Evolutionary diversification of cytokinin-specific glucosyltransferases in angiosperms and enigma of missing cis-zeatin O-glucosyltransferase gene in Brassicaceae
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33846460
PubMed Central
PMC8041765
DOI
10.1038/s41598-021-87047-8
PII: 10.1038/s41598-021-87047-8
Knihovny.cz E-zdroje
- MeSH
- Brassicaceae genetika MeSH
- cytokininy genetika MeSH
- glukosyltransferasy genetika MeSH
- Magnoliopsida * genetika metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- glukosyltransferasy MeSH
- rostlinné proteiny MeSH
In the complex process of homeostasis of phytohormones cytokinins (CKs), O-glucosylation catalyzed by specific O-glucosyltransferases represents one of important mechanisms of their reversible inactivation. The CK O-glucosyltransferases belong to a highly divergent and polyphyletic multigene superfamily of glycosyltransferases, of which subfamily 1 containing UDP-glycosyltransferases (UGTs) is the largest in the plant kingdom. It contains recently discovered O and P subfamilies present in higher plant species but not in Arabidopsis thaliana. The cis-zeatin O-glucosyltransferase (cisZOG) genes belong to the O subfamily encoding a stereo-specific O-glucosylation of cis-zeatin-type CKs. We studied different homologous genes, their domains and motifs, and performed a phylogenetic reconstruction to elucidate the plant evolution of the cisZOG gene. We found that the cisZOG homologs do not form a clear separate clade, indicating that diversification of the cisZOG gene took place after the diversification of the main angiosperm families, probably within genera or closely related groups. We confirmed that the gene(s) from group O is(are) not present in A. thaliana and is(are) also missing in the family Brassicaceae. However, cisZOG or its metabolites are found among Brassicaceae clade, indicating that remaining genes from other groups (UGT73-group D and UGT85-group G) are able, at least in part, to substitute the function of group O lost during evolution. This study is the first detailed evolutionary evaluation of relationships among different plant ZOGs within angiosperms.
Zobrazit více v PubMed
Spíchal L. Cytokinins—Recent news and views of evolutionally old molecules. Funct. Plant Biol. 2012;39:267–284. doi: 10.1071/FP11276. PubMed DOI
Hluska T, Hlusková L, Emery RJN. The Hulks and the Deadpools of the cytokinin universe: A dual strategy for cytokinin production, translocation, and signal transduction. Biomolecules. 2021;11:209. doi: 10.3390/biom11020209. PubMed DOI PMC
Pokorná E, Hluska T, Galuszka P, Hallmark HT, Dobrev PI, Záveská Drábková L, Filipi T, Holubová K, Plíhal O, Rashotte AM, Filepová R, Malbeck J, Novák O, Spíchal L, Brzobohatý B, Mazura P, Zahajská L, Motyka V. Cytokinin N-glucosides: Occurrence, metabolism and biological activities in plants. Biomolecules. 2021;11:24. doi: 10.3390/biom11010024. PubMed DOI PMC
Yonekura-Sakakibara K, Hanada K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J. 2011;66:182–193. doi: 10.1111/j.1365-313X.2011.04493.x. PubMed DOI
Li Y, Baldauf S, Lim E-K, Bowles DJ. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J. Biol. Chem. 2001;276:4338–4343. doi: 10.1074/jbc.M007447200. PubMed DOI
Mackenzie PI, Owens IS, Burchel B, Bock KW, Bairoch A, Bélanger A, et al. The UDP glucosyltransferase gene family: Recommended nomenclature updated based on evolutionary divergence. Pharmacogenetics. 1997;7:255–269. doi: 10.1097/00008571-199708000-00001. PubMed DOI
Bowles D, Isayenkova J, Lim EK, Poppenberger B. Glycosyltransferases: Managers of small molecules. Curr. Opin. Plant Biol. 2005;8:254–263. doi: 10.1016/j.pbi.2005.03.007. PubMed DOI
Ross J, Li Y, Lim E-K, Bowles DJ. Higher plant glycosyltransferases. Genome Biol. 2001;2:reviews3004. doi: 10.1186/gb-2001-2-2-reviews3004. PubMed DOI PMC
Caputi L, Malnoy M, Goremykin V, Nikiforova S, Materns S. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. Plant J. 2012;69:1030–1042. doi: 10.1111/j.1365-313X.2011.04853.x. PubMed DOI
Huang J, Pang C, Fan C, Song M, Yu J, Wei H, et al. Genome-wide analysis of the family 1 glycosyltransferases in cotton. Mol. Genet. Genom. 2015;290:1805–1818. doi: 10.1007/s00438-015-1040-8. PubMed DOI
Rohmer M. Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl. Chem. 2003;75:375–387. doi: 10.1351/pac200375020375. DOI
Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiyam Y, et al. Distinct isoprenoid origins of cis and trans-zeatin biosyntheses in Arabidopsis. J. Biol. Chem. 2004;279:14049–14054. doi: 10.1074/jbc.M314195200. PubMed DOI
Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI
Åstot C, Doležal K, Nordström A, Wang Q, Kunkel T, Moritz T, et al. An alternative cytokinin biosynthesis pathway. PNAS. 2000;97:14778–14783. doi: 10.1073/pnas.260504097. PubMed DOI PMC
Kamínek M. Evolution of tRNA and origin of the two positional isomers of zeatin. J. Theor. Biol. 1974;48:489–492. doi: 10.1016/S0022-5193(74)80018-4. PubMed DOI
Persson BC, Esberg B, Ólafsson Ó, Björk GR. Synthesis and function of isopentenyl adenosine derivatives in tRNA. Biochimie. 1994;76:1152–1160. doi: 10.1016/0300-9084(94)90044-2. PubMed DOI
Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI
Klämbt D. The biogenesis of cytokinins in higher plants: Our present knowledge. In Physiology and Biochemistry of Cytokinins in Plants. (eds. Kamínek, M., Mok, D. W. S. & Zažímalová, E.) 25–27 (SPB Academic, 1992).
Dixon SC, Martin RC, Mok MC, Shaw G, Mok DWS. Zeatin glycosylation enzymes in Phaseolus. Isolation of O-glucosyltransferase from P. lunatus and comparison to O-xylosyltransferase from P. vulgaris. Plant Physiol. 1989;90:1316–1321. doi: 10.1104/pp.90.4.1316. PubMed DOI PMC
Turner JE, Mok DWS, Mok MC, Shaw G. Isolation and partial purification of an enzyme catalyzing the formation of O-xylosylzeatin in Phaseolus vulgaris embryos. Proc. Natl. Acad. Sci. U. S. A. 1987;84:3714–3717. doi: 10.1073/pnas.84.11.3714. PubMed DOI PMC
Martin RC, Mok MC, Mok DWS. Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc. Natl. Acad. Sci. U. S. A. 1999;96:284–289. doi: 10.1073/pnas.96.1.284. PubMed DOI PMC
Martin RC, Mok MC, Mok DW. A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of Phaseolus vulgaris. Plant Physiol. 1999;120:553–558. doi: 10.1104/pp.120.2.553. PubMed DOI PMC
Martin RC, Mok MC, Habben JE, Mok DW. A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. PNAS. 2001;98:5922–5926. doi: 10.1073/pnas.101128798. PubMed DOI PMC
Veach YK, Martin RC, Mok DWS, Malbeck J, Vaňková R, Mok MC. O-Glucosylation of cis-zeatin in maize characterization of genes, enzymes, and endogenous cytokinins. Plant Phys. 2003;131:1374–1380. doi: 10.1104/pp.017210. PubMed DOI PMC
Kudo T, Makita N, Kojima M, Tokunaga H, Sakakibara H. Cytokinin Activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiol. 2012;160:319–331. doi: 10.1104/pp.112.196733. PubMed DOI PMC
Hou B, Lim E-K, Higgins GS, Bowles DJ. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem. 2004;279:47822–47832. doi: 10.1074/jbc.M409569200. PubMed DOI
Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, Seto H, Takatsuto S, Adam G, Yoshida S, Bowles D. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc. Natl. Acad. Sci. U. S. A. 2005;102:15253–15258. doi: 10.1073/pnas.0504279102. PubMed DOI PMC
Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, Bruce NC. Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: Discovery of bifunctional O- and C-glucosyltransferases. Plant J. 2008;56:963–974. doi: 10.1111/j.1365-313X.2008.03653.x. PubMed DOI
Jin S-H, Ma X-M, Kojima M, Sakakibara H, Wang Y-W, Hou B-K. Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta. 2013;237:991–999. doi: 10.1007/s00425-012-1818-4. PubMed DOI
Šmehilová M, Dobrůšková J, Novák O, Takáč T, Galuszka P. Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance. Front. Plant Sci. 2016;7:1264. doi: 10.3389/fpls.2016.01264. PubMed DOI PMC
Swigoňová Z, Bennetzen JL, Messig J. Structure and evolution of the r/b chromosomal regions in rice, maize and sorgum. Genetics. 2005;169:891–906. doi: 10.1534/genetics.104.034629. PubMed DOI PMC
Paquette S, Lindberg Møller B, Bak S. On the origin of family 1 plant glycosyltransferases. Phytochemistry. 2003;62:399–413. doi: 10.1016/S0031-9422(02)00558-7. PubMed DOI
Osmani SA, Bak S, Imberty A, Olsen CE, Møller BL. Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase UGT94B1: Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol. 2008;48:1295–1308. doi: 10.1104/pp.108.128256. PubMed DOI PMC
Kubo A, Arai Y, Nagashima S, Yoshikawa T. Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Arch. Biochem. Biophys. 2004;429:198–203. doi: 10.1016/j.abb.2004.06.021. PubMed DOI
Ono E, Homma Y, Horikawa M, Kunikane-Doi S, Imai H, Takahashi S, Kawai Y, Ishiguro M, Fukui Y, Nakayama T. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera) Plant Cell. 2010;22:2856–2871. doi: 10.1105/tpc.110.074625. PubMed DOI PMC
Schweiger W, Pasquet J-C, Nussbaumer T, Kovalsky Paris MP, Wiesenberger GW, et al. Functional characterization of two clusters of Brachypodium distachyon UDP-glycosyltransferases encoding putative deoxynivalenol detoxification genes. MPMI. 2013;26:781–792. doi: 10.1094/MPMI-08-12-0205-R. PubMed DOI
Spíchal L. Cytokinins—Recent news of old molecules. Funct. Plant Biol. 2012;39:267–284. doi: 10.1071/FP11276. PubMed DOI
Rubinstein CV, Gerriene P, de la Puente GS, Astini RA, Steemans P. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana) New Phytol. 2010;188:365–369. doi: 10.1111/j.1469-8137.2010.03433.x. PubMed DOI
Záveská Drábková L, Honys D. Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development. PLoS ONE. 2017;13:e0187331. doi: 10.1371/journal.pone.0187331. PubMed DOI PMC
Little A, Schwerdt JG, Shirley NJ, Khor SF, Neumann K, O´Donovan LA, et al. Revised phylogeny of cellulose synthase gene superfamily: Insights into cell wall evolution. Plant. Phys. 2018;117:1124–1141. doi: 10.1104/pp.17.01718. PubMed DOI PMC
Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 2018;105:348–363. doi: 10.1002/ajb2.1060. PubMed DOI
Freeling M. Bias in plant gene content following different sorts of duplication: Tandem, whole-genome, segmental, or by transposition. Ann. Rev. Plant. Biol. 2009;60:433–453. doi: 10.1146/annurev.arplant.043008.092122. PubMed DOI
Choi IG, Kim SH. Evolution of protein structural classes and protein sequence families. PNAS. 2006;3:14056–14061. doi: 10.1073/pnas.0606239103. PubMed DOI PMC
Sikosek, T. & Bornberg-Bauer, E. Evolution before and after gene duplication? In Evolution After Gene Duplication (eds. Dittmar, K. & Liberles, D.) 106–131 (Wiley-Blackwell, 2010).
Tiley GP, Ané C, Burleigh G. Evaluating and characterizing ancient whole-genome duplications in plants with gene count data. Genome Biol. Evol. 2015;8(4):1023–1037. doi: 10.1093/gbe/evw058. PubMed DOI PMC
de Bruijn S, Zhao T, Muiño JM, Schranz EM, Angenent GC, Kaufmann K. PISTILLATA paralogs in Tarenaya hassleriana have diverged in interaction specificity. BMC Plant Biol. 2018;18:368. doi: 10.1186/s12870-018-1574-0. PubMed DOI PMC
Mei W, Boatwright L, Feng G, Schnable JC, Barbazuk WB. Evolutionarily conserved alternative splicing across monocots. Genetics. 2017;207:465–480. doi: 10.1534/genetics.117.300189. PubMed DOI PMC
Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 2012;22:1184–1195. doi: 10.1101/gr.134106.111. PubMed DOI PMC
Reddy ASN, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants. Plant Cell. 2013;25:3657–3683. doi: 10.1105/tpc.113.117523. PubMed DOI PMC
Shang X, Cao Y, Ma L. Alternative splicing in plant genes: A means of regulating the environmental fitness of plants. Int. J. Mol. Sci. 2017;18:432. doi: 10.3390/ijms18020432. PubMed DOI PMC
Hughes J, Hughes MA. Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava. DNA Seq. 1994;5:41–49. doi: 10.3109/10425179409039703. PubMed DOI
Ostrowski M, Jakubovska A. UDP-glycosyltransferases of plant hormones. Adv. Cell Biol. 2014;4:43–60. doi: 10.2478/acb-2014-0003. DOI
Baker MS, Vogel H, Schranz ME. Paleopolyploidy in the Brassicales: Analyses of the cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol. Evol. 2009;1:391–399. doi: 10.1093/gbe/evp040. PubMed DOI PMC
Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H, et al. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 2008;148:1772–1781. doi: 10.1104/pp.108.124867. PubMed DOI PMC
Schranz ME, Mitchell-Olds T. Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell. 2006;18:1152–1165. doi: 10.1105/tpc.106.041111. PubMed DOI PMC
Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya L.) Nature. 2008;452:991–996. doi: 10.1038/nature06856. PubMed DOI PMC
The Brassica rapa Genome Sequencing Consortium The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 2011;43:1035–1039. doi: 10.1038/ng.919. PubMed DOI
Dassanayake M, Oh D-H, Haas JS, Hernandez A, Hong H, Ali S, et al. The genome of the extremophile crucifer Thellungiella parvula. Nat. Genet. 2011;43:913–918. doi: 10.1038/ng.889. PubMed DOI PMC
Rockinger A, Souza A, Carvalho FA, Renner SS. Chromosome number reduction in the sister clade of Carica papaya with concomitant genome size doubling. Am. J. Bot. 2016;103:1082–1088. doi: 10.3732/ajb.1600134. PubMed DOI
Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity in plant genomes. Science. 2008;320:486–488. doi: 10.1126/science.1153917. PubMed DOI
Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, et al. The chromosome counts database (CCDB) A community resource of plant chromosome numbers. New Phytol. 2015;206:19–26. doi: 10.1111/nph.13191. PubMed DOI
Gschwend AR, Wai CM, Zee F, Arumuganathan AK, Ming R. Genome size variation among sex types in dioecious and trioecious Caricaceae species. Euphytica. 2013;189:461–469. doi: 10.1007/s10681-012-0815-9. DOI
Tang HB, Wang XY, Bowers JE, Ming R, Alam M, Paterson AH, et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 2008;18:1944–1954. doi: 10.1101/gr.080978.108. PubMed DOI PMC
Tsitsekian D, Daras G, Alatzas A, Templalexis D, Hatzopoulos P, Rigas S. Comprehensive analysis of Lon proteases in plants highlights independent gene duplication events. J. Exp. Bot. 2019;70:2185–2197. doi: 10.1093/jxb/ery440. PubMed DOI PMC
Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, et al. The butterfly plant arms-race escalated by gene and genome duplications. PNAS. 2015;112:8362–8366. doi: 10.1073/pnas.1503926112. PubMed DOI PMC
Salse J. Ancestors of modern plant crops. Curr. Opin. Plant. Biol. 2016;30:134–142. doi: 10.1016/j.pbi.2016.02.005. PubMed DOI
Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Gupta VS. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genom. 2012;13:175. doi: 10.1186/1471-2164-13-175. PubMed DOI PMC
Horgan R. A new cytokinin metabolite. Biochem. Biophys. Res. Commun. 1975;65:358–363. doi: 10.1016/S0006-291X(75)80101-X. PubMed DOI
Parker CW, Letham DS, Wilson MM, Jenkins ID, MacLeod JK, Summons RE. The identity of two new cytokinin metabolites. Ann. Bot. 1975;39:375–376. doi: 10.1093/oxfordjournals.aob.a084951. DOI
Takagi M, Yokota T, Murofushi N, Saka H, Takahashi N. Quantitative changes of free-base, riboside, ribotide and glucoside cytokinins in developing rice grains. Plant Growth Regul. 1989;8:349–364. doi: 10.1007/BF00024665. DOI
Wagner BM, Beck E. Cytokinins in the perennial herb Urtica dioica L. as influenced by its nitrogen status. Planta. 1993;190:511–518. doi: 10.1007/BF00224790. DOI
Schäfer M, Brütting C, Canales IM, Großkinsky DK, Vaňková R, Baldwin IT, Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 2015;66:4873–4884. doi: 10.1093/jxb/erv214. PubMed DOI PMC
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:1178–1186. doi: 10.1093/nar/gkr944. PubMed DOI PMC
Chen Y, Zou M, Cao Y. Transcriptome analysis of the Arabidopsis semi-in vivo pollen tube guidance system uncovers a distinct gene expression profile. J. Plant. Biol. 2014;57:93–105. doi: 10.1007/s12374-013-0272-6. DOI
Philippon H, Souvane A, Brochier-Armanet C, Perrière G. IsoSel: Protein Isoform Selector for phylogenetic reconstructions. PLoS ONE. 2017;12:e0174250. doi: 10.1371/journal.pone.0174250. PubMed DOI PMC
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. doi: 10.1038/msb.2011.75. PubMed DOI PMC
Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, et al. Mobyle: A new full web bioinformatics framework. Bioinformatics. 2009;25:3005–3011. doi: 10.1093/bioinformatics/btp493. PubMed DOI PMC
Söding J. Protein homology detection by HMM–HMM comparison. Bioinformatics. 2005;21:951–960. doi: 10.1093/bioinformatics/bti125. PubMed DOI
Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. 1999;41:95–98.
Bailey TL, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: Tools for motif discovery and searching. Nucl. Acids Res. 2009;37:W202–W208. doi: 10.1093/nar/gkp335. PubMed DOI PMC
Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, et al. The Pfam protein families database. Nucl. Acids Res. 2002;30(1):276–280. doi: 10.1093/nar/30.1.276. PubMed DOI PMC
Geer LY, Domarchev M, Lipman DJ, Bryant SH. CDART: Protein homology by domain architecture. Genome Res. 2002;12(10):1619–1623. doi: 10.1101/gr.278202. PubMed DOI PMC
Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics. 2015;31:1296–1297. doi: 10.1093/bioinformatics/btu817. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Nei M, Kumar S. Molecular Evolution and Phylogenetics. Oxford University Press; 2000.
Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;8:W242–W245. doi: 10.1093/nar/gkw290. PubMed DOI PMC