Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37534287
PubMed Central
PMC10390838
DOI
10.3389/fpls.2023.1217421
Knihovny.cz E-zdroje
- Klíčová slova
- 2-oxindole-3-acetic acid, HPLC-MS/MS, auxin conjugates, auxin metabolism, catabolism, indole-3-acetic acid, quantitative analysis,
- Publikační typ
- časopisecké články MeSH
Auxins are a group of phytohormones that play a key role in plant growth and development, mainly presented by the major member of the family - indole-3-acetic acid (IAA). The levels of free IAA are regulated, in addition to de novo biosynthesis, by irreversible oxidative catabolism and reversible conjugation with sugars and amino acids. These conjugates, which serve as inactive storage forms of auxin and/or degradation intermediates, can also be oxidized to form 2-oxindole-3-acetyl-1-O-ß-d-glucose (oxIAA-glc) and oxIAA-amino acids (oxIAA-AAs). Until now, only oxIAA conjugates with aspartate and glutamate have been identified in plants. However, detailed information on the endogenous levels of these and other putative oxIAA-amino acid conjugates in various plant species and their spatial distribution is still not well understood but is finally getting more attention. Herein, we identified and characterized two novel naturally occurring auxin metabolites in plants, namely oxIAA-leucine (oxIAA-Leu) and oxIAA-phenylalanine (oxIAA-Phe). Subsequently, a new liquid chromatography-tandem mass spectrometry method was developed for the determination of a wide range of IAA metabolites. Using this methodology, the quantitative determination of IAA metabolites including newly characterized oxIAA conjugates in roots, shoots and cotyledons of four selected plant models - Arabidopsis thaliana, pea (Pisum sativum L.), wheat (Triticum aestivum L.) and maize (Zea mays L.) was performed to compare auxin metabolite profiles. The distribution of various groups of auxin metabolites differed notably among the studied species as well as their sections. For example, oxIAA-AA conjugates were the major metabolites found in pea, while oxIAA-glc dominated in Arabidopsis. We further compared IAA metabolite levels in plants harvested at different growth stages to monitor the dynamics of IAA metabolite profiles during early seedling development. In general, our results show a great diversity of auxin inactivation pathways among angiosperm plants. We believe that our findings will greatly contribute to a better understanding of IAA homeostasis.
Zobrazit více v PubMed
Bandurski R. S., Schulze A. (1977). Concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol. 60, 211–213. doi: 10.1104/PP.60.2.211 PubMed DOI PMC
Boyes D. C., Zayed A. M., Ascenzi R., McCaskill A. J., Hoffman N. E., Davis K. R., et al. . (2001). Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13 (7), 1499–1510. doi: 10.1105/TPC.010011 PubMed DOI PMC
Broughton W. J., Hernández G., Blair M., Beebe S., Gepts P., Vanderleyden J. (2003). Beans (Phaseolus spp.) – model food legumes. Plant Soil 252, 55–128. doi: 10.1023/A:1024146710611/METRICS DOI
Brunoni F., Collani S., Casanova-Sáez R., Šimura J., Karady M., Schmid M., et al. . (2020). Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytol. 226, 1753–1765. doi: 10.1111/NPH.16463 PubMed DOI
Brunoni F., Pěnčík A., Žukauskaitė A., Ament A., Kopečná M., Collani S., et al. . (2023). Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. New Phytol. 238 (6), 2264–2270. doi: 10.1111/nph.18887 PubMed DOI
Casanova-Sáez R., Mateo-Bonmatí E., Ljung K. (2021). Auxin metabolism in plants. Cold Spring Harb. Perspect. Biol. 13 (3), a039867. doi: 10.1101/CSHPERSPECT.A039867 PubMed DOI PMC
Dobrev P. I., Havlíček L., Vagner M., Malbeck J., Kamínek M. (2005). Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J. Chromatogr. A 1075 (1-2), 159–166. doi: 10.1016/J.CHROMA.2005.02.091 PubMed DOI
Du F., Ruan G., Liu H. (2012). Analytical methods for tracing plant hormones. Anal. Bioanal. Chem. 403, 55–74. doi: 10.1007/S00216-011-5623-X PubMed DOI
Fu J., Sun X., Wang J., Chu J., Yan C. (2011). Progress in quantitative analysis of plant hormones. Chin. Sci. Bull. 56, 355–366. doi: 10.1007/S11434-010-4243-8/METRICS DOI
Hayashi K., Arai K., Aoi Y., Tanaka Y., Hira H., Guo R., et al. . (2021). The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 12, 6752. doi: 10.1038/s41467-021-27020-1 PubMed DOI PMC
Isobe T., Miyagawa H. (2022). Facilitation of auxin biosynthesis and metabolism by salt stress in rice plants. Biosci. Biotech. Bioch. 86 (7), 824–831. doi: 10.1093/bbb/zbac070 PubMed DOI
Izumi Y., Okazawa A., Bamba T., Kobayashi A., Fukusaki E. (2009). Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography–electrospray ionization-ion trap mass spectrometry. Anal. Chim. Acta 648, 215–225. doi: 10.1016/J.ACA.2009.07.001 PubMed DOI
Kai K., Horita J., Wakasa K., Miyagawa H. (2007. a). Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68, 1651–1663. doi: 10.1016/J.PHYTOCHEM.2007.04.030 PubMed DOI
Kai K., Nakamura S., Wakasa K., Miyagawa H. (2007. c). Facile preparation of deuterium-labeled standards of indole-3-acetic acid (IAA) and its metabolites to quantitatively analyze the disposition of exogenous IAA in Arabidopsis thaliana . Biosci. Biotech. Bioch. 71 (8), 23, 1946–1954. doi: 10.1271/bbb.70151 PubMed DOI
Kai K., Wakasa K., Miyagawa H. (2007. b). ). metabolism of indole-3-acetic acid in rice: identification and characterization of N-β-d-glucopyranosyl indole-3-acetic acid and its conjugates. Phytochemistry 68, 2512–2522. doi: 10.1016/J.PHYTOCHEM.2007.05.040 PubMed DOI
Kim R., Osako Y., Yamane H., Tao R., Miyagawa H. (2021). Quantitative analysis of auxin metabolites in lychee flowers. Biosci. Biotech. Bioch. 85 (3), 467–475. doi: 10.1093/bbb/zbaa083 PubMed DOI
Kojima M., Kamada-Nobusada T., Komatsu H., Takei K., Kuroha T., Mizutani M., et al. . (2009). Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol. 50 (7), 1201–1214. doi: 10.1093/PCP/PCP057 PubMed DOI PMC
Kowalczyk M., Sandberg G. (2001). Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 127, 1845–1853. doi: 10.1104/PP.010525 PubMed DOI PMC
Lancashire P. D., Bleiholder H., Boom P. V. D., Langeluddeke P., Stauss R., Weber E., et al. . (1991). A uniform decimal code for growth stages of crops and weeds. Ann. App. Biol. 11, 561–601. doi: 10.1111/J.1744-7348.1991.TB04895.X DOI
Liu X., Hegeman A. D., Gardner G., Cohen J. D. (2012). Protocol: high-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods 8 (1), 31. doi: 10.1186/1746-4811-8-31 PubMed DOI PMC
Liu H., Li Y., Luan T., Lan C., Shu W. (2007). Simultaneous determination of phytohormones in plant extracts using SPME and HPLC. Chromatographia 66, 515–520. doi: 10.1365/S10337-007-0350-3 DOI
Ljung K., Bhalerao R. P., Sandberg G. (2001). Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28 (4), 465–474. doi: 10.1046/j.1365-313x.2001.01173.x PubMed DOI
Ljung K., Hul A., Kowalczyk M., Marchant A., Celenza J., Cohen J., et al. . (2002). Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol. 50, 309–332. doi: 10.1023/A:1016024017872 PubMed DOI
Ludwig-Müller J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot. 62, 1757–1773. doi: 10.1093/jxb/erq412 PubMed DOI
Matsuda F., Miyazawa H., Wakasa K., Miyagawa H. (2005). Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography–electrospray ionization–tandem mass spectrometry. Biosci. Biotech. Bioch. 69, 778–783. doi: 10.1271/BBB.69.778 PubMed DOI
Matuszewski B. K., Constanzer M. L., Chavez-Eng C. M. (2003). Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 75 (13), 3019–3030. doi: 10.1021/ac020361s PubMed DOI
Müller K., Dobrev P. I., Pěnčík A., Hošek P., Vondráková Z., Filepová R., et al. . (2021). DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiol. 187 (1), 103–115. doi: 10.1093/PLPHYS/KIAB242 PubMed DOI PMC
Normanly J. (2010). Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb. Perspect. Biol. 2, 1594–1594. doi: 10.1101/CSHPERSPECT.A001594 PubMed DOI PMC
Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69, 2214–2224. doi: 10.1016/J.PHYTOCHEM.2008.04.022 PubMed DOI
Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. (2012). Tissue specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 72, 523–536. doi: 10.1111/J.1365-313X.2012.05085.X PubMed DOI
Nowacki J., Bandurski R. S. (1980). Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of zea mays l. Plant Physiol. 65 (3), 422–427. doi: 10.1104/pp.65.3.422 PubMed DOI PMC
Osako Y., Yamane H., Kim R., Miyagawa H., Tao R. (2022). Characterization of auxin metabolism in the ovaries of the lychee (Litchi chinensis) ‘Salathiel’. J. Hortic. 91 (3), 302–311. doi: 10.2503/hortj.UTD-352 DOI
Östin A., Kowalyczk M., Bhalerao R. P., Sandberg G. (1998). Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 118, 285–296. doi: 10.1104/PP.118.1.285 PubMed DOI PMC
Pěnčík A., Casanova-Sáez R., Pilařová V., Žukauskaite A., Pinto R., Micol J. L., et al. . (2018). Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 69, 2569–2579. doi: 10.1093/JXB/ERY084 PubMed DOI PMC
Pěnčík A., Rolčík J., Novák O., Magnus V., Barták P., Buchtík R., et al. . (2009). Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80, 651–655. doi: 10.1016/J.TALANTA.2009.07.043 PubMed DOI
Pěnčík A., Simonovik B., Petersson S. V., Henyková E., Simon S., Greenham K., et al. . (2013). Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25 (10), 3858–3870. doi: 10.1105/TPC.113.114421 PubMed DOI PMC
Plüss R., Jenny T., Meier H. (1989). IAA-induced adventitious root formation in greenwood cuttings of Populus tremula and formation of 2-indolone-3-acetylaspartic acid, a new metabolite of exogeneously applied indole-3-acetic acid. Physiol. Plantarum 75, 89–96. doi: 10.1111/J.1399-3054.1989.TB02068.X DOI
Porfírio S., Gomes da Silva M. D. R., Peixe A., Cabrita M. J., Azadi P. (2016). Current analytical methods for plant auxin quantification – a review. Anal. Chim. Acta 902, 8–21. doi: 10.1016/J.ACA.2015.10.035 PubMed DOI
Riov J., Bangerth F. (1992). Metabolism of auxin in tomato fruit tissue: formation of high molecular weight conjugates of oxindole-3-acetic acid via the oxidation of indole-3- acetylaspartic acid. Plant Physiol. 100, 1396–1402. doi: 10.1104/PP.100.3.1396 PubMed DOI PMC
Rolčík J., Řečinská J., Barták P., Strnad M., Prinsen E. (2005). Purification of 3-indolylacetic acid by solid phase extraction. J. Sep. Sci. 28 (12), 1370–1374. doi: 10.1002/JSSC.200500189 PubMed DOI
Seidel C., Walz A., Park S., Cohen J. D., Ludwig-Müller J. (2006). Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis. Plant Biol. 8 (3), 340–345. doi: 10.1055/S-2006-923802 PubMed DOI
Shewry P. R. (2009). Wheat. J. Exp. Bot. 60, 1537–1553. doi: 10.1093/JXB/ERP058 PubMed DOI
Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., et al. . (2018). Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 177 (2), 476–489. doi: 10.1104/pp.18.00293 PubMed DOI PMC
Široká J., Brunoni F., Pěnčík A., Mik V., Žukauskaitė A., Strnad M., et al. . (2022). High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing. Plant Methods 18, 122. doi: 10.1186/s13007-022-00954-3 PubMed DOI PMC
Smýkal P. (2014). Pea (Pisum sativum L.) in biology prior and after mendel’s discovery. Czech J. Genet. Plant Breed. 50 (2), 52–64. doi: 10.17221/2/2014-CJGPB DOI
Staswick P. E. (2009). The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 150, 1310–1321. doi: 10.1104/PP.109.138529 PubMed DOI PMC
Staswick P. E., Serban B., Rowe M., Tiryaki I., Maldonado M. T., Maldonado M. C., et al. . (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616–627. doi: 10.1105/TPC.104.026690 PubMed DOI PMC
Sugawara S., Mashiguchi K., Tanaka K., Hishiyama S., Sakai T., Hanada K., et al. . (2015). Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol. 56, 1641–1654. doi: 10.1093/PCP/PCV088 PubMed DOI PMC
Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., et al. . (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8 (1), 17. doi: 10.1186/1746-4811-8-17/FIGURES/5 PubMed DOI PMC
Tam Y. Y., Epstein E., Normanly J. (2000). Characterization of auxin conjugates in Arabidopsis. low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetylglutamate, and indole-3-acetyl-glucose. Plant Physiol. 123, 589–596. doi: 10.1104/PP.123.2.589 PubMed DOI PMC
Tanaka K., Hayashi K., Natsume M., Kamiya Y., Sakakibara H., Kawaide H., et al. . (2014). UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant Cell Physiol. 55, 218–228. doi: 10.1093/PCP/PCT173 PubMed DOI PMC
Tivendale N. D., Davidson S. E., Davies N. W., Smith J. A., Dalmais M., Bendahmane A. I., et al. . (2012). Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant Physiol. 159 (3), 1055–1063. doi: 10.1104/pp.112.198457 PubMed DOI PMC
Tottman D. R. (1987). The decimal code for the growth stages of cereals, with illustrations. Ann. Appl. Biol. 110, 441–454. doi: 10.1111/J.1744-7348.1987.TB03275.X DOI
Tsurumi S., Wada S. (1986). Dioxindole-3-acetic acid conjugates formation from indole-3- acetylaspartic acid in vicia seedlings. Plant Cell Physiol. 27, 1513–1522. doi: 10.1093/OXFORDJOURNALS.PCP.A077252 DOI
Wang L., Zou Y., Kaw H. Y., Wang G., Sun H., Cai L., et al. . (2020). Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. Plant Methods 16, 54. doi: 10.1186/S13007-020-00595-4 PubMed DOI PMC
Woodward A. W., Bartel B. (2005). Auxin: regulation, action, and interaction. Ann. Bot. 95, 707–735. doi: 10.1093/AOB/MCI083 PubMed DOI PMC