Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species

. 2023 ; 14 () : 1217421. [epub] 20230718

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37534287

Auxins are a group of phytohormones that play a key role in plant growth and development, mainly presented by the major member of the family - indole-3-acetic acid (IAA). The levels of free IAA are regulated, in addition to de novo biosynthesis, by irreversible oxidative catabolism and reversible conjugation with sugars and amino acids. These conjugates, which serve as inactive storage forms of auxin and/or degradation intermediates, can also be oxidized to form 2-oxindole-3-acetyl-1-O-ß-d-glucose (oxIAA-glc) and oxIAA-amino acids (oxIAA-AAs). Until now, only oxIAA conjugates with aspartate and glutamate have been identified in plants. However, detailed information on the endogenous levels of these and other putative oxIAA-amino acid conjugates in various plant species and their spatial distribution is still not well understood but is finally getting more attention. Herein, we identified and characterized two novel naturally occurring auxin metabolites in plants, namely oxIAA-leucine (oxIAA-Leu) and oxIAA-phenylalanine (oxIAA-Phe). Subsequently, a new liquid chromatography-tandem mass spectrometry method was developed for the determination of a wide range of IAA metabolites. Using this methodology, the quantitative determination of IAA metabolites including newly characterized oxIAA conjugates in roots, shoots and cotyledons of four selected plant models - Arabidopsis thaliana, pea (Pisum sativum L.), wheat (Triticum aestivum L.) and maize (Zea mays L.) was performed to compare auxin metabolite profiles. The distribution of various groups of auxin metabolites differed notably among the studied species as well as their sections. For example, oxIAA-AA conjugates were the major metabolites found in pea, while oxIAA-glc dominated in Arabidopsis. We further compared IAA metabolite levels in plants harvested at different growth stages to monitor the dynamics of IAA metabolite profiles during early seedling development. In general, our results show a great diversity of auxin inactivation pathways among angiosperm plants. We believe that our findings will greatly contribute to a better understanding of IAA homeostasis.

Zobrazit více v PubMed

Bandurski R. S., Schulze A. (1977). Concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol. 60, 211–213. doi: 10.1104/PP.60.2.211 PubMed DOI PMC

Boyes D. C., Zayed A. M., Ascenzi R., McCaskill A. J., Hoffman N. E., Davis K. R., et al. . (2001). Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13 (7), 1499–1510. doi: 10.1105/TPC.010011 PubMed DOI PMC

Broughton W. J., Hernández G., Blair M., Beebe S., Gepts P., Vanderleyden J. (2003). Beans (Phaseolus spp.) – model food legumes. Plant Soil 252, 55–128. doi: 10.1023/A:1024146710611/METRICS DOI

Brunoni F., Collani S., Casanova-Sáez R., Šimura J., Karady M., Schmid M., et al. . (2020). Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. New Phytol. 226, 1753–1765. doi: 10.1111/NPH.16463 PubMed DOI

Brunoni F., Pěnčík A., Žukauskaitė A., Ament A., Kopečná M., Collani S., et al. . (2023). Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. New Phytol. 238 (6), 2264–2270. doi: 10.1111/nph.18887 PubMed DOI

Casanova-Sáez R., Mateo-Bonmatí E., Ljung K. (2021). Auxin metabolism in plants. Cold Spring Harb. Perspect. Biol. 13 (3), a039867. doi: 10.1101/CSHPERSPECT.A039867 PubMed DOI PMC

Dobrev P. I., Havlíček L., Vagner M., Malbeck J., Kamínek M. (2005). Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J. Chromatogr. A 1075 (1-2), 159–166. doi: 10.1016/J.CHROMA.2005.02.091 PubMed DOI

Du F., Ruan G., Liu H. (2012). Analytical methods for tracing plant hormones. Anal. Bioanal. Chem. 403, 55–74. doi: 10.1007/S00216-011-5623-X PubMed DOI

Fu J., Sun X., Wang J., Chu J., Yan C. (2011). Progress in quantitative analysis of plant hormones. Chin. Sci. Bull. 56, 355–366. doi: 10.1007/S11434-010-4243-8/METRICS DOI

Hayashi K., Arai K., Aoi Y., Tanaka Y., Hira H., Guo R., et al. . (2021). The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 12, 6752. doi: 10.1038/s41467-021-27020-1 PubMed DOI PMC

Isobe T., Miyagawa H. (2022). Facilitation of auxin biosynthesis and metabolism by salt stress in rice plants. Biosci. Biotech. Bioch. 86 (7), 824–831. doi: 10.1093/bbb/zbac070 PubMed DOI

Izumi Y., Okazawa A., Bamba T., Kobayashi A., Fukusaki E. (2009). Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography–electrospray ionization-ion trap mass spectrometry. Anal. Chim. Acta 648, 215–225. doi: 10.1016/J.ACA.2009.07.001 PubMed DOI

Kai K., Horita J., Wakasa K., Miyagawa H. (2007. a). Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68, 1651–1663. doi: 10.1016/J.PHYTOCHEM.2007.04.030 PubMed DOI

Kai K., Nakamura S., Wakasa K., Miyagawa H. (2007. c). Facile preparation of deuterium-labeled standards of indole-3-acetic acid (IAA) and its metabolites to quantitatively analyze the disposition of exogenous IAA in Arabidopsis thaliana . Biosci. Biotech. Bioch. 71 (8), 23, 1946–1954. doi: 10.1271/bbb.70151 PubMed DOI

Kai K., Wakasa K., Miyagawa H. (2007. b). ). metabolism of indole-3-acetic acid in rice: identification and characterization of N-β-d-glucopyranosyl indole-3-acetic acid and its conjugates. Phytochemistry 68, 2512–2522. doi: 10.1016/J.PHYTOCHEM.2007.05.040 PubMed DOI

Kim R., Osako Y., Yamane H., Tao R., Miyagawa H. (2021). Quantitative analysis of auxin metabolites in lychee flowers. Biosci. Biotech. Bioch. 85 (3), 467–475. doi: 10.1093/bbb/zbaa083 PubMed DOI

Kojima M., Kamada-Nobusada T., Komatsu H., Takei K., Kuroha T., Mizutani M., et al. . (2009). Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol. 50 (7), 1201–1214. doi: 10.1093/PCP/PCP057 PubMed DOI PMC

Kowalczyk M., Sandberg G. (2001). Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 127, 1845–1853. doi: 10.1104/PP.010525 PubMed DOI PMC

Lancashire P. D., Bleiholder H., Boom P. V. D., Langeluddeke P., Stauss R., Weber E., et al. . (1991). A uniform decimal code for growth stages of crops and weeds. Ann. App. Biol. 11, 561–601. doi: 10.1111/J.1744-7348.1991.TB04895.X DOI

Liu X., Hegeman A. D., Gardner G., Cohen J. D. (2012). Protocol: high-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods 8 (1), 31. doi: 10.1186/1746-4811-8-31 PubMed DOI PMC

Liu H., Li Y., Luan T., Lan C., Shu W. (2007). Simultaneous determination of phytohormones in plant extracts using SPME and HPLC. Chromatographia 66, 515–520. doi: 10.1365/S10337-007-0350-3 DOI

Ljung K., Bhalerao R. P., Sandberg G. (2001). Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28 (4), 465–474. doi: 10.1046/j.1365-313x.2001.01173.x PubMed DOI

Ljung K., Hul A., Kowalczyk M., Marchant A., Celenza J., Cohen J., et al. . (2002). Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol. 50, 309–332. doi: 10.1023/A:1016024017872 PubMed DOI

Ludwig-Müller J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot. 62, 1757–1773. doi: 10.1093/jxb/erq412 PubMed DOI

Matsuda F., Miyazawa H., Wakasa K., Miyagawa H. (2005). Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography–electrospray ionization–tandem mass spectrometry. Biosci. Biotech. Bioch. 69, 778–783. doi: 10.1271/BBB.69.778 PubMed DOI

Matuszewski B. K., Constanzer M. L., Chavez-Eng C. M. (2003). Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 75 (13), 3019–3030. doi: 10.1021/ac020361s PubMed DOI

Müller K., Dobrev P. I., Pěnčík A., Hošek P., Vondráková Z., Filepová R., et al. . (2021). DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiol. 187 (1), 103–115. doi: 10.1093/PLPHYS/KIAB242 PubMed DOI PMC

Normanly J. (2010). Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb. Perspect. Biol. 2, 1594–1594. doi: 10.1101/CSHPERSPECT.A001594 PubMed DOI PMC

Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69, 2214–2224. doi: 10.1016/J.PHYTOCHEM.2008.04.022 PubMed DOI

Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. (2012). Tissue specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 72, 523–536. doi: 10.1111/J.1365-313X.2012.05085.X PubMed DOI

Nowacki J., Bandurski R. S. (1980). Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of zea mays l. Plant Physiol. 65 (3), 422–427. doi: 10.1104/pp.65.3.422 PubMed DOI PMC

Osako Y., Yamane H., Kim R., Miyagawa H., Tao R. (2022). Characterization of auxin metabolism in the ovaries of the lychee (Litchi chinensis) ‘Salathiel’. J. Hortic. 91 (3), 302–311. doi: 10.2503/hortj.UTD-352 DOI

Östin A., Kowalyczk M., Bhalerao R. P., Sandberg G. (1998). Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 118, 285–296. doi: 10.1104/PP.118.1.285 PubMed DOI PMC

Pěnčík A., Casanova-Sáez R., Pilařová V., Žukauskaite A., Pinto R., Micol J. L., et al. . (2018). Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 69, 2569–2579. doi: 10.1093/JXB/ERY084 PubMed DOI PMC

Pěnčík A., Rolčík J., Novák O., Magnus V., Barták P., Buchtík R., et al. . (2009). Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80, 651–655. doi: 10.1016/J.TALANTA.2009.07.043 PubMed DOI

Pěnčík A., Simonovik B., Petersson S. V., Henyková E., Simon S., Greenham K., et al. . (2013). Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25 (10), 3858–3870. doi: 10.1105/TPC.113.114421 PubMed DOI PMC

Plüss R., Jenny T., Meier H. (1989). IAA-induced adventitious root formation in greenwood cuttings of Populus tremula and formation of 2-indolone-3-acetylaspartic acid, a new metabolite of exogeneously applied indole-3-acetic acid. Physiol. Plantarum 75, 89–96. doi: 10.1111/J.1399-3054.1989.TB02068.X DOI

Porfírio S., Gomes da Silva M. D. R., Peixe A., Cabrita M. J., Azadi P. (2016). Current analytical methods for plant auxin quantification – a review. Anal. Chim. Acta 902, 8–21. doi: 10.1016/J.ACA.2015.10.035 PubMed DOI

Riov J., Bangerth F. (1992). Metabolism of auxin in tomato fruit tissue: formation of high molecular weight conjugates of oxindole-3-acetic acid via the oxidation of indole-3- acetylaspartic acid. Plant Physiol. 100, 1396–1402. doi: 10.1104/PP.100.3.1396 PubMed DOI PMC

Rolčík J., Řečinská J., Barták P., Strnad M., Prinsen E. (2005). Purification of 3-indolylacetic acid by solid phase extraction. J. Sep. Sci. 28 (12), 1370–1374. doi: 10.1002/JSSC.200500189 PubMed DOI

Seidel C., Walz A., Park S., Cohen J. D., Ludwig-Müller J. (2006). Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis. Plant Biol. 8 (3), 340–345. doi: 10.1055/S-2006-923802 PubMed DOI

Shewry P. R. (2009). Wheat. J. Exp. Bot. 60, 1537–1553. doi: 10.1093/JXB/ERP058 PubMed DOI

Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., et al. . (2018). Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 177 (2), 476–489. doi: 10.1104/pp.18.00293 PubMed DOI PMC

Široká J., Brunoni F., Pěnčík A., Mik V., Žukauskaitė A., Strnad M., et al. . (2022). High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing. Plant Methods 18, 122. doi: 10.1186/s13007-022-00954-3 PubMed DOI PMC

Smýkal P. (2014). Pea (Pisum sativum L.) in biology prior and after mendel’s discovery. Czech J. Genet. Plant Breed. 50 (2), 52–64. doi: 10.17221/2/2014-CJGPB DOI

Staswick P. E. (2009). The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 150, 1310–1321. doi: 10.1104/PP.109.138529 PubMed DOI PMC

Staswick P. E., Serban B., Rowe M., Tiryaki I., Maldonado M. T., Maldonado M. C., et al. . (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616–627. doi: 10.1105/TPC.104.026690 PubMed DOI PMC

Sugawara S., Mashiguchi K., Tanaka K., Hishiyama S., Sakai T., Hanada K., et al. . (2015). Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol. 56, 1641–1654. doi: 10.1093/PCP/PCV088 PubMed DOI PMC

Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., et al. . (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8 (1), 17. doi: 10.1186/1746-4811-8-17/FIGURES/5 PubMed DOI PMC

Tam Y. Y., Epstein E., Normanly J. (2000). Characterization of auxin conjugates in Arabidopsis. low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetylglutamate, and indole-3-acetyl-glucose. Plant Physiol. 123, 589–596. doi: 10.1104/PP.123.2.589 PubMed DOI PMC

Tanaka K., Hayashi K., Natsume M., Kamiya Y., Sakakibara H., Kawaide H., et al. . (2014). UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant Cell Physiol. 55, 218–228. doi: 10.1093/PCP/PCT173 PubMed DOI PMC

Tivendale N. D., Davidson S. E., Davies N. W., Smith J. A., Dalmais M., Bendahmane A. I., et al. . (2012). Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant Physiol. 159 (3), 1055–1063. doi: 10.1104/pp.112.198457 PubMed DOI PMC

Tottman D. R. (1987). The decimal code for the growth stages of cereals, with illustrations. Ann. Appl. Biol. 110, 441–454. doi: 10.1111/J.1744-7348.1987.TB03275.X DOI

Tsurumi S., Wada S. (1986). Dioxindole-3-acetic acid conjugates formation from indole-3- acetylaspartic acid in vicia seedlings. Plant Cell Physiol. 27, 1513–1522. doi: 10.1093/OXFORDJOURNALS.PCP.A077252 DOI

Wang L., Zou Y., Kaw H. Y., Wang G., Sun H., Cai L., et al. . (2020). Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. Plant Methods 16, 54. doi: 10.1186/S13007-020-00595-4 PubMed DOI PMC

Woodward A. W., Bartel B. (2005). Auxin: regulation, action, and interaction. Ann. Bot. 95, 707–735. doi: 10.1093/AOB/MCI083 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...