-8), for which the best sorbent was ferrihydrite (max 144 mg g-1 at pH0 8). Moreover, the study of the sorbents' surface chemistry under contact with arsenic and arsenic-free solutions allowed the understanding of its role in the arsenic uptake through electrophoretic light scattering and pH measurements. Indeed, the sorbent's ability to modify the starting pH was a crucial step in determining the removal of performances. The AsV initial concentration, contact time, ionic strength, and presence of competitors were also studied for akaganeite, the most promising remover, at pH0 3 and 8 to deepen the uptake mechanism.

Zobrazit více v PubMed

World Health Organization . In: 2017 Guidelines for Drinking-Water Quality. 4th ed. World Health Organization, editor. World Health Organization; Geneva, Switzerland: 2017.

Liu B., Kim K.H., Kumar V., Kim S. A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. J. Hazard. Mater. 2020;388:121815. doi: 10.1016/j.jhazmat.2019.121815. PubMed DOI

O’Day P.A. Chemistry and Mineralogy of Arsenic. Elements. 2006;2:77–83. doi: 10.2113/gselements.2.2.77. DOI

RoyChowdhury A., Sarkar D., Datta R. Remediation of Acid Mine Drainage-Impacted Water. Curr. Pollut. Rep. 2015;1:131–141. doi: 10.1007/s40726-015-0011-3. DOI

Bolisetty S., Peydayesh M., Mezzenga R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019;48:463–487. doi: 10.1039/C8CS00493E. PubMed DOI

Samuel M.S., Selvarajan E., Sarswat A., Muthukumar H., Jacob J.M., Mukesh M., Pugazhendhi A. Nanomaterials as adsorbents for As(III) and As(V) removal from water: A review. J. Hazard. Mater. 2022;424:127572. doi: 10.1016/j.jhazmat.2021.127572. PubMed DOI

Luong V.T., Cañas Kurz E.E., Hellriegel U., Luu T.L., Hoinkis J., Bundschuh J. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. Water Res. 2018;133:110–122. doi: 10.1016/j.watres.2018.01.007. PubMed DOI

Kobya M., Soltani R.D.C., Omwene P.I., Khataee A. A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. Environ. Technol. Innov. 2020;17:100519. doi: 10.1016/j.eti.2019.100519. DOI

Kamegawa T., Ishiguro Y., Seto H., Yamashita H. Enhanced photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in water purification. J. Mater. Chem. A. 2015;3:2323–2330. doi: 10.1039/C4TA06020B. DOI

Benhamou A., Basly J.P., Baudu M., Derriche Z., Hamacha R. Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate. J. Colloid Interface Sci. 2013;404:135–139. doi: 10.1016/j.jcis.2013.04.026. PubMed DOI

Haldar D., Duarah P., Purkait M.K. MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere. 2020;251:126388. doi: 10.1016/j.chemosphere.2020.126388. PubMed DOI

Sarkar A., Paul B. The global menace of arsenic and its conventional remediation—A critical review. Chemosphere. 2016;158:37–49. doi: 10.1016/j.chemosphere.2016.05.043. PubMed DOI

Wu X., Hu J., Wu F., Zhang X., Wang B., Yang Y., Shen G., Liu J., Tao S., Wang X. Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. J. Hazard. Mater. 2021;405:124047. doi: 10.1016/j.jhazmat.2020.124047. PubMed DOI

Pereira F.J., Vázquez M.D., Debán L., Aller A.J. Determination of arsenic by ICP-MS after retention on thoria nanoparticles. Anal. Methods. 2015;7:598–606. doi: 10.1039/C4AY02181A. DOI

Jain A., Raven K.P., Loeppert R.H. Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH- release stoichiometry. Environ. Sci. Technol. 1999;33:1179–1184. doi: 10.1021/es980722e. DOI

Wang S., Mulligan C.N. Speciation and surface structure of inorganic arsenic in solid phases: A review. Environ. Int. 2008;34:867–879. doi: 10.1016/j.envint.2007.11.005. PubMed DOI

Lin S., Lu D., Liu Z. Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chem. Eng. J. 2012;211–212:46–52. doi: 10.1016/j.cej.2012.09.018. DOI

Chowdhury S.R., Yanful E.K., Pratt A.R. Arsenic removal from aqueous solutions by mixed magnetite-maghemite nanoparticles. Environ. Earth Sci. 2011;64:411–423. doi: 10.1007/s12665-010-0865-z. DOI

Tuutijärvi T., Lu J., Sillanpää M., Chen G. As(V) adsorption on maghemite nanoparticles. J. Hazard. Mater. 2009;166:1415–1420. doi: 10.1016/j.jhazmat.2008.12.069. PubMed DOI

Ramos-Guivar J.A., Flores-Cano D.A., Passamani E.C. Differentiating nanomaghemite and nanomagnetite and discussing their importance in arsenic and lead removal from contaminated effluents: A critical review. Nanomaterials. 2021;11:2310. doi: 10.3390/nano11092310. PubMed DOI PMC

Memon A.Q., Ahmed S., Bhatti Z.A., Maitlo G., Shah A.K., Mazari S.A., Muhammad A., Jatoi A.S., Kandhro G.A. Experimental investigations of arsenic adsorption from contaminated water using chemically activated hematite (Fe2O3) iron ore. Environ. Sci. Pollut. Res. 2021;28:12898–12908. doi: 10.1007/s11356-020-11208-x. PubMed DOI

Freitas E.T.F., Montoro L.A., Gasparon M., Ciminelli V.S.T. Natural attenuation of arsenic in the environment by immobilization in nanostructured hematite. Chemosphere. 2015;138:340–347. doi: 10.1016/j.chemosphere.2015.05.101. PubMed DOI

Hajji S., Montes-Hernandez G., Sarret G., Tordo A., Morin G., Ona-Nguema G., Bureau S., Turki T., Mzoughi N. Arsenite and chromate sequestration onto ferrihydrite, siderite and goethite nanostructured minerals: Isotherms from flow-through reactor experiments and XAS measurements. J. Hazard. Mater. 2019;362:358–367. doi: 10.1016/j.jhazmat.2018.09.031. PubMed DOI

Deliyanni E.I., Bakoyannakis D.N., Zouboulis A.I., Matis K.A. Sorption of As(V) ions by akaganéite-type nanocrystals. Chemosphere. 2003;50:155–163. doi: 10.1016/S0045-6535(02)00351-X. PubMed DOI

Samanta A., Das S., Jana S. Exploring β-FeOOH Nanorods as an Efficient Adsorbent for Arsenic and Organic Dyes. ChemistrySelect. 2018;3:2467–2473. doi: 10.1002/slct.201703022. DOI

Zhang Y.X., Jia Y. A facile solution approach for the synthesis of akaganéite (β-FeOOH) nanorods and their ion-exchange mechanism toward As(V) ions. Appl. Surf. Sci. 2014;290:102–106. doi: 10.1016/j.apsusc.2013.11.007. DOI

Kolbe F., Weiss H., Morgenstern P., Wennrich R., Lorenz W., Schurk K., Stanjek H., Daus B. Sorption of aqueous antimony and arsenic species onto akaganeite. J. Colloid Interface Sci. 2011;357:460–465. doi: 10.1016/j.jcis.2011.01.095. PubMed DOI

Giles D.E., Mohapatra M., Issa T.B., Anand S., Singh P. Iron and aluminium based adsorption strategies for removing arsenic from water. J. Environ. Manag. 2011;92:3011–3022. doi: 10.1016/j.jenvman.2011.07.018. PubMed DOI

Deliyanni E.A., Peleka E.N., Matis K.A. Effect of cationic surfactant on the adsorption of arsenites onto akaganeite nanocrystals. Sep. Sci. Technol. 2007;42:993–1012. doi: 10.1080/01496390701206306. DOI

Pepper R.A., Couperthwaite S.J., Millar G.J. A novel akaganeite sorbent synthesised from waste red mud: Application for treatment of arsenate in aqueous solutions. J. Environ. Chem. Eng. 2018;6:6308–6316. doi: 10.1016/j.jece.2018.09.036. DOI

Wang H., Tsang Y.F., Wang Y.-N., Sun Y., Zhang D., Pan X. Adsorption capacities of poorly crystalline Fe minerals for antimonate and arsenate removal from water: Adsorption properties and effects of environmental and chemical conditions. Clean Technol. Environ. Policy. 2018;20:2169–2179. doi: 10.1007/s10098-018-1552-0. DOI

Raven K.P., Jain A., Loeppert R.H. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 1998;32:344–349. doi: 10.1021/es970421p. DOI

Jain A., Loeppert R.H. Effect of Competing Anions on the Adsorption of Arsenate and Arsenite by Ferrihydrite. J. Environ. Qual. 2000;29:1422–1430. doi: 10.2134/jeq2000.00472425002900050008x. DOI

Qi P., Pichler T. Competitive Adsorption of As(III) and As(V) by Ferrihydrite: Equilibrium, Kinetics, and Surface Complexation. Water Air Soil Pollut. 2016;227:387. doi: 10.1007/s11270-016-3091-9. DOI

Hao L., Liu M., Wang N., Li G. A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 2018;8:39545–39560. doi: 10.1039/C8RA08512A. PubMed DOI PMC

Richmond W.R., Cowley J.M., Parkinson G.M., Saunders M. An electron microscopy study of β-FeOOH (akaganéite) nanorods and nanotubes. CrystEngComm. 2006;8:36–40. doi: 10.1039/B513423D. DOI

Rémazeilles C., Refait P. On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corros. Sci. 2007;49:844–857. doi: 10.1016/j.corsci.2006.06.003. DOI

Cornell R.M., Schwertmann U. The Iron Oxides. Volume 39. Wiley; New York, NY, USA: 2003.

Sanna Angotzi M., Mameli V., Cara C., Borchert K.B.L., Steinbach C., Boldt R., Schwarz D., Cannas C. Meso- and macroporous silica-based arsenic adsorbents: Effect of pore size, nature of the active phase, and silicon release. Nanoscale Adv. 2021;3:6100–6113. doi: 10.1039/D1NA00487E. PubMed DOI PMC

Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916;38:2221–2295. doi: 10.1021/ja02268a002. DOI

Freundlich H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907;57U:385–470. doi: 10.1515/zpch-1907-5723. DOI

Temkin M.I., Pyzhev V. Kinetics of ammonia synthesis over a promoted iron catalyst. Acta Phys. Chim. URSS. 1940;12:327.

Redlich O., Peterson D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959;63:1024. doi: 10.1021/j150576a611. DOI

Dubinin M.M., Radushkevich L.V. On the characteristic curve equation for active charcoals. Doklay Akad. Nauk. 1947;15:327–329.

Lutterotti L., Scardi P. Simultaneous structure and size–strain refinement by the Rietveld method. J. Appl. Crystallogr. 1990;23:246–252. doi: 10.1107/S0021889890002382. DOI

Post J.E., Heaney P.J., Von Dreele R.B., Hanson J.C. Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganéite. Am. Mineral. 2003;88:782–788. doi: 10.2138/am-2003-5-607. DOI

Michel F.M., Ehm L., Antao S.M., Lee P.L., Chupas P.J., Liu G., Strongin D.R., Schoonen M.A.A., Phillips B.L., Parise J.B. The Structure of Ferrihydrite, a Nanocrystalline Material. Science. 2007;316:1726–1729. doi: 10.1126/science.1142525. PubMed DOI

Pecharromán C., González-Carreño T., Iglesias J. The infrared dielectric properties of maghemite, γ-Fe2O3, from reflectance measurement on pressed powders. Phys. Chem. Miner. 1995;22:21–29. doi: 10.1007/BF00202677. DOI

Brunauer S., Emmett P.H., Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI

Barrett E.P., Joyner L.G., Halenda P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951;73:373–380. doi: 10.1021/ja01145a126. DOI

Horváth G., Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Japan. 1983;16:470–475. doi: 10.1252/jcej.16.470. DOI

Hoy G.R., Long G.J. In: Mössbauer Spectroscopy Applied to Inorganic Chemistry. Long G.J., editor. Volume 2. Springer; Boston, MA, USA: 1984.

Sanna Angotzi M., Mameli V., Cara C., Peddis D., Xin H.L., Sangregorio C., Mercuri M.L., Cannas C. On the synthesis of bi-magnetic manganese ferrite-based core–shell nanoparticles. Nanoscale Adv. 2021;3:1612–1623. doi: 10.1039/D0NA00967A. PubMed DOI PMC

Sanna Angotzi M., Mameli V., Musinu A., Nizňnanský D. 57 Fe Mössbauer Spectroscopy for the Study of Nanostructured Mixed Mn–Co Spinel Ferrites. J. Nanosci. Nanotechnol. 2019;19:5008–5013. doi: 10.1166/jnn.2019.16793. PubMed DOI

Sanna Angotzi M., Mameli V., Cara C., Ardu A., Nizňnanský D., Musinu A. Oleate-Based Solvothermal Approach for Size Control of MIIFe2IIIO4 (MII = MnII, FeII) Colloidal Nanoparticles. J. Nanosci. Nanotechnol. 2019;19:4954–4963. doi: 10.1166/jnn.2019.16785. PubMed DOI

Sanna Angotzi M., Mameli V., Khanal S., Veverka M., Vejpravova J., Cannas C. Effect of Different Molecular Coating on the Heating Properties of Maghemite Nanoparticles. Nanoscale Adv. 2022;4:408–420. doi: 10.1039/D1NA00478F. PubMed DOI PMC

Sanna Angotzi M., Mameli V., Cara C., Grillo V., Enzo S., Musinu A., Cannas C. Defect-assisted synthesis of magneto-plasmonic silver-spinel ferrite heterostructures in a flower-like architecture. Sci. Rep. 2020;10:17015. doi: 10.1038/s41598-020-73502-5. PubMed DOI PMC

Sanna Angotzi M., Mameli V., Zákutná D., Kubániová D., Cara C., Cannas C. Evolution of the Magnetic and Structural Properties with the Chemical Composition in Oleate-Capped MnxCo1−xFe2O4 Nanoparticles. J. Phys. Chem. C. 2021;125:20626–20638. doi: 10.1021/acs.jpcc.1c06211. DOI

Knyazev Y.V., Balaev D.A., Stolyar S.V., Krasikov A.A., Bayukov O.A., Volochaev M.N., Yaroslavtsev R.N., Ladygina V.P., Velikanov D.A., Iskhakov R.S. Interparticle magnetic interactions in synthetic ferrihydrite: Mössbauer spectroscopy and magnetometry study of the dynamic and static manifestations. J. Alloys Compd. 2022;889:161623. doi: 10.1016/j.jallcom.2021.161623. DOI

Vacca M.A., Cara C., Mameli V., Sanna Angotzi M., Scorciapino M.A., Cutrufello M.G., Musinu A., Tyrpekl V., Pala L., Cannas C. Hexafluorosilicic Acid (FSA): From Hazardous Waste to Precious Resource in Obtaining High Value-Added Mesostructured Silica. ACS Sustain. Chem. Eng. 2020;8:14286–14300. doi: 10.1021/acssuschemeng.0c03218. DOI

Cara C., Mameli V., Rombi E., Pinna N., Sanna Angotzi M., Nižňanský D., Musinu A., Cannas C. Anchoring ultrasmall FeIII-based nanoparticles on silica and titania mesostructures for syngas H2S purification. Microporous Mesoporous Mater. 2020;298:110062. doi: 10.1016/j.micromeso.2020.110062. DOI

Villacorta V., Barrero C.A., Turrión M.-B., Lafuente F., Greneche J.-M., García K.E. Removal of As³⁺, As⁵⁺, Sb³⁺, and Hg²⁺ ions from aqueous solutions by pure and co-precipitated akaganeite nanoparticles: Adsorption kinetics studies. RSC Adv. 2020;10:42688–42698. doi: 10.1039/D0RA08075F. PubMed DOI PMC

Sanna Angotzi M., Musinu A., Mameli V., Ardu A., Cara C., Niznansky D., Xin H.L., Cannas C. Spinel Ferrite Core–Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces. ACS Nano. 2017;11:7889–7900. doi: 10.1021/acsnano.7b02349. PubMed DOI

Lutterotti L., Scardi P. Profile Fitting by the Interference Function. Adv. X-ray Anal. 1991;35:577–584. doi: 10.1154/S0376030800009277. DOI

Kokunešoski M., Gulicovski J., Matović B., Logar M., Milonjić S.K., Babić B. Synthesis and surface characterization of ordered mesoporous silica SBA-15. Mater. Chem. Phys. 2010;124:1248–1252. doi: 10.1016/j.matchemphys.2010.08.066. DOI

Kersten M., Karabacheva S., Vlasova N., Branscheid R., Schurk K., Stanjek H. Surface complexation modeling of arsenate adsorption by akagenéite (β-FeOOH)-dominant granular ferric hydroxide. Colloids Surf. Physicochem. Eng. Asp. 2014;448:73–80. doi: 10.1016/j.colsurfa.2014.02.008. DOI

Brinker C.J. Sol-Gel Science: The Physics and Chemistry of Sol–Gel Processing. Academic Press; Cambridge, MA, USA: 1990.

Mohan D., Pittman C.U. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007;142:1–53. doi: 10.1016/j.jhazmat.2007.01.006. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...